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8.4.4, Negation of condition (4). Let f be defined as follows:
f(X)=damX if and only if dimX < 0; f(X)= inPy X it and only if
dimX > 0.

8.4.5. Negation _of condition (). Let f be defined as follows:
f(©)= —1; f(X)=inT X+1 if and only if X =@,

8.4.6. Negation of condition (6). Let f be defined as follows:
f10)= —1;f(X) = Aim X/in P, X if and only if —1 < dimX < oco; f(X) = 1
if and only if dimX = co.

8.4.7. Negation of condition (7). Let f(X) = inPy X for all X,
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On some numerical constants
associated with abstract algebras
by
K. Urbanik (Wroclaw)

1. Introduection. Tor the terminology and notation used here,
see [5]. In particular, for a given abstract algebra U= (4;F), where A
is a non-void set and F is a class of fundamental operations, by A()
or A(F) we shall denote the eclass of all algebraic operations, i.e. the
smallest class, closed under the composition, containing all fundamental
operations and all trivial operations & (h=1,2,..,n; n=1,2,..)
defined by the formula

8Ny, gy ey ) = @y -

The subclass of all n-ary algebraic operations in 2 will be denoted by
AP or A™(F) (n > 0). Two algebras (4;F,) and (4;X,) having the
same class of algebraic operations will be treated here as identical. If
a non-void subset B of A is closed with respect to F, then the algebra
(B; F) is called a subalgebra of the algebra (4; F). An algebra (4; G) is
called a reduct of the algebra (4; F) if A(G)C A(F). Further, by A we
shall denote the algebra of all n-ary algebraic operations in the algebra 2.

In his study of certain numerical constants associated with abstract
algebras, B. Marczewski introduced the ovder of enlargeability (called
by him the degree of extendability) of abstract algebras (see [7], p. 182).
We recall his definition of this concept. Let A= (4;F). We say that
a non-negative integer n Dbelongs to the set N () if for every family G
of operations in the set A the equation A™(F) = A™(G) implies the
inclusion A(F)D A(G). In other words, @ e N() if and only if for every
family G satisfying the condition A™(F) = A®(G) the algebra (4;G)
is a reduct of the algebra (4; F). Further, let £() be the smallest integer
belonging to N () if the set N () is non-void and let £(A) = oo in the
opposite cage. The quantity (%) is called the order of enlargeability. of
the algebra 9. It is evident that

(i) For an algebra %= (4;F) the inequality &) >k holds if and
only if there ewists an operation f in A such that ABF) = ABE O )
and § ¢ A(F).
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In this paper we shall prove that for many finitely generated algebrag
usnally treated in mathematics, such as Abelian groups, vector spaces,
Boolean algebras, etc., the order of enlargeability is simply the minima]
number of generators. Now we shall define a substitute of the minima]
number of generators for algebras which are not finitely generated.

Let () be the minimal number of generators of a finitely generated
algebra U (see [6]). We assume here that algebras whose all elements are
algebraic constants, i.e. the values of constant algebraic operations, are
generated by the empty set. Thus y (%)= 0 if and only if all elements
of % are algebraic constants. Further, we put 4 (%) = oo for algebras
which are not finitely generated.

For any subalgebra B of the algebra % we put

7 (B, A) = miny (),

where the minimum is extended over all subalgebras © of the algebra 9
containing the subalgebra B. Further, we put

o) = supy(B, U),

where the supremum is extended over all finitely generated subalgebras B
of the algebra . Of course, for each algebra 9 we have the inequality
»(¥) < y(A). Moreover, the inequality y4(¥) < y(2A) may happen. For
instance, if 9 is the additive group of rationals, then yo(A)=1 and
7(W) = oo.

It is clear that for finitely generated algebras U the equation 7o(A)
= (%) holds. Further, it is very easy to prove that

(it) For all reducts B of the algebra U the inequality y,(B) > ()
holds.

Moreover,

(iil) If Ay and A, are algebras defined on the same set and A(”)(‘lll)
= AT for all 0 < 2, then y(d) = yy2L,).

In the sequel we shall write & and y, instead of 2(A) and py(A) re-
spectively when no confusion will arise.

2. p-enlargement of algebras. An algebra P is said to be
the p-enlargemont of an algebra 9 (p = 1, 2,...), in symbols B = E,(A),
if both algebras U and B are defined on the same set and the class A(B)
consists of all operations whose compositions with operations frcm A®(%)
belong to AP(). of course, for any index p the algebra 2 is a reduct
of the algebra €,(%). Moreover,

A‘(Pi’)( Qg twhc; algebras W, and U, are defined on the same set and AP(L)
= y then Ep(U;) = Ep(2,).
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Hence we get the equation

(2.1) Gp(Go(W) = G(W) (p=1,2,..).

TaEoREM 2.1. For each algebra W we have the formule

7o(€p(W) = min(p+1, »(W) (p=1,2,..).

Proof. First consider the case y,(2) < p+1. We have to prove the
formula ¥,(€p(U)) = 7o(A). Suppose the contrary, 7o(Cp(W)) = }J“(QI.)'. Si.nf:‘e
the algebra % is a reduct of the algebra €y(%), we have, by proposition (i)
in Section 1, the inequality y,(Ep(A)) < 7o(¥). Thus ye(Cx(A) < p and,
consequently, by the definition of the p-enlargement, AP (@) = {&‘"’(QI)
for all # < yo(€,(W)). But this contradicts proposition (iii) in Section 1.
Thus y,(Ep(A)) = 74(%) Whenever yo(¥) < p+1.

Now consider the case y,(%A) > p-+1. We have to prove the fc{nfn}]laj
70(€p(A)) = p+1. Suppose that 7o(€p(2) < . Then,(by the definition
of the p-enlargement, the equation A™(Ey(4))= A")(ﬂ‘[) holds for all
7 < 7,(€p(A)). Consequently, by pr_oposition (ifi) in Section 1, y,(€x(W)
= () which gives the contradiction. Thus

7o(E(W) = p+1 -

there exist elements
Suppose that 7,(€p(A)) > p+1. Then ner

Gy, By, ey Gpre SUCh that each subalgebra of the algebra Ey(¥) containing
the elements ay, dg, ..., dprs is generated by at least p4-2 elements. Put

(2.3)

(2.2)

Flay, Gy ooy Gpis) = Opr2

i s i the elements
and F(@y, Ty, ooy Bpy1) = @y in the opposite case. Since
ay, asz..l,’ a;_,,.l d;) Ifot belong to a subalgebra of the algebra G,(U) generated
by less than p-1 elements, we infer that for any system g, g(% vy Opt1
of operations from A“”(Qip(‘ll)) and, consequently, from A™() the
equation

f(gl(-'”u Dy very Bp)y Golil Bay ooy Bp)y ory Gotr(ry Bag ooy 9917))

= gu(®y Bz e s £2)

holds. Thus, by the definition of the p-enlargement, thir (p-]—;)?-’;&rii
operation f is algebraic in the algebra E»(%). Hence and from ( .f N
follows that the elements a, Gy, ..., Gpis belong to the sub@g]ibr% 2 thz
algebra G,(%) generated by the elements dy, @y, ..., dp+1 whic giv st e
contradietion. Consequently, the inequalisy yo((Ep(QI))<p+1 is true.
Hence and from (2.2) we get the formula yo((Ep(QI)) = p-+1 whenever
7o(%) > p+1. The theorem is thus proved.

19
Fundamenta Mathematicae, T. LIX
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A relationship between the concepts of the order of enlargeability

and the p-enlargement is given by the following simple theorem.
TeEOREM 2.2. The inequality &(A) < p holds if and only if WA = E,(Y).
From the above theorem and from formula (2.1) we deduce the follow-

ing theorems.

THEOREM 2.8. For all algebras U the inequality &(Cp(W) < p holds.
THEOREM 2.4. If p =2 and Gps(W) £ Cp(N), then &(Cx(A) = p.

