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A rigid sphere *
by
Joseph Martin (Madison, Wis.)

The goal of this paper is to answer a question raised by B. J. Ball
in [3]. An embedding of a 2-sphere S in §® will be constructed with the
property that any homeomorphism of 8 onto itself, which is invariant
on §, in pointwise fixed on §. § will appear as the image of a tame
2-sphere under an upper semicontinuous decomposition of 8% The non-
degenerate elements of this decomposition space will be ares of the type
constructed by Alford and Ball in [2].

The terminology of [2] will be used. Suppose that 4 is an are in E?,
p is an endpoint of 4, and A is locally polyhedral except at p. Then
the penetration indez of A at p is the smallest cardinal number » such
that there are arbitrarily small 2-spheres enclosing p and containing
no more than n points of 4. In [2] a sequence of arcs 4,, 4,, ... is con-
structed such that each A; is locally polyhedral except at an end-
point p;, and the penetration index of A; at p; is 2¢+1. If 4 is an are
in B¢, then A 4s of type i if and only if the embeddings of 4 and 4; are
equivalent. Tet E% denote the set of points in E° each of whose third
coordinates is non-negative.

Lesa 1. Let pq be an are of lype v in E% such that ge BA(EY),
pg—{g} CInt(E%), and pq has peneiration indew 2r-+1 at p. Then there
exists an open subset U of E® such that pqC U, and if 8 is a polyhedral
2-sphere in U such that (i) pg CInt(8), and (ii) § is in general position
with respect to BA(EY ), then 8 ~BA(HY) contains at least 2r+1 mutually
disjoint simple closed curves each of which contains g on its interior with
respect to BA(EY).

Proof. Let pg be an arc satisfying the hypothesis of Lemma 1.
Let K be a polyhedral 2-sphere such that (i) ¢ e Int K, (ii) K intersects
pq in exactly 2r-+1 points, and (iii) if K’ is a 2-sphere such that ¢ ¢ Int K,
and K’ CIntK, then K’ ~ pg contains at least 2r-4-1 points. Let © be
a point of E>. Let zp denote the straight line interval from # to p and
let ¥ be a point of zp between » and p. Let » be the first point of pg ~ K
in the order from ¢ to p, and let s be a point of rq between r and g.
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Now let 7 be a homeomorphism of B? onto itself which takes pq
onto xq, takes p onto z, r onto ¥, and s onto p. Let U denote h(IntK).
Then U satisfies the conclusion of Lemma 1.

Description of the example: In E? let X denote the plane
Z =0, and let R = {ry, 75,73, ...} be the set of points in X, both of whose
coordinates are rational numbers.

Fig. 1

Let D, be a circular disk in X, with center at r,, such that (i) diam D,
<1, and (ii) Ba(D,) ~n B = &. Let U, denote the solid eylinder of height
1 over D,, N, denote the top face of C;, and H, denote the solid cone
over N, from the point (1, 2).

Let D, be a circular disk in X, with center at r;, such that (i) diamD,
< 1/2, (i) Bd(D,) ~ R=@, (iii) r, ¢ D,, and (iv) either D, C IntD,, or
Dy~ D, =@. Let 0, denote the solid cylinder of height 1/2 over D,
N, denote the top face of C,, and H, denote the solid cone over N, from
the point (ry,1).

This process is continued. For each positive integer n, D, is chosen
so that (i) diamD, < 1/n, (ii) Bd(Ds) ~ R=@, (iii) for each i, i < m,
ti¢ Dy, and (iv) either there exists an integer %k, % < 'n, such that
.Dﬂ CInt (.Dk) or D»n Ia) [U Di] = .

<n
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LeMwMA 2. Suppose that j is a positive integer, and e is a positive
number. Thfm there exists a disk D in X such that (i) vy e Int (D), (ii) diam D
<&, and (iii) Bd (D) CD;—[ | JInt (Dg)1.

k>j

Proof. It follows from the construction that Dj—[ U Int(Dg)] is
k>j

a Sierpifiski curve which has r; as an inaccessible point. This implies
the ~onclusion of Lemma 2.

For each positive integer §, let a; be the straight line interval from
r; to the point (ry, 1/§), and let b; be an are of type j, which lies in Hjy,
has endpoints (rs, 1/§) and (r;, 2/j), and has penetration index 2j+1 at
(71, 2[f). Let a; be a; v b;. See Figure 1.

Levnva 3. Suppose that § is a positive integer and that U is an open
subset of B® such that a; C U. Then there exists a 2-sphere 8, such that
(@) SCU, (ii) oy CInt(S), (iil) for each k, & A ax = @, and (iv) S~ X
consists of exactly 2j-+1 simple closed curves.

Proof. Let j be a positive integer and let U be an open set con-
taining a;. Let ¥ be a cylindrical neighborhood of a; which lies in U.
Now it follows from Lemma 2 that there exist mutually disjoint simple
closed curves y;, s, ..., ¥554; in X such that for each i, 7€ Intyg, 9 CV,
and y; C Dj— [kyjlntDk]. For each 7 let F; be the right circular cylinder

from y; to N;. Notice that F;C U, and for each %k, F;~ oz =9. Let
0:; denote the boundary component of F; on N;.

