

A rigid sphere *

by

Joseph Martin (Madison, Wis.)

The goal of this paper is to answer a question raised by B. J. Ball in [3]. An embedding of a 2-sphere S in S^3 will be constructed with the property that any homeomorphism of S^3 onto itself, which is invariant on S, in pointwise fixed on S. S will appear as the image of a tame 2-sphere under an upper semicontinuous decomposition of S^3 . The non-degenerate elements of this decomposition space will be arcs of the type constructed by Alford and Ball in [2].

The terminology of [2] will be used. Suppose that A is an arc in E^3 , p is an endpoint of A, and A is locally polyhedral except at p. Then the penetration index of A at p is the smallest cardinal number n such that there are arbitrarily small 2-spheres enclosing p and containing no more than n points of A. In [2] a sequence of arcs A_1, A_2, \ldots is constructed such that each A_i is locally polyhedral except at an endpoint p_i , and the penetration index of A_i at p_i is 2i+1. If A is an arc in E^3 , then A is of type i if and only if the embeddings of A and A_i are equivalent. Let E^3_+ denote the set of points in E^3 each of whose third coordinates is non-negative.

LEMMA 1. Let pq be an arc of type r in E_+^3 such that $q \in \operatorname{Bd}(E_+^8)$, $pq-\{q\} \subset \operatorname{Int}(E_+^8)$, and pq has penetration index 2r+1 at p. Then there exists an open subset U of E^3 such that $pq \subset U$, and if S is a polyhedral 2-sphere in U such that (i) $pq \subset \operatorname{Int}(S)$, and (ii) S is in general position with respect to $\operatorname{Bd}(E_+^8)$, then $S \cap \operatorname{Bd}(E_+^8)$ contains at least 2r+1 mutually disjoint simple closed curves each of which contains q on its interior with respect to $\operatorname{Bd}(E_+^8)$.

Proof. Let pq be an arc satisfying the hypothesis of Lemma 1. Let K be a polyhedral 2-sphere such that (i) $q \in \operatorname{Int} K$, (ii) K intersects pq in exactly 2r+1 points, and (iii) if K' is a 2-sphere such that $q \in \operatorname{Int} K'$, and $K' \subset \operatorname{Int} K$, then $K' \cap pq$ contains at least 2r+1 points. Let x be a point of E^3 . Let xp denote the straight line interval from x to p and let q be a point of q between q and q. Let q be the first point of q between q and q. Let q be a point of q between q and q.

^{*} This research was partially supported by NSF Contract Number 86-4988.

Now let h be a homeomorphism of E^3 onto itself which takes pq onto xq, takes p onto x, r onto y, and s onto p. Let U denote $h(\operatorname{Int} K)$. Then U satisfies the conclusion of Lemma 1.

Description of the example: In E^3 , let X denote the plane Z=0, and let $R=\{r_1,r_2,r_3,...\}$ be the set of points in X, both of whose coordinates are rational numbers.

Fig. 1

Let D_1 be a circular disk in X, with center at r_1 , such that (i) diam D_1 < 1, and (ii) Bd $(D_1) \cap R = \emptyset$. Let C_1 denote the solid cylinder of height 1 over D_1 , N_1 denote the top face of C_1 , and H_1 denote the solid cone over N_1 from the point $(r_1, 2)$.

Let D_2 be a circular disk in X, with center at r_2 , such that (i) diam D_2 < 1/2, (ii) $\operatorname{Bd}(D_2) \cap R = \emptyset$, (iii) $r_1 \notin D_2$, and (iv) either $D_2 \subset \operatorname{Int} D_1$, or $D_2 \cap D_1 = \emptyset$. Let C_2 denote the solid cylinder of height 1/2 over D_2 , N_2 denote the top face of C_2 , and H_2 denote the solid cone over N_2 from the point $(r_2, 1)$.