3. Algebras of algebraic operations. Let A" Genote the
algebra of all n-ary algebraic operations in the algebra A (see [3],
Section 1.2). .

TEEOREM 3.1. If n 3 y(%), then s(U™) > s(A).

Proof. Each operation feA™(%) (m=0,1,...) induces an m-ary
operation } belonging to A™(UA™) by means of the formula

f(gu Gas s Gm) =T (G1s Goy -y Gm € A("*)(S)I)) ’

where

U1y @y ooy Bn) = F{Gu(@15 Bay ervs Bn) s Golys By wovs Bn)y ooy Gulyy By oovy ) -
Moreover, by the definition of the algebra of n-ary algebraic operations

each operation from A™(Y™) is of the form § where g A™(1).
Let us introduce the notation

(3.1) UM =p .

Since in the case p = oo the theorem is obvious, we may assume that
P < co. Suppose that for an m-ary operation » the composition
B(vy, 0y, «rv; D) With arbitrary operations v, vy, ..., om ¢ AP(U) Delongs
to A®(). By (3.1) there exists an operation geA"™(9) such that
3915 G2s rss gm) = B{g1s Gay -oes gm) for all operations Juy Gay ey Im GA(M(Q[)'
Consequently,

(3.2) g(gl(wll Bay ooy Bn)y a1y Bay covy Bndy ovey Gy s Tay ooy mn))

= h(gl(ml’ By eery Tn)y Go@rs Tay evey Wn)y ovey PPy Loy ooy mn))

for all operations g, g,, ..., gm ¢ A™(2A). Let Qyy Qgy ..oy A e an arbitrary
m-tuple of elements of the algebra %. Since m > y,(Y), there exist an
n-tuple by, by, ...,b, of elements of the algebra A and operations
by, 7','27 <oy B EA(")(%[) such that a; = hy(by, byy vy b)) (j=1, 2, ..., m).
Taking into account (3.2), we get the equation g(a,, dy, ...y Om)
= h(a, ay, ..., ). Thus g = h and, consequently, h ¢ A™(2A). Hence wo

obtain the inequality (%) < p which, by (3.1), completes the proof of
the theorem.
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4, Some subalgebras and reducts. Now we shall give a relation
between the order of enlargeability of an algebra and the order of enlarge-
ability of some its subalgebras and reduets.
TaemoREM 4.1. If B is a subalgebra of N such that each algebraic
operation in B has a unigue extension o an algebraic operation in U, then

£(20) < max ((B) , 7o(2) -

Proof. Put p = nmx(s(%), yu(‘)l)). Of course, it suffices to consider
the case p < oo. Moreover, if p = 0, then all elements of U are algebraic
constants. Consequently, % = B which implies the assertion of the
theorem. Thus we may assume that p > 1. Suppose that y,(B) > p. Then
there exist elements dy, dy, ..., dpss in B which do mnot belong to a sub-
algebra of B generated by less than p-1 elements. Put h(d,, oy 2ovy Apga)
= dpy1 a0d B(@y, Lay ooy Bpta) =B otherwise. Of course, the operation h
is non-trivial and, by &(B) < p, algebraic in B. Moreover, h(gr; gas -y Jp+1)
—g,in B for all gy, g, ..., gprr € AP(X). Hence and from »(A) < p it
follows that h is a restriction to B of the trivial operation &P twhich
gives a contradiction. Thus y,(B)< p.

TLet f be an operation algebraic in €, (%). From the inequalities
y(B)<p and &B)<p it follows that the restriction of f to B is
algebraic. Let f, be the extension of this restriction to an algebraic oper-
ation in 9. By the definition of p-enlargement, f(g:, goy -y gm) e AP)
whenever gy, ga, .-y gm € APY(A). Moreover,

(4.1) T(guy Gay vors Gm) = FolGus oy o5 Gm)

in the subalgebra B. Hence, by the uniqueness of the extension of the
algebraic operations from B to U, we get equation (4.1) in the algebra 9,[
Since p > yo(A), we hawe f= f, and, consequently, the operation f is
algebraic in the algebra 2. Hence we get the equation % = E,(A) which,
according to Theorem 2.2, implies the inequality £(A) < p. The theorem
is thus proved.

TeEoREM 4.2. Let B = (4;F) and A= (4;F v {61, &y ..., €}), where
€y, Oy ey Cp are comstant operations. If A ~ A((Ep(%)) = A(B), then
&(B) < max(p, e(A) k). - ‘

Proof. Put r = max(p, s()+%) and s = &(%). Of course, it suftices
to consider the case r < oo. Let f be an arbitrary operation algebra,lq in the
algebra &(B). Since for every operation g from A®@I) there exists an
operation % in A®t¥(B) such that

G(By, By veey Ba) = B(Byy Bay ooy Ty C1y oy oo x)

and r > s+ k, we infer that f(g:, fay -1 Im) € A(s)@[') Whenever G1y Gay o9 Gm €
¢ A®(90). Consequently, the operation f is algebraic in %, because § = &(2).
19%
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Moreover, by the inequality » > p, the operation f is also algebraic in
Ep(B). Hence, by the assumption of the theorem, we infer that the oper-
ation f is algebraic in B. Thus B = G(B), which, by Theorem 2.2, implies
the inequality &(B) < r. The theorem is thus proved.

An operation f.is said to be idempotent if f(x,x, ..., #) = for all
elements @. Given an algebra U, by I (A) we shall denote the mazimal
idempotent reduct of %A, i.e. the reduct for which the class of algebraic
operations is the class of all idempotent algebraic operations in 9. It is
evident that A (%) ~ A(Cy(I())) = A (I (). Hence and from Theorem 4.3
we get the following theorem.

THEOREM 4.3. If U= (4;F v {e), ¢, ..., Ci}), where ¢y, sy ..., ¢ are
constant operations and all operations from ¥ are idempotent then e(S(QI))
< e(UW)+E.

5. Some examples. Now we shall give some examples of abstract
algebrag which will be used in the further considerations.

(i) The algebras €. Let Oy (g =1, 2, ..., o) be the set of all ¢g-tuples
(kyy Fgy ooy kg) of non-negative integers different from the g¢-tuple
0,0, ..,0). Of course, the usual addition

(Foyy Boay ooy Bg) (815 80y ooy 8g) == (Bat81; T~k 8ay ovvy g 8o)

and the scalar multiplication n(ky, ks, ..., k) = (nky, nk,, ..., nky) by
positive integers are well defined on C,. We introduce the notation
g ="{0115 Op25 ., 030) (1=1,2,..,9),
where d;; =0 if j %k and d;;=1. Further, let D, = {0} and let D,
(g=2,3,..., ) be the set of all finite sums e;,,-} €74 ... - 5,4, Where
1<j<fp< .. <js<q and ¢ 2.
Let Fy (¢ = 1,2, ..., o) be the class of all operations f on O, defined as

n
"
Fli, gy oy ) = Z ¢+ ¢od ,

F=1

where ¢, ¢y, ..., ca aTe non-negative integers, d e D, and at least one
coefficient ¢; (1 <j < n) is greater than 1 if ¢,= 0 or ¢=1.

) Put G = (Cg; Fy) (¢=1,2, ..., o) and G = (0y; F, w {¢}), where ¢
is the constant operation on ¢y equal to e, everywhere. Of course, all
elements of the algebra @, are algebraic constants and, consequently,
7(Q) = 0. Moreover, it is easy to verify that e, 6agy +-ny 6gq aTE the
only generators of the algebra G, (g=1,2, ..., co). Hence it follows
that 7o(Co) =g (g=1,2, ., oo).
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For each index ¢, the operation

n
Fol@y @ay oy Tn) = Zmi
j=1

ig well defined on the set (,. Moreover, it is easy to verify that
fu € A(Gar(Cg)) and fu ¢ A(En(Cy). Thus
(51) ©p—1(Cy) 7~ Eul ) (n=
and €, # Gu(C) (n=2,3,..5;¢=0,1,.., 00
rem 2.2 we get the inequality &(C) >n (n=
formula (€)= oo (g=10,1,...,).

