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On the uniqueness of the decomposition
of finite-dimensional ANR-s into Cartesian products
of at most 1-dimensional spaces

by

H. Patkowska (Warszawa)

1. Introduection. The objective of this paper is to give a com-
plete proof of the Theorem announced in [9], which is concerned with
the problem of the uniqueness of the decompositions of spaces into -
Cartesian products. o

Some information about other results concerning this problem,
which have been obtained by several authors, were given in [9]. Here
we recall our terminology: A space X containing at least 2 points is said
to be topologically prime if it is not homeomorphic with any Cartesian
product of two spaces containing at least 2 points each. Two decompo-
sitions of a given space such that after certain permutations the re-
spective factors are homeomorphic are considered as the same. Through-
out this paper, ANR spaces are always assumed to be compact.

Now, our Theorem (it is Theorem 2 in [9]) may be stated as follows:

THROREM 1. If a space X e ANR has a decomposition info the Cartesian
n
product X z= P X: of topologically prime spaces of dimension <1, then
=1
this decomposition is unique.

This theorem gives a partial answer to the question raised by
K. Borsuk (gee [2], p. 140) of whether or not the decomposition of any
gpace into the Cartesian product of topologically prime spaces of di-
mension- <1 is unique, and it generalizes two earlier ‘theorems in this

_field: the first of K. Borsuk (see [3]) and the second one given in [8].

It is worth mentioning that if the compactness is not assumed, our
theorem is false, a8 shown by the following example due to Z. Furdzik: If

A=[vel: 0<x<1], B=[reF: 0<s<l1],
O=[zeB: 0<x<1],

where ' denotes the set of all real numbers, then
AXBz BXByg; BxC.
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On the other hand, a very interesting result recently obtained by R. D.
Anderson (see [1]) shows that it is impossible to extend this theorem
to countable Cartesian products, because an infinite countable Cartesian
product of dendrites always yields the Hilbert cube. However, it is not
known whether or not this theorem can be extended to arbitrary com-
pact spaces of finite dimensions.

Here we keep the same hotation as in [9], which we now shortly
recall.

I X= 175 X, then by ps: X +X; we denote the projection of the
=

space X onto the factor X;. If # ¢ X, then we set a: = pi(o).

ord,X denotes the order of the point # in the space X in the sense
of Menger-Urysohn ([7], p. 200).

By the symbol @" (possibly with a subscript) we denote the n-di-
mensional cell, i.e. a homeomorphic image of the set [z e B™: |»|<1],
where E* denotes the Euclidean n-space. @*° and Q" denote respectively
the interior and the boundary of the cell Q". Similar signs are used for
arcs, i.e. the 1-dimensional cells.

The structure of this work is ag follows: In Section 2 we give the
definition needed for the proof of Theorem 1. Namely, we recall the
definitions of the local Betti numbers and others related to it. Four simple
lemmas concerning these numbers are algo given. In Section 3 these
numbers are used to investigate spaces which are Cartesian products
of local dendrites and 3 lemamas concerning the properties of those spaces
are proved. Such gpaces are examined for the reason that—as mentioned
at the beginning of Section 8—each connected space satisfying the
assumptions of our theorem is a homeomorphic image of such a gpace.
In Section 4, taking a Cartesian product of » local dendrites, we define
2 families, R and S, consisting of subsets of that product. Those defi-
nitions were already given and illustrated in [9]. Here, it is worth men-
tioning that the family R, by definition dependent on the way in which
the space is represented as a Cartesian product of local dendrites, de-
termines in a natural manner the (n—1)-dimensional factors of the
given product (except some special cases). On the other hand, the
family S has a topological character, i.e. it is independent of the way in
which the space is represented as a Cartesian product. For this Teason,
when the identity of those families is proved, we shall be able to de-
termine invariantly the (n—1)-dimensional factors of our product, and
thus the induction step in the proof of our theorem can be taken. We
prove this identity in Sections 5-7. Thig is the most esgential part of
the proof of our theorem. The proof of that theorem in the case where
the space X is connected is given in Section 8. An easy generalization
to arbitrary spaces is obtained in Section 9. -
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2. Local Betti numbers. The basic definitions and lemmas
relative to those numbers. First of all,"we recall the definition
of local Betti numbers which is given for instance in [4] and was already
described in [9]. By a theorem of R. L. Wilder (see [10]), these numbers
coincide with those defined earlier by B. Gech (see [5]). Only metrizable
spaces are considered and Cech’s homology groups with rational coeffi-
cients are used.

Let X be a compact space and let # ¢ X. Consider the family of all
{open) neighbourhoods of the point x, which, together with the rela-
tion 3, yields a directed set. The n-th local homology group LHy(z,X) of the
space X at the point « is defined as the limit of the direct system formed
by the groups Hu(X, X U) with the natural projections Ha(X, X— U)—
-+Hu(X, X—V), where U and V are neighbourhoods of # such that UDV.

The n-th local Betti number fu(z, X) of the space X at the point z
is defined as the rank (the dimension) of the group LHAy(z, X). In the
case where, although that rank is infinite, nevertheless there is an arbi-
trarily small neighbourhood U of # such that the group Hu(X , X—~U)
has a finite rank we set fa(2, X) = o.