This process is continued. For each positive integer n, D_n is chosen so that (i) diam $D_n < 1/n$, (ii) $\operatorname{Bd}(D_n) \cap R = \emptyset$, (iii) for each i, i < n, $r_i \notin D_n$, and (iv) either there exists an integer k, k < n, such that $D_n \subset \operatorname{Int}(D_k)$ or $D_n \cap [\bigcup_{i < n} D_i] = \emptyset$.

LEMMA 2. Suppose that j is a positive integer, and ε is a positive number. Then there exists a disk D in X such that (i) $r_j \in \text{Int}(D)$, (ii) diam $D < \varepsilon$, and (iii) $\text{Bd}(D) \subset D_j - [\bigcup_{k>j} \text{Int}(D_k)]$.

Proof. It follows from the construction that $D_j - [\bigcup_{k>j} \operatorname{Int}(D_k)]$ is a Sierpiński curve which has r_j as an inaccessible point. This implies the conclusion of Lemma 2.

For each positive integer j, let a_j be the straight line interval from r_j to the point $(r_j, 1/j)$, and let b_j be an arc of type j, which lies in H_j , has endpoints $(r_j, 1/j)$ and $(r_j, 2/j)$, and has penetration index 2j+1 at $(r_j, 2/j)$. Let a_j be $a_j \cup b_j$. See Figure 1.

LEMMA 3. Suppose that j is a positive integer and that U is an open subset of E^3 such that $a_j \subset U$. Then there exists a 2-sphere S, such that (i) $S \subset U$, (ii) $a_j \subset \operatorname{Int}(S)$, (iii) for each k, $S \cap a_k = \emptyset$, and (iv) $S \cap X$ consists of exactly 2j+1 simple closed curves.

Proof. Let j be a positive integer and let U be an open set containing a_j . Let V be a cylindrical neighborhood of a_j which lies in U. Now it follows from Lemma 2 that there exist mutually disjoint simple closed curves $\gamma_1, \gamma_2, \ldots, \gamma_{2j+1}$ in X such that for each $i, r_j \in \operatorname{Int} \gamma_i, \gamma_i \subset V$, and $\gamma_i \subset D_j - [\bigcup_{k>j} \operatorname{Int} D_k]$. For each i let F_i be the right circular cylinder from γ_i to N_j . Notice that $F_i \subset U$, and for each k, $F_i \cap a_k = \emptyset$. Let δ_i denote the boundary component of F_i on N_j .

Now there is a punctured disk L such that (i) L has boundary components $\delta_1, \delta_2, \ldots, \delta_{2j+1}$, (ii) L lies, except for its boundary, above the plane of N_f , (iii) for each k, $a_k \cap L = \emptyset$, and (iv) $L \subset V$. Now $L \cup \begin{bmatrix} 2j+1 \\ 1 \end{bmatrix}$ is a punctured disk which lies in U, has boundary components $\gamma_1, \gamma_2, \ldots, \gamma_{2j+1}$ and misses each a_k . Now the simple closed curves $\gamma_1, \gamma_2, \ldots, \gamma_{2j+1}$ may be capped off in U, below the plane X, to yield a 2-sphere S which satisfies the conclusion of the lemma.

The collection $\{a_1, a_2, ...\}$ is upper semi-continuous. This follows from the fact that for each positive number ε , there are only a finite number of elements in the collection which have diameter greater than ε .

We now consider S^3 as the one point compactification of E^3 . Let G be the upper semi-continuous decomposition of S^3 , whose only non-degenerate elements are a_1, a_2, \ldots It follows from [4] that S^3/G is topologically equivalent to S^3 . Let P be the projection mapping of S^3 onto S^3/G . Let S denote the one point compactification of X, S' denote P(S), and for each j, let q_j denote $P(a_j)$. Let Q denote the set $\{q_1, q_2, \ldots\}$.

THEOREM. Suppose that h is a homeomorphism of S^3/G onto S^3/G such that h(S') = S'. Then the restriction of h to S' is the identity.

Proof. Suppose that h is a homeomorphism of S^3/G onto S^3/G , h(S') = S', and j is a positive integer such that $h(q_j) \neq q_j$. It will be shown that this assumption leads to a contradiction.