(ii) The algebras Gpq. Let p=1,2,..,¢=0,1,.. and p >g—1.
We put €y = Cp(€,). Since y(€y) = ¢ and p+1 > g, we have, by Theo-
rem 2.1, the formula yy(C€p,q) = ¢. Moreover, from (5.1) we get, in view
of Theorem 2.4, the formula &(C,q) =p for p > 2. Put fi(@) = v+ey,
fuler) = 61a+ 65, and fow)=w in the opposite case. Tt is easy to
verity that A®(F) = A(F, v {#,}), A%(F, v {e}) = AR, v {fi, ¢}) and
AO(F,) = A”(F, u {fz}). On the other hand the operation f, is mnot
algebraic in €, and G,; and the operation f, is not algebraic in Gp..
Thus &(Ceq) =1 (¢=0,1,2). Hence and from Theorem 2.3 we get the
formula (G 0) =1 (¢=0,1,2).

We can now summarize the discussion of constants e and v, for the
algebras € and Cpg:

Hence and from Theo-
3

).
2,3,...) which implies the

(5.2)
(5.3)

(g=10,1,...; 00),
(p=1,2,..;¢=0,1,..5p=>¢—1).

e(Cg) = o0, (&) =1¢
(G =2, v(Crg=1¢

Tet € be a complete algebra over a set C, i.e. the algebra for which
A(0C) is the class of all operations on ¢. Then we have the formula

(8.4) e(6) = 7,(€) = 0.

Further, let D be the algebra over the set {0, 1} such that A(D) consists
of all operations f satisfying the condition (0,0, .., 0) = 0. Then

(8.5) (D=0, p@=1.

6. Description of all pairs (g, yo)- Now we shall give a de-
seription of all possible pairs (s, 7,) for abstract algebras.

LeMMA 6.1, If () = 0, then y(W) < 1.

Proof. Suppose that y(%) > 2. Consequently, there exists a pair ay, ca
of elements of the algebra 9 which does not belong to 2 subalgebra of A
generated by less than two elements. Put f(a,) = @, f(as) = a1 and f(z) = @
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in the opposite case. Let G, be the family of all constant algebraic operationg
in A. Put G = G, v {f}. Taking into account that the elements a, and a,
are not algebraic constants in 2, we infer that AYA) = A(G). Hence
and from the equation &(A) = 0 it follows that the operation f is algebraic
in the algebra . Consequently, the element a, belongs to the subalgebra
of A generated by the element a, which gives a contradiction. The lemma
is thus proved.

THEOREM 6.1. The set of all possible pairs (s, y,) 18 the set of all pairs

(p,q), where p,q=0,1,.., 0 and p=q—1. Consequently, for each
algebra the inequality

(6.1)

holds.

Proof. By formulas (5.2), (5.3), (5.4), and (5.5) to prove the theorem
it suffices to prove inequality (6.1). Of course, we may assume that e
iz finite. Moreover, by Lemma 6.1, we may assume that &> 1. Let 9
be an algebra and p = &(A) (1 < p < co). Then, by Theorem 2.2, A = E,(A).
Hence and from Theorem 2.1 we get the inequality y,(%) = yo((Ep(‘II))
< p+1= &A1 which implies inequality (6.1). The theorem is thus
proved.

e 2 y—1

7. A class of algebras. We say that an algebra % has the prop-
erty (#) if two operations f and g from A™(A) (n>1) are identical
whenever f(a, a;, .., tn) = §(ty, @, ..., @,) for all sequences a,, ay, ..., ax
of elements of U containing at most two different elements.

Many algebras usually treated in mathematics, such as Abelian
groups, vector spaces, Boolean algebras, etc., have the property ()
Obviously, each two-element algebra has the property (x).

TerorEM 7.1. If an algebra U has the property (x) and p > max (3, 7)),
then the algebra €,(A) has the property (x).

Proof. Suppose that f, ¢ eA(“)((Ep(ﬁI)) and

(7.1) flony @y iy ) = glayy gy ...y an)

for all sequences a;, ay, ..., a, containing at most two different elements.
We shall prove the equation f= g by induction with respect to #. For
n << p this equation is obvious because of the formula AP(E,() = AP(W)
and the property () of 9. -

Suppose that » > p and for operations from A("'”((G,,(QI)) the state-
ment is true. By (7.1) and the inductive assumption we have the equation

(7-2) f(wl) Loy wery wiflymj, Ligryeeey m:n) = g(wli Dgy oy Bi1y Bfy Bipd eoey mn)
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for all i<j (i,§=1,2,..,n). Let he AP(E,(A)). From (7.2) and the
inequality # > p > 3 it follows that the equation]{
(7.3) ﬂ(h(wzy Bg)y By By weey mn) = g(h(wza %g)y Bay Dgy wovsy Wn)

holds whenever the sequence @, sy ..., Tn contains at most tlv;vo different
elements. Since both compositions in (7.3) belong to A" (E,(), we
infer, by the inductive assumption, that eqxé;a;tion (7.3) holds for all
clements @, @3y -y ¥ and all operations 7 eA (€,(2))-

Tet hy, by € AP (Ep(2) and
ful@sy gy 0ns Bn) = f(h’l(mz, Tg)y B35 Byy B @y D)y Ty voey :I;n) ’
02Ty Byy oeesy Tn) = g(hl(wﬁi Tg) y Wy By Bo(a; Ta)y By oovs mn) .

Of course, fi, gy € A" V(€p(U)) and, by (7.2) and (7.3), the equations

f1(@sy 3y T3y T5y weey Bn) = Gy(Say Bgy T3y L5y ovy @n) 5
Ful@ay @y oy Bsy vy Tn) = G2(Tay Loy Las Tpy oo @)
Fotyy gy oy Boy vy Tn) = G2(ay Bay Bay Ty ey o)

hold. These equations show thab
(7.4) fultbgy @y ovy @n) = 91(@s, sy «vy Tn)

whenever at least two elements among ,,%;, % are identical. Og)n.se-
quently, equation (7.4) holds for all sequences @y Ly wvey Tn contan%mg
at most two different elements which, by the inductive agsumption,

implies the equation f; = ¢,. Thus
(7.5) ' f(hl(wza Ta)y Wy By HolTay Ba)y D5y vers mﬂ)
= g(hx(wz: @), gy gy Teo@ay L3)y Bsy ooe mn)
' s 2)
for all elements &y, s, ..., @n and all operations By hae A ((‘ép(‘l[)).
Lt hy, hay by € AP (Ep(A) and
fol@ay Byy wovy Bn) = f(hx(%a @5) 5 By Bol2y @)y Balay Wa)y Ty oo
Go(ay By orvy Tu) = !](hu(mza g) y Bay Bo@ay Ta) 5 Ra(as @)y s
Obviously, fu, ¢ € “"”((E,,(QI)) and, by (7.5), the equations
Fal@ay Byy Bgy By vy Bn) = Go(@a2y Tay Doy Toy oo n) 5
Falny Way Doy Tgy ey Bn) = 9@y gy Loy Bsy ey Tn)

= ey &
fz(%’waymsy“'m“-ymn)"—92(“’23%19737“"5; » Tn)
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hold. Hence it follows that
(7.6) fol@ay Tay ooey Bn) = Go{@sy Ty o-vy Tn)

whenever at least two elements among x,,#;, #, are identical. Conge-
quently, equation (7.6) holds for all sequences &, &y, ..., Z, containing
at most two different elements which implies, by the inductive assumption,
the equation f,= g,. Thus

f(hn(a’z, @3) s Byy ha(@y, B3) 5 ha(@oy 3), @5,y -.r m?l)

= 9(7"1(”’2, @3)y gy ho(®yy B3) 5 oy w5), @5, .., wn)

for all elements a,, g, ..., 2%, and all operations &y, hz,haeAw((Ep(ﬂl))_
Hence it follows that for any system B, by, ..., bn of operations from
A(“)(&,(QI)) the equation

(1.7) f(hl(‘vy Y)s Bol@y 4) 5 ooey hnl®, "/)) = g(hl(w’ Y)s ho®, )y ooy Bl g ))

is true. F_Llu*ther, let wy, w,, ..., ws be an arbitrary system of operations
from A"7V(E(¥)). The compositions f(wy, wy, ..., Wn), g(t0y, 0y, ..., w0)
belong also to A® (&) and, by (7.7), the equation

(7.8)  F{wy(®y, Bay oy Bus)y 0oy, By vy Brmr)y wony Wiy, Ty oo Fn1))
= g(wl(mli Byy vy Bn1) Wolyy Loy oy Tn) s wovy Waly, Ty ooy wn——l))

holds for all sequences w;, @y, ..., @, containing at most two different
elements. Hence, by the inductive assumption, equation (7.8) holds for
all elements w,m,..,2,, and all operations w;, Wy, ..., wy, from
A"V (E()).