Now there is a punctured disk L such that (i) L has boundary com-
ponents 8y, 8y, ..., Gyjs1, (i) L lies, except for its boundary, above the

plane of Ny, (iii) for each k, oz ~n L =@, and (iv) LCV. Now L « [gbl ;]
1

is a punctured disk which lies in U, has boundary components y;,ys, ... , ¥2j11
and misses each ax. Now the simple closed curves y,, 7, ..., y2j+1 May be
capped off in U, below the plane X, to yield a 2-sphere S which satisfies
the conclusion of the lemma.

The collection {ay, a;,...} is upper semi-continuous. This follows
from the fact that for each positive number &, there are only a finite
number of elements in the collection which have diameter greater than e.

‘We now consider §2 as the one point compactification of E2. Let
G be the upper semi-continuous decomposition of 8%, whose only non-
degenerate elements are a, a,, ... It follows from [4] that S%@ is topo-
logically equivalent to 8% Let P be the projection mapping of S* onto
S8/G. Let S denote the one point compactification of X, §’ denote P(S),
and for each §, let g; denote P(os). Let @ denote the set {g;, q;, ...}

THEOREM. Suppose that b is & homeomorphism of 8/@ onto S¥/G such
that h(S') = 8'. Then the resiriction of h to 8’ is the identity.

9%
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Proof. Suppose that % is a homeomorphism of S§¥/@ onto §%@,
1(8')= 8, and j is a positive integer guch that h(gs) # ¢5. It will be
shown that this assumption leads to a contradiction.

Case 1. Suppose that h(g;) is not an element of @. Let 4 be an
arc on & such that h(g) e 4, and A ~Q = @. Then P7(4) is an arc
on 8, and P7(4)~ R =@. Then there exists a tame 2-sphere 8’ such
that P~Y(4)C 8”, and for each positive integer k, 8’ ~ oy = @. It follows
from Theorem 2 of [5] that P(8") is a tame 2-sphere in 8%/G and hence
that A is a tame arc in S%@. Then, h™(4) is a tame arc on 8 and
e A,

: Let B be an arc on & such that B ~Q = {g;}, and ¢y is an endpoint
of B. Now B is locally tame except possibly at ¢;, and since g; lies on
the tame arc h*(4), it follows from [6] that B is tame. Now P~ '(B) is
an arc which is the union of «; and an are which lies in 8. Let # denote
the endpoint of P7'(B) which lies in X.

Let U be an open set in 83 such that (i) o C U, (ii) x¢ U, (iii) U is
the union of elements of the decomposition &, and (iv) U satisfies the
conclusion of Lemma 1 with respect to ;. Now P(U) is open in 83/@
and containg ¢;. Since B is tame, there exists a tame 2-sphere L such
that (i) g7 e Int(L). (ii) L~ 8 is a single point, (iii) LC P(U), and (iv)
LAnQ=0.

Now PYL) is a 2-sphere in & such that (i) ayCInt(P7X(L)),
(ii) P~NL)C U, (iii) P"YL)~ P"Y(B) is a single point, and (iv) from [1],
P7YIL) is tame. Now there exists a polyhedral 2-sphere M in S° such
that (i) ey CInt (M), (i) M C U, (ili) M ~P"YB) is a single point, and
(iv) is in general position with respect to X. But since M ~P '(B) is
a single point, and « ¢ U, M can contain at most one simple closed curve
on X which contains r; on its interior with respect to X. This contra-
diets Lemma 1.

Case 2. Suppose that there exists an integer %, % # §, such that
h(q;) = qr. Let A be an arc on § such that 4 ~Q = {g;}, and ¢; is an
endpoint of 4. Now it follows from Lemma 3 and the type of argument
given in Case 1 that the penetration index of 4 at g7 is 2j--1. Now h(4)
is an arc on § and h(4) ~ Q@ = {g}, for otherwise we are in Case 1. Re-
peating the argument again, we see that the penetration index of h(4)
at gx is 2k+1. This is a contradiction since the penetration index is an
embedding invariant. Therefore, the theorem is established.

References
[1] 8. Armentrout, Upper semi-continuous decompositions of H® with at most
counlably many elements, Annals of Math. 78 (1963), pp. 605-618.

[2] W. BR. Alford and B. J. Ball, Some almost polyhedral wild ares, Duke Jour.
30 (1963), pp. 33-38.

4 rigid sphere 121

31 B: J. Ball, Penetration Indices and applications, Topology of 3-manifolds and
related topics, M. K. Fort, Jr., Editor, Dp. 37-39, New Jersey, 1962.

[4J D'. 8. Gillma.n and J. M. Martin, Countable decompositions of E* into points
and poinilike arcs, Notices Amer. Math. Soe. 10 (1963), p. 74.

[51 J. H.empel, A surface in S* is tame if it can be deformed into each comple-
mentary domain, Trans. Amer. Math. Soc. 111 (1964), pp. 273-287.

[6] E. E. Moise, Affine structures in 3-manifolds. VIII. Invariance of the knot
types; local tame embedding, Annals. of Math. 59 (1954), pp. 159-170.

THE INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY
THE UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN

Regu par la Rédaction le 5. 4. 1965



GUEST