Case 1. Suppose that $h(q_j)$ is not an element of Q. Let A be an arc on S' such that $h(q_j) \in A$, and $A \cap Q = \emptyset$. Then $P^{-1}(A)$ is an arc on S, and $P^{-1}(A) \cap R = \emptyset$. Then there exists a tame 2-sphere S'' such that $P^{-1}(A) \subset S''$, and for each positive integer k, $S'' \cap a_k = \emptyset$. It follows from Theorem 2 of [5] that P(S'') is a tame 2-sphere in S^3/G and hence that A is a tame arc in S^3/G . Then, $h^{-1}(A)$ is a tame arc on S' and $q_j \in A$.

Let B be an arc on S' such that $B \cap Q = \{q_j\}$, and q_j is an endpoint of B. Now B is locally tame except possibly at q_j , and since q_j lies on the tame arc $h^{-1}(A)$, it follows from [6] that B is tame. Now $P^{-1}(B)$ is an arc which is the union of a_j and an arc which lies in S. Let x denote the endpoint of $P^{-1}(B)$ which lies in X.

Let U be an open set in S^3 such that (i) $a_j \subset U$, (ii) $x \notin U$, (iii) U is the union of elements of the decomposition G, and (iv) U satisfies the conclusion of Lemma 1 with respect to a_j . Now P(U) is open in S^3/G and contains g_j . Since B is tame, there exists a tame 2-sphere L such that (i) $g_j \in \text{Int}(L)$. (ii) $L \cap S$ is a single point, (iii) $L \subset P(U)$, and (iv) $L \cap Q = \emptyset$.

Now $P^{-1}(L)$ is a 2-sphere in S^3 such that (i) $a_j \subset \operatorname{Int}(P^{-1}(L))$, (ii) $P^{-1}(L) \subset U$, (iii) $P^{-1}(L) \cap P^{-1}(B)$ is a single point, and (iv) from [1], $P^{-1}(L)$ is tame. Now there exists a polyhedral 2-sphere M in S^3 such that (i) $a_j \subset \operatorname{Int}(M)$, (ii) $M \subset U$, (iii) $M \cap P^{-1}(B)$ is a single point, and (iv) is in general position with respect to X. But since $M \cap P^{-1}(B)$ is a single point, and $x \notin U$, M can contain at most one simple closed curve on X which contains r_j on its interior with respect to X. This contradicts Lemma 1.

Case 2. Suppose that there exists an integer k, $k \neq j$, such that $h(q_j) = q_k$. Let A be an arc on S such that $A \cap Q = \{q_j\}$, and q_j is an endpoint of A. Now it follows from Lemma 3 and the type of argument given in Case 1 that the penetration index of A at q_j is 2j+1. Now h(A) is an arc on S and $h(A) \cap Q = \{q_k\}$, for otherwise we are in Case 1. Repeating the argument again, we see that the penetration index of h(A) at q_k is 2k+1. This is a contradiction since the penetration index is an embedding invariant. Therefore, the theorem is established.

References

- [1] S. Armentrout, Upper semi-continuous decompositions of E³ with at most countably many elements, Annals of Math. 78 (1963), pp. 605-618.
- [2] W. R. Alford and B. J. Ball, Some almost polyhedral wild arcs, Duke Jour. 30 (1963), pp. 33-38.

- [3] B. J. Ball, Penetration Indices and applications, Topology of 3-manifolds and related topics, M. K. Fort, Jr., Editor, pp. 37-39, New Jersey, 1962.
- [4] D. S. Gillman and J. M. Martin, Countable decompositions of E³ into points and pointlike arcs, Notices Amer. Math. Soc. 10 (1963), p. 74.
- [5] J. Hempel, A surface in S³ is tame if it can be deformed into each complementary domain, Trans. Amer. Math. Soc. 111 (1964), pp. 273-287.
- [6] E. E. Moise, Affine structures in 3-manifolds. VIII. Invariance of the knot types; local tame embedding, Annals. of Math. 59 (1954), pp. 159-170.

THE INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY THE UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN

Reçu par la Rédaction le 5.4.1965