Let by, by, ..., by e an arbitrary sequence of elements of the algebra
Cp(A). Since 7> p = y,(A), we have, by Theorem 2.1, the inequality
yD(Gp(‘l[)) = 7o(N) < n. Consequently, there exist elements €1y Coyevey Cpmy
and operations oy, vy, ..., va e A" D(E,()) such that by = vy(cy, Cs, ..., tas)
(j=1,2,..,n). Hence, by formula (7.8), we obtain the equation

f(‘bu b27 ey bn) = g(bl, bz, vy b»ﬂ) .

Thus the operations f and g are identical and, consequently, the algebra
E,(A) -has the property () which completes the proof. ‘

Sm(?e all algebras €, (g=0,1, ..., o) defined in Section 5 (Bx-
ample (i)) have the property (+) and G,,= €x(Cy), we have, by (5.2)
and Theorem 7.1, the following ‘

CoROLLARY. The algebras G, =0,1,.;p= 5
the property (x). T O 2 =84 0 2 0) e
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8. Two-element algebras. In his fundamental paper [11],
E. L. Post determined all iterative systems and, consequently, all abstract
algebras over a two-element set. We shall quote some of Post’s results
which will enable us to compute the constants e and y, for two-element
algebras. In this way we shall get other examples of pairs (e, y,) for algebras
with the property (x).

Let T = {0,1}. The set T' will be regarded as a two-element Boolean
algebra with 0 as a neutral element. We define auxiliary operations on T
in terms of the Boolean operations:

Pul@, Y 2) = @Ay nz)w@ny n)u @ nynd)o @ ny nz),
Py, ) =(@ny) v (ynz)v(@ns),
G, 9,2) = (@AY )V (@ny ~Z), Gy, R =rAyva),
e, Y)=avy, H, Y=Y, 8@,y =@~Y)v@ ~Y),

n
o) =a", Un(®y, oy s )= [ Y2z (m=23,4,..).
F=14%]

Moreover, by 0 and 1 we shall denote the constant operations equal to 0
and 1 respectively.

Post’s Theorem states that each algebra over 7' is isomorphic to one
of the following algebras:

F=(T5t6,8), 6=(T;0,1,8,8), H=(1;0,1), w= (T;0,1).
= (T;0,1,8), D= (T;t,8), Tn=(T;8,%),; H=(T;8% ),
K= (T; 4, 04,0, =(T;0), L=(T;0,8), L=(T;s%),
8= (T;0,8,8), M=(T;t), W=(T;4p), DMm=(T;0,s),
W= (T;0,0), M= (T;0,0), Ta=(T;0,q,u) n=3,4,..,
T = (T30, @a a) (n=23,4,..), B=(T;p4 0%, = (T524)
Pr= (T304, U= (T;8), Q=Ts%, R=(T;a),
Ro=(T5¢), FRun=(T5q,%) n=3,4,.),

Ron = (T; gay ®a) (m=238,4,..)and T,

where T is the trivial algebra over the set T, i.e. an algebra for which
all algebraic operations are trivial.

Taking into account the inclusion relation between the algebras
defined above, we can determine their order of enlargeability. We note
that the order of enlargeability for the algebras T, P, PB*, and P can be
also obtained by means of results contained in [8] or [9]. The following
table gives the constants & and y, for all algebras in question:
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The above table shows that for any pair p, g (p, ¢= 0,1, 259 = q¢-1)
there exists an algebra % on the set T for which (%) = P and (A) = gq.
Moreover, there are only four non-isomorphic algebras on the set 7T for
which the order of enlargeability is infinite. It is well known (see [3]
and [2]) that there exist non-denumerably many non-isomorphic algebras
over a finite set containing at least three elements. Since the clags of
all n-ary operations on such a set is finite, we infer that there are only
finitely many algebras for which ¢ = n. Thus the clags of algebras with
finite order of enlargeability is at most denumerable. Hence it follows
that there exist non-denumerably many non-isomorphic algebras with
infinite order of enlargeability defined on a finite set containing at least
three elements.

9. Descl:iption of all pairs (c,y,) for algebras with the
property (%). From the table in the preceding section it follows that

PolJ) =1 &(J)=1, PolJe) = 2.

Moreover, each algebra over the set T satisfying the inequality =< y,
iy either isomorphic to 3, or to 3. Now we shall prove more general result.

THEOREM 9.1. Each algebra with the property (x) satisfying the ine-
quality &< y, is either isomorphic to the algebra 3. or to the algebra S,.

Proof. Tet U be an algebra with the property () for which the
inequality () < y,(A) holds. Of course, to prove the theorem it suffices
to prove that % is a two-element algebra. Let us suppose that the algebra %
contains at least three elements. Setting m — max (3, £(AW+1) and taking
Into account the inequality #(3) < Yo(W), we infer that there exists a se-
quence by, by, ..., by of elements of the algebra 9 which belongs to no

e(3)=0, and
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gubalgebra of the algebra U generated by &(%) elements. We define an
m-ary operation f as follows:

(9.1) f(bu b2a eey b’m-) = bm

and f(@y, %oy ..y @m) = @ in the opposite case. Hence and from the
definition of the sequence b, by, ..., b, we get the formula

f(gl(mu Tay veey Bk)y Gol @1y Toy wovy Bh) g vory G Bry Loy oory ’”k)) = g1(@, Loy .., Tk

for all operations gy, gay -, gm from AM(A) (k< (). Consequently,
by the definition of the order of enlargeability, the operation f is algebraic
in 9. Since f(ay, a5, ..., @n) = a; for all sequences a,, @y, ..., a4, containing
at most two different elements, we have, by the property (x), the equation
= ¢™ which contradicts (9.1). Thus % is an at most two-element algebra.
Since for one-element algebras the equation ()= (W)= 0 holds,
we conclude that % is a two-element algebra which completes the proof.

THEOREM 9.2. The set of all possible pairs (e, y,) for algebras with
the property (*) non-isomorphic to one of the exceptional algebras 5, and J,
i8 the set of all pairs (p, q), where p,q=0,1,..., 00 and p = q.

Proof. The algebras ¢ and €, (¢=0,1,..,00; p=23,4,..;
9 > q) defined in Section 5 have the property (*) (see Corollary to Theo-
rem 7.1) and, obviously, are not isomorphic to the exceptional algebras J;,
and J,. Moreover, by (5.2) and (5.3), ¢(€,;) = co, £(Cp) = p and yo(Q'j?)
= y4(€p,q) = ¢. Further, the table in Section 8 shows that for each pair
(p,q) (p,g=0,1,2; p > ¢) there exists a two-element algebra 2 n.elther
isomorphic to 5, nor to J, for which £(U)=p and p(¥)=q. Fma]l}f,
by Theorem 9.1, for all algebras with the property (+) non-isomorphic
to one of the algebras T, and 5, the inequality e > y, holds which completes
the proof.

10. Boolean algebras and their reducts. Let 0 denote the
neutral element of a Boolean algebra and let 1 = 0". It is clear .thalt the
algebraic operations in a Boolean algebra are Boolean polynoxmal.s. For
more detailed treatment of Boolean algebras from the point of view of
abstract algebras, we refer to the paper [4].

Given a reduct 9 of a Boolean algebra, by %, we shall qenote the
two-element subalgebra of 2 with the carrier {0,1}. It is.ewdent. tl}a,t
each algebraic operation in 9 is uniquely determined by its restriction
to 9,. Hence it follows that each reduct of a Boolean algebra has the
property (). Moreover, we have the following Lemma.

LEMMA 10.1. Let U be a reduct of a Boolean algebra B. If feA(B)
and its restriction to {0,1} belongs 1o A(Y,), then f e A(¥).
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LEmMMA 10.2. If A is a reduct of a Boolean algebra, then &(A) > (W)

Proof. Let U= (4;F), %= ({0,1};F,) and let A be a reduct
of a Boolean algebra B. For every non-negative integer n < e(%;) there
exists an operation f, on the set {0, 1} such that f, ¢ A(2,) and A™(F,)
= A"(F, U {f,}). Since each operation on the set {0,1} is a Boolean
polynomial, the operation f, has a unique extension to a Boolean poly-
nomial 7 on the set 4. Of course, f e A(B). Moreover, by Lemma 10.1,
F¢AQ) and A™(F) = A™(F o {f}). Hence, by the definition of the
order of enlargeability, we get the inequality &(U) > n which completes
the proof. i

The following theorem is a consequence of Theorems 4.1 and 9.1,
and Lemma 10.2.

TEEOREM 10.1. If U is a reduct of a Boolean algebra different from
the exceptional algebras J, and 3, then

£(U) = max ((%), 7(W)) -

‘We note that the constants £(2;) can be obtained from the table in
Section 8. In particular, if % is a Boolean algebra, then &(Uy) = &(F) =0
which yields the following corollary.

CorROLLA®RY. For Boolean algebras U the formula e(A) = yo(A) is true.

11. Distributive lattices. Let 9% be a distributive lattice. It
is known (see [1], Chapter IX, Sections 9 and 10) that each n-ary (n > 1)
algebraic operation in ¥ is of the form
(11.1) f(@yy @y ooy ) = () () 2y,

SeFjeS
where F is a family of non-void subsets of the set of indices {1, 2, vy R}
such that U ¢ F and ¥ D U implies the relation V ¢F. Given a non-void
subset U of the set {1,2,..,n}, we put @(U) =a if j e U and o (U) =y
if j¢U. By (11.1) we have the inclusion f(a(U), 2,(T), vy @(U)) D
if and only if U ¢F. Hence it follows that distributive lattices have the
property ().

Further, since each algebraic unary operation in % iy trivial, we
infer that the condition ,(%) < 1 implies that A is a one-element algebra
and, consequently, &(%) = »,(%) = 0. The following theorem gives the
order of enlargeability in the remaining case y,(%) > 2.

THROREM 11.1. For distributive lattices M we have the
= %(W) if 7o) >3 and s(W) =3 if y,(A) = 2.

Proof. It # (W) = oo, then, by Theorem 6.1, ¢(A) = oco. Suppose
that y(A) < co. Sinee each sublattice of A generated by (%) elements
hag at most 2% elements (see [1], Chapter IX, Section 10), we infer
that the lattice U is finite. Consequently, it has a zero-element 0 and

formula ()
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a unit element 1. From the assumption y(U) > 2 it follows that 0 - 1.
Moreover, the set {0,1} is closed under lattice operations and each
algebraic operation in % is uniquely determined by its restriction to {0,1}.
TFurther, it is easy to verify that the subalgebra of % with the carrier
(0,1} is equal to the algebra L, defined in Section 8. Hence, in view of
Theorem 4.1, the inequality &() < max(e(Q,), yo(W)) follows. Since .
e(Q,) = 3 (see the table in Section 8), we have the inequality

(11.2) &(W) < max (3, y(2) -

Moreover, the lattice 2 has the property () and is not isomorphie to
the exceptional algebras J; and J,. Thus, by Theorem 9.1, the inequality
() = 7,(A) holds. Hence and from (11.2) we get the formula £(2) = y,(¥)
it y(A) = 3.

Suppose that y,(A) = 2. Then it easy to verify that the algebra A
has either two elements of four elements. In the first case we have the
equation % = Q, which implies &(A)==3. In the remaining case the
algebra N i isomorphic to the algebra (4; ~, w) where 4 is the family
of all subsets of a two-element set. Hence it follows that the algebra U
is a reduct of a Boolean algebra and, consequently, by Theorem 10.1,
&(W) = max (e(Qy), 7(A)) = 3. The theorem is thus proved.

12. Conditions for the equation ¢= y,. An algebra U is said
to have the property (xx) if for any m-ary operation f (n > 3) such
that the composition f(g:, gay s gn) belongs to AP V2) whenever
G2y Goy oovy G € AP(Q) there exists an operation f, ¢ A™(%) satisfying the
equation

F(@yy @ay eory ) = fol@ys Aoy oory )
for all sequences ay, dy, ..., a, containing at most two different elements.

TEEOREM 12.1. If an algebra has the properties (x) and (*%), then
=1y, for y,=3 and £ <3 for v, < 2.

Proof. Suppose that the algebra A has the properties () and (sx).
Put p = max(3, (U)). Let f be an n-ary operation from A(Gx(¥). If
n < p, then, by the definition of the p-enlargement, f e A(2). Suppose
that n > p. Then, by the property (x*) of the algebra %, there exists
an n-ary operation f, belonging to A(%) such that
(12.1) F(@yy Aoy ooy On) = foltty, Agy ovey On)
for all sequences a,, a,, ..., @y containing at most two different elements.
Since, by Theorem 7.1, the algebra Gp(N) has also the property (x),
formula (12.1) implies the equation f=f,. Thus feA(%) and, conse-
quently, % = G,(A). Hence and from Theorem 2.2 we get the inequality
e(A) <p. Thus &(A) < 3 for y(A) <2 and

(12.2) () < p(W for (W) =3
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In the case yo(2) > 3 the algebra U is not isomorphic to the exceptional
two-element algebras 5, and J,. Consequently, by Theorem 9.1, £()
> 7,(¥). Hence and from (12.2) we get the formula &(A) = y,(A) for
2,(2) > 3. The theorem is thus proved.

Tn the next sections we shall give some applications of the above
theorem to various classes of abstract algebras. Now we shall prove
a theorem which gives a sufficient condition for (x) and (xx).

TeEorEM 12.2. Suppose thai the algebra W contains an algebraic constant ¢
such that for every system fi, fay .oy fn € Am(‘lI) (n = 2) there exists one and
only one operation h e A™() for which the equations

Tolagy togy ooy ) = F5()  (F=1,2, ..., )
hold, where uz; =& and uy=oc if i 7§ (4,j=1,2,...,n). Then the al-
gebra U has the properties (x) and (xx),
Proof. Since, by the assumption, each n-ary algebraic operation

in U is uniquely determined by its values on the sequences uyy, us. ..., Uy
(j=1,2,..,n) defined by the formula

(12.3) =2 and wgz=cifiz#j (i,j=1,2,...,n),

we infer that the algebra ¥ has the property ().

Suppose now that #» >3 and f is an n-ary operation such that for
all operations g, s, ..., gn eA(”_l)(QI) the composition F(gy, gay cry gun)
belongs to AP (). Put
(12.4) Filw) = f(Uasy Uiy voes Ung) (=152, 0,m),

where the quantities u;; are defined by formula (12.3). Of course, f; € APQD
(j=1,2,..,n). Consequently, there exists an operation he AP )
sach that .

(12.5) BUsgy Ugjy ooy Ung) = f3(@)  (f=1,2,..,n)
for all sequences Uy, Uaj, ..., %y defined by formula (12.3). Given 1 <4
<j<n we put

Vi@, Y) = f(Bry By ey @)y W@, Y) = R(Rry By ey Bn) s
where 2; = @, 2; =y and 2y = ¢if &k 5 4, j. Since n > 3, both operations v;
and wy are algebraic. Moreover, by (12.4) and (12.5), vy(x, ¢) = wy(z, ¢
and vg(e, y) = wy(e, y) which implies the equation
(12.6) v=wi (1,7 =1,2,.,n0i<]).
Further, setting

Fra(®1y Bay eory Bn) = F(®1, By oory Bpyy By Ly y eory Tn)

Bra(@1y @py ooy Bn) = h(2y, 2, ..., DLpo1y Ly Tpsay ooy D)
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for each pair of indices # <t & (v, s =1, 2, ..., »), we get algebraic operations
satistying the conditions

Fro(Uagy Uojy oeey Uns fey e,y e},
h

) =
hjs(thagy Uagy ooy Ung) = h(ey ¢y .y 0)
Fri(ttag, oy oevy Ung) = Ori(, )
Fpi(rs g Usgy oeey Upg) = W04(2, )

and for j 547, s the conditions

Traltass gy voey Ung) = F(Ussy Usjy vony Ung)
Tps{(Uny Ungy ory Ung) = B(tsyy Usjy erey Ung)

where the sequences %;, Uz, ..., Uy are defined by formula (12.3). Hence
and from (12.4), (12.5), and (12.6) we get the equations

Fro(tags gy ooy Ung) = Pra(thagy gy ooy Ung) (o7, 8=1,2,..,0;7<5s).

Since both operations f», and h,, ave algebraic and, consequently, uniquely
determined by their values on the sequences Uz, tasy ...y oy (j = 1,2, .00y 1),
the last equation implies the identity frs= ks (r,8=1,2,...,1; ¥ < §).
In other words,

Ty Wy eoey ¥n) = B(®yy Loy oovy Tn)

whenever the sequence @y, ,, ..., ¥, containg at least two identical elements.
Hence, taking into account the inequality # >3 we get the equation

flay, oy ooy @n) = h{ay, Gy, oo @)

for all sequences a,, ay, ..., @, containing at most two different elements.
Thus algebra 9% has the property (%) which completes the proof.

13. Unary algebras. An algebra is said to be wnary if all its
algebraic operations essentially depend on at most one variable. It is
obvious that each unary algebra has the property (). Now we shall prove
a less obvious lemma.

- Lemma 13.1. Upary algebras have the property (+x).

Proof. Let f be an n-ary operation (n > 3) such that the composition
F(@1s 92y vy gn) With arbitrary (n—1)-ary algebraic operations g, gas -y gn
is also algebraic. In particular, the operation

h(z) =f(2, @, ..., ®)

is algebraic. Since all algebraic operations essentially depend on at most
one variable, we infer that there exist indices p, ¢,#, 8 (2<p, ¢, 7,8<n)


GUEST


280 K. Urbanik

for which the following equations are true:

(13.1) [y @ay By Ty +ony ¥n) = h(wp) 5
(13.2) (&g, Tay Bay By +ey Bn) = h(g) ,
(13.3) f(@yy 2y Zay Loy vy W) = B () ,
(13.4) (g B3y gy Dy oeny Bn) = h(ws) .

Tirst consider the case of constant operation h: h(w) = ¢. Setting’

Joliyy Byy <oy Fn) =6, We get an n-ary algebraic operation satisfying, in
view of (13.1), (13.2), and (13.4), the equation

F(@yy Bay eoey Tn) = Fol@yy Bay oory &)

for all sequences &y, Tay ooy &n such that @y, ., ®; consists of at most two
different elements. Consequently, in this case the algebra has the prop-
erty (xx). ' ‘

Now suppose that the operation kb is not constant:,‘ In this case the
indices p, q, r and s are uniquely determined by the conditions (13.1)-(13.4).
Setting #, = &, info (13.1) and (13.2), we infer that h(zyp) = k(%) whequer
#, = . Hence it follows that the indices p and ¢ satisfy the condition
(13.5) p=g#2 or p,qe{2,3}.

Tn the same way setting @, = m, into (13.1) and (13.4) wo get the condition
(13.6) p=s#2 or p,se{2,3}.

Further, setting 2, = @, into (13.1) and (13.3), we obtain the condition
(13.7) p=rw#2 or p,re{2,4}.

Setting 2, = @, into (13.2) and (13.3), we get the further condition
(13.8) g=r#3 or g,re{3,4}.

Finally, setting @, = @, into (13.3) and #,= @, info (13.4), we get the
condition

(139) r=s#2o0rr=2 and s=3orr=4ands=2.

Suppose that p 7 2. If p % ¢, then, by (13.5), the equations p = 3
and ¢=2 hold. Consequently, p ¢ {2, 4} which, by condition (13.7),

implies the equation p = r = 3. Since also ¢ ¢ {3, 4}, we have, by (13.8),
the equation ¢ = r = 2 which gives the contradiction. Thus

(13.10) p=q i p#2.

If p 2 and p # r, then, by (13.7), the equations p= 4 and r= 2
hold. Hence and from (13.10) we get the inequality g # #. This inequality

©
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and (13.8) imply the relation re{3,4} which contradicts the formula
p = 2. Consequently,

(13.11) p=1r it px2.

It p 2 and p # s, then, by (13.6), we have equations p = 3 and
¢ = 2. Hence and from (13.11) we get the formula # = 3 which together
with the formula s = 2 contradicts (13.9). Thus p = s whenever P #2
and, consequently, by (13.10) and (13.11),

(13.12) p=g=r=¢ if p#£2.

Now consider the case p =2 and p # ¢. Then, by (13.5), we have
the formula ¢ = 3. Hence, by (13.8),"we get the relation r ¢ {3, 4} which
in particular, implies the inequality p s . Thus, by (13.7), re{2,4}
which together with the relation r e {3, 4} implies the formula » = 4.
Further, by (13.6), we have the relation s {2, 3}. Consequently, r s
and, by (13.9), s = 2. Thus we have proved the following statement:

(13.13) g=3,r=4d omds=2if p=2 and p #q.

Finally consider the case p = ¢ = 2. Then, by (13.8), the equation
¢ = holds. Hence and from (13.9) the formula 8 = 3 follows. Thus

(13.14) r=2and $=3 if p=g¢g=2.

Now we define an n-ary algebraic operation f, as follows:
fol@yy @py vy @n) = h(@p) I P # 2, fo@1, @y .oy @) = h(w;) if p=2 and
P #q and [o(@y Tay ...y ) = h(x,) if p= g= 2. From equations (13.1),
(13.2), (13.4) and formulas (13.12), (13.18), (13.14) it follows that the
equation

F (s @ay voey n) = folyy Tay oey Tn)

holds for all sequences @,, %y, ..., ¥s such that @, &,, ¥; containg at most
two different elements. Thus the algebra in question has the property (*)
which completes the proof of the lemma.

The above lemma and Theorem 12.1 imply the following theorem.

TaEoREM 13.1, For wnary algebras with y, > 8 the equation &=y,
holds.

It should be noted that the assumption 9, > 3 in Theorem 13.1 is
essential. In fact, for the trivial algebra T over the set {0,1} we have
the formulas ¢= 3 and y,= 2 (see the table in Section 8).

‘We finish this section by a proof of Swierczkowski’s Theorem on
algebras in which all elements are independent. We use here Marezewski’s
definition of independence in abstract algebras (see [5]). The following
simple lemma was proved in [8]: ‘

Fundamenta Mathematicae, T. LIX 20
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All elements of an n-element algebra are independent if and only if
all n-ary olgebraic operations are trivial.

The following theorem proved by S. Swierczkowski in [12] (Theorem 1)
is a simple consequence of the above lemma and Theorem 13.1.

SwIBRCZEOWSKY'S THEOREM. If all elements in an at least three-
element algebra ave independent, then the algebra is trivial.

Tndeed, let % be an at least three-element algebra in which all elements
are independent. Denote by B the trivial algebra defined on the same
set a5 the algebra 9. Of course, the inclusion A(®B) C A() holds. Moreover,
by the quoted above lemma, AM(B) = A" Q) for all integers » which
are not greater then the number of elements of the algebra U, i.e. for
all 7 < 7,(B). Since, by Theorem 13.1, &(B) = yo(B), we have the in-
clusion A(B)D AQD). Thus A(B)= A(A) and, consequently, B =9
which completes the proof of Swierczkowski’s Theorem.

14. Diagonal algebras. An algebra with one #n-ary fundamental
operation @ is called diagonal if the following postulates are satistied:

{1

(i) d(dv(‘ri, ey )y e

The class of diagonal algebras was introduced by J. Plonka in [10].
He proved also a representation theorem for diagonal algebras (see [10],
Theorem 1). From this representation theorem it follows that diagonal
algebras have the property (). The property () for diagonal algebras
was proved in [13] (Lemma 15). Hence and from Theorem 12.1 we get
the following theorem.

TrEOREM 14.1. For diagonal algebras with y, > 3 the equation ¢ = y,
holds.

We have seen that the assumption y, > 3 in Theorem 13.1 is essential.
Since trivial algebras are diagonal, the assumption y, > 3 in Theorem 14.1
is essential too.

d(x,r, .., x)= 2

y A, ey a) = d(an, o5, oy 2).

15. A class of semigroups. We say that a semigroup satisties
the condition (o) if for every term i ai?..z®, where ki, ky, ..., kn aTe
positive integers and »n > 2, essentially depending on the variable z, the
induced term akiykst-tkn also essentially depends on the variable .
Further, we say that a semigroup satisfies the condition (00) if the equation
aPy? = a"y®, where p,q,r,s are positive integers and both terms xrye,
z7y® essentially depend on the wvariable @, implies the equation a? = #".
It is clear that commutative semigroup satisfying conditions (o) and (oo)
have the property ().

Leyra 15.1. Commutative semigroups satisfying conditions (o) and (00)
have the property (%),
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Proof. Let » >3 and let f be an w-ary operation such that the
composition f(gi; fay -y §n) is algebraic for all algebraic (n—1)-ary
operations g, gay - gn- Putb

7"7’(“’”7'.’/):: f(zl,zz, vy 2n) (j
where 2= and 2; =y if i #j (i=1,2,...,u). Since n > 3, the binary
operations k; (j =1,2, ..., n) are algebraic. Further, for every pair i < j
(i,ij=1,2,..,m) we define an algebraic operation f; by the formula

fﬁ(wh Py ooy wﬂ) = f(wlv Layvoey Bty By Big1y ooy Tn)
Of course, the operation f; does not depend on the variable z;. Moreover,
(15.1)

Far(thars Uory ooy Unr) = B, y) (v £ 4, 4)

where w4y == % and up =y i k #r (k= 1,2, ..., n). For each operation f;
there exist a mnon-void set of indices Iy C{1,2,..,4—1,¢+1,..,n}
and positive integers k,(i, j) (r e I;) such that

ity @y ooy W) = nmrr(”) .

rely

(15.2)

First consider the case that the operation f; essentially depends
on a variable x, for certain indices ¢, §, ¢ such that g # ¢, j. Then, by the
condition (o) and (15.1), the operation hy(z,y) essentially depends on
the variable z. Let @ be the set of all indices » for which the binary oper-
ation h{x,y) depends on the variable x. Of course, § is a non-void set
and, by the condition (o) and formula (15.1), » € @ if and only if f;; depends
on the variable z, for ¢, j # r. Furthermore, each operation h{z, y) (r ¢ @)
is either of the form x* or of the form x*v*, where %, and s, are positive
integers. From (15.1), (15.2) and the conditions (o) and (oo} we obtain
the formula

(15.3) wkrlbd) = phr i ps£d,j and re@.

Since n > 3, for each pair i < j we can choose a disjoint pair of indices
P<gq Setting ay=2 and m=y (s#j;8=1,2,..,2) into fy and
G ==, Ty =Y (M #14,J;m=1,2,..,0)into fsy we obtain identical
expressions. Hence and from (15.2) and (15.3) we get, in view of the

conditions (o) and (oo), the formula

o it [eQand j¢¢,
akid) = | ki it 1¢Q and je 9,
phetly 4 ieQ and je@.

Moreover, if both indices 4 and j do not belong to @, then the operation fy
does not depend on both variables @ and @. Oonsequently, by (15.2)
20%
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and (15.3), the operation f(w, @ «vs Bimis Biy Bit1y ooy 2) can be written
in the form

F@1y Tay ory Bimty Bpy Big1y oy Tn) = Tol@yy oy vovy i1y Bpy Biday oey Bn)

where
fol@ys Bay ooy Bn) = Hwk’
reqQ

and i<j (4,§=1,2,..,0). Hence we get the property (x*) because
the operation J, is algebraic which completes the proof of the lemma in
the cage where at least one operation fy essentially depends on a variable «,
with ¢ %4, j.

Now consider the case where each operation fy depends on at most
one variable ;. Then the operations fy are of the form

Ful@ery @y ooey @n) = m?(‘iﬂ)

where s(i,j) are positive integers. Since n >3 for each pair ¢ < j, we
can choose a disjoint pair of indices p < ¢. Setting sy=2 and m=y
(k=1,2,..,m; k+#4) into fy and &=z =2, &n=1Y (m=1,2,..,n
M # 4, §) into fpg, We obtain identical expressions equal to 49 and y*®0
respectively. Thus all operations @4 are constant and identical. Conse-
quently,

(t,j=1,2,.,m50<]),

FQ@yy Bay ey Liomsy By Ligay ooy Tn) 2= €

where ¢ is an algebraic constant and i <j (¢, =1,2,..., n). Hence we
get the property («+) which completes the proof of the lemma.

From Lemma 15.1 and Theorem 12.1 we get the following theorem.

THEOREM 15.1. For every commuiative semigroup with y, >3 satis-
fying the conditions (0) and (00) the equation &= y, holds.

We note that each commutative semigroup with a unif element
satisfies both conditions (o) and (o0o). For ingtance, the semigroup of
all subsets of a fixed set with the union as a semigroup operation satisfies
these conditions. Since the two-element semigroup L, defined on the
set {0, 1} with @ v y as the semigroup operation satisfies both conditions (o)
and (0o) and £(9,) = 3, 7,{Q;) = 2 (see the table in Section 8), we infer
that the assumption y,> 3 in Theorem 15.1 is essential.

Now we ghall show by a counterexample that each of the conditions (o)
and (oo) is also essential.

Let 9, be the semigroup of all pairs <¥,i> where BC {l,2,..,}
B # @ and 1= 0 or 1. The semigroup operation is defined by the formula

BT,

(B OF,min(L, [B ~Fl+i+7)>

where |H| denotes the number of elements of the set . It is easy to verify
that the semigroup %, is commutative and satisties the condition (o).
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Moreover (%) = & and the following identities are true in ;: am = a2
(n>2), wy= a%* (p+4q = 3). Further, two operations #,4,...2; and
dab..oh ave different. Setting f(y, @y vy Bp41) = B0y tp if 2% = @4
and f(®1y Bay -oey Troy1) = 2ias... 0% in the opposite case, we obtain a non-
algebraic operation. On the other hand, the composition f(g;, goy ..y grt1)
with arbitrary k-ary algebraic operations g, ¢y, ..., g1 is algebraie.
Hence we get the inequality (%) > k41 which shows that the con-
dition. (oo) in Theorem 15.1 is essential.

Let A, be the semigroup of all subsets of the set {1, 2, ..., k} under
the semigroup operation xy defined as follows:

{ if
Y =

if

It is easy to verify that 2, is a commutative semigroup satisfying the
condition (00) and yy(W,) = k. Moreover, the empty set is an algebraic
constant and the operation #;%,...wx i3 not constant. Consequently,
setting f (@1, ay vy Tha1) = B @y 0 if &g = @pyy and (@, By, ooy Tpya) = O
in the opposite case we get a non-algebraic operation. On the other hand,
the composition f(g1, oy .- » Jis1) With arbitrary k-ary algebraic operations
Gus 0oy ooy P I8 algebraic. Thus &(y) > k41, which shows that the
condition (0) in Theorem 15.1 ig also essential.

@y

@

sAy=46@,
s~y #£D.

16. Modules. In this section unital modules over an associative
ring with the unit element, i.e. modules satisfying the condition 1z = =,
will be called briefly modules. The class of algebraic operations in a module
consists of all homogeneous linear forms. It is clear that modules satisfy
the assumptions of Theorem 12.2 if as an algebraic constant ¢ the zero-
element is taken. Thus, by Theorem 12.2, all modules have the proper-
ties. () and (#x).

THEOREM 16.1. For every module with y,>2 the equation &=y,
holds.

Proof. For modules with y, > 3 our statement is a consequence of
Theorem 12.1.

Consider the cage y, = 2. By Theorem 13.1 we have the inequality
e < 8. To prove the inequality & < 2 it suffices to prove that each ternary
operation 7 is algebraic provided the composition 7{gy, ge, gs) With arbitrary
Dbinary algebraic operations ¢, ¢», gs is algebraic. Suppose that an opera-
tion f has this property. Then the formula

fola, y,2) = f(z,0,0)+7(0,9, 0)+7(0,0,2)

defines an algebraic operation. Moreover, since algebraic operations in
a module are homogeneous linear forms, we have the equations

f@,y,0) =7(x,0,0)+/(0,y,0)= folws 4, 0) .
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Hence it follows that for arbitrary unary algebraic operations h,,

2
and h, the equation

F(h(@); hol) y Ba(9)) = Folha(@), o), Pa(y)

holds whenever # = 0 or y = 0. Consequently, (16.1) holds for all & and y.
Thus, for arbitrary binary algebraie operations ¢, g», and g, the equation

(16.1)

(16.2)  flgulo, ¥)s 0o, 9), Gl ) = Folga(®, 9) 5 0o, ¥) 5 gal, v))
holds whenever #=0 or y = 0. Consequently, equation (16.2) is true
for all # and y.

Given arbitrary elements a,, a, a; of the module, there exist, by
the assumption y,= 2, a pair by, b, of elements and binary algebraic
operations ¢, gs,9; such that a;= gy, %) (j=1,2,3). Hence and
from (16.2) we obtain the equation f(ay, @y, a3) = fo(ay, @, @) which
implies the identity f= f,. Thus the operation f is algebraic and, conse-
quently, < 2.

It is clear that modules are not isomorphic to the exceptional
algebras 3, and J, defined in Section 8. Thus, by Theorem 9.1, £ > y,= 2
and, consequently, ¢ = 2 which completes the proof of the theorem.

We note that the agsumption y, > 2 in the above theorem is essential.
As a counterexample we can take the algebra £, defined in Section 8.
Since & = ({0, 1}; 83) and s,{z, y) = vy (mod2), the algebra L, is a linear
space over the two-element field. Further, from the table in Section 8
we obtain the formulas £(8;) = 2 and y,(L) = 1.

Since Abelian groups can be regarded as unital modules, the following
corollary is a direct consequence of Theorem 16.1.

COROLLARY. For Abelian groups with y, > 2 the equation & = y, holds.

17. Maximal idempotent reducts of linear spaces. Let U
be a linear space over a field. The class of algebraic operations in the

maximal idempotent reduct I (A) of the algebra U consists of all operations
defined as

1
Flyy @y ooy W) = Z"Y”J ’
n -
where ) ¢ = 1.
j=1
LEMMA 17.1. For any linear space we have the formula

7o(I) = (W) +1 .

Prolof. Let B be a finitely generated subalgebra of SS(%). Then
there exists a subalgebra B, of A generated by y,(A) elements and such
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that the carrier of B, containg the carrier of B. Let G be the set of gener-
ators of the algebra B,. It is clear that G v {0} is the set of generators
of the reduct J(B,). Since I (B,) is a subalgebra of I () and contains
the subalgebra 2B, we have the inequality

7o{I(W) < n(@W)+1.

This inequality implies the lemma in the case y,,(%(ﬂl)) = co. Suppose
now that s = y,(J(A)) < oo. Let € be an arbitrary finitely generated
subalgebra of A and D a subalgebra of JI(A) with the same carrier. Of
course, the subalgebra D is also finitely generated and, consequently,
is contained in & subalgebra of J(A) generated by s elements, say
Oyy Gyy ooey g, Lot Dy be the subalgebra of % generated by elements
Oy Gy, -y 5. Of course, D, contains the subalgebra €. Further, taking
into account that the zero-element belongs to €, we get the existence of

8
clements ¢, Gy, ..., 6 Of the field satisfying the condition } ¢ =1 for
=1

8
which ) ¢;a; = 0. Hence it follows that the subalgebra D, can be gener-
F=1
ated by ¢—1 elements. Thus
po(A) < '}’0(3 (91)) —1
which completes the proof.
THEOREM 17.1. For any linear space W with y(N) =2 the formula
8(I()) = o(I(A)) holds.

Proof. Let I(W) = (4;F). It is obvious that A= (4;F v {0}).
Hence and from Theorems 4.3, 16.1 and Lemma 17.1 we get the inequality

£(IA) < po(IW) -

Since J(A) together with A satisfies condition (+) and is not isomorphie
to the exceptional algebras 5, and ,, we have, according to Theorem 9.1,
the converse inequality &(S(2) = 7(3(2) which completes the proof.
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Equationally compaclt algebras (I)

by
B. Weglorz (Wroctaw)

0. Introduction. Thig paper gives a study of equationally compact
algebras, introduced by J. Myeielski [11], and some generalizations of
this notions. The equational compactness is a simple reformulation in
the language of general algebras of a definition of J. %o [8] of the notion
of algebraical compactness of Abelian groups introduced by I. Kaplansky.
The definitions of this and related notions are given in Section 1.

The main results of this paper are contained in Section 2 and give
a characterization of equationally compact algebras in terms of ultra-
powers and retracts. Perhaps the most interesting result is that positive
compactness and atomic-compactness coincide.

In Section 3 we add several remarks and propositions concerning
equationally and weakly equationally compact algebras of well-known
kinds such as linear spaces, groups and modules, and in Section 4 equa-
tionally compact Boolean algebras are studied. In Section 5 we prove
that equational compactness in general is not elementarily definable and
we mention gome open problems.

The author is indebted to Jan Mycielski and C. Ryll-Nardzewski
for their discussions which improved the theorems and simplified the
proofs, and to the first of them for many stimulating guestions and help
in composition of this paper.

The main results were announced in [17].

1. Preliminaries. For any non-empty sets X and ¥, ¥¥ denotes
the set of all functions f: X-»¥; the cardinality of a set X is denoted
by |X|; o={0,1,2,..}. U= <4, {Foleq){Grlreny is an algebraic
system if 4 is a non-void sot, there are maps f: @—+w and ¢: R—>o—{0}
such that Fg: A" A for f(q) > 0 and F, ¢ A for f(g) = 0,and &-C AW
for all r ¢ B. The sequence = <@, f, B, g5, uniquely determined by %,
is called the similarity type of A. If B is void, then A is called an algebra.
4 iy called the set of 9. In the sequal we denote algebraic systems by
%, B,C,... and their sets by 4, B, 0,..., respectively.

It BC 4 and, for each Fy, if by, ..., bygy ¢ B then Flby ..o bg) € By
then B = (B, {Filgeq, {Gi}rerd, Where Gh=Grn B and I are
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