Further, we recall the definition of the exterior Betti zero-number
afw, X—A) of a closed subset 4 of a locally comnected space X at
a point o € 4, following B. Cech ([5], p. 694).

oy, X—A)=m if and only if m is the smallest number such that
there exigt arbitrarily small (connected) neighbourhoods of the point @
separated by the set 4 into m+1 components.

o, X—A) = w if and only if there exist arbitrarily small neigh-
bourhoods of the point # separated by 4 into a finite number of com-
ponents and if this fact does not hold for any fixed natural number.

oy(x, X—A) = co if and only if neither case considered above holds.

Finally, given a compact space of a finite dimension, we shall make
use of the following

DeFINITION oF THE sETs XU, X® inp X, XM = [z X: fu(e, X)
=0], X¥ =[0eX: fu(e, X)=1], X™ =[weX: fu(w, X)>2], where
7 = dim X.

Remark 1. Evidently, the sets X", X™ and X™ are disjoint
and X = XMoo x® o x™, :

Remark 2. If X is a local dendrite (for the definition see the be-
ginning of Section 3), then X™ consists of the end-points, X of the
points with the order equal to 2, and X™ of the ramification points
of that space. *

Now we ghall give 4 lemmas concerning the local Betti numbers
introduced above, which will be needed in the sequel.. The first and the
second ome ig proved in [5].
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LremmA 1 (The Local Theorem of the type of Mayer-Vietorig), Let
X be o compact space, Ai= A;CX for i=1,2, X =AU 4y, 2% 4, ~
~A,;. Then:

(1) If Bul(a® Ag)=0 for i =1,2, then fo1(a® 41~ 4,) = Bu(a®, X).

(i) If Bn-s(a®, As) =0 for i=1,2, then fa(a® X) = frn_s(a® 4, ~ 4,).

Lemma 2 (The Local Duality Theorem). If 4 s a closed subset of
a cell Q" and o e A ~Q™, then oa®, Q"—A4A) = fn1(2° A).

LevmA 3. Let A=ACQ" and a®e A ~ Q™. If there ewists a set
B C @"—A4, both open and closed with respect to a neighbourhood of a0 in Q™
minus A, having no common points with a neighbourhood of «® in Q™ and
such that o°e B, then fn_.(a®, 4)> 0.

Proof. By our assumptions, one can find an (n—1)-dimensional
simplex A of a sufficiently fine triangulation of the sphere @"* contained
in @™ —B and containing 2° in ity interior. Next, take a cell Qf isometric
with Q" form the disjoint union @" v @f and identify each point of 4
with a point of @ corresponding to it under a given isometry. As the
quotient space one obtains a cell @F such that a°e@i°; moreover, there
exists a neighbourhood U* of 4° in @F such that the set B CQ"—A—4
is both open and closed in U*—A4. From the assumption that 4°¢ B
and from the construction of @7 we deduce that, for.each neigh-
bourhood V' of 2" in @} such that V'C T, (V'—A) ~B # @ as well
as (Vi—A)—B # @, these sets being both open and closed in Vi—4.
Consequently aya’, @f—4)> 0, and therefore, in view of Lemma 2,
Paa(z® A) > 0.

LevmA 4. Let X be a compact n-dimensional space, where n > 0.
If e d = ACX, then a(n®, A) < pu(a®, X).

Proof. Consider the family of all open neighbourhoods of «® in X.
Since dimX = n, it follows that the natural map Hu(4d, A—T)—~
—~H,(X, X—U) i3 a monomorphism (we make use of the well-known
property of abselute homology groups and of the fact that Ha,(X, X—T)
i8 isomorphic with Hn(X), where X is the quotient space obtained by
identifying all points of X—U). Consequently, applying the operation
of taking the direct limit, we obtain the natural monomorphism

LHu(a", A) >LHu(2® X) .
The desired inequality immediately follows.

3. Some properties of spaces which are Cartesian products
of local dendrites.” Let us recall (cf. [7], p. 227) that a local
dendrite is a continuum each point of which has a neighbourhood which
is a dendrite. It is known that the class of local dendrites coincides with
the class of connected 1-dimensional ANR-s.
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Throughout this section we shall consider any given space X which
n
ig a Cartesian product ; P1 Xy, where all the factors -X; are local dendrites

and n= dim X > 2. The convention is ‘adopted that the subseript in
a symbol denoting a point (resp. a set, except for the symbol Q") is the
index of the factor X that contains this point (resp. this set).

The following definition will be useful for us: An (open) neigh-
bourhood U of a point 4 is called a regular neighbourhood provided

Ll
U= 1: Uy, where, for each 1 <4< n, U; is a connected set (different:
i

from Xi), U is a dendrite, Fr(Uy) consists of a finite number of points,
none lying in the same component of Ty—a} as another one, and Fr(Uy
= ord,9 X; in case ordyy X; < o. It is seen that every point 2° has arbi-
trarily small regular neighbourhoods.

In Lemmas 5 and 6 we shall make use of the following construction:
Given a regular neighbourhood U of a point 4°, one constructs a poly-

—_— n —_—
hedron P C U by setting P = P P;, where P;C [; is the union of the
i=1
ares joining the point #} to Fr(U:). Moreover, we construet a retraction
r: (U, Fr(U)) (P, P—T)
as follows: For each 1<i¢<n the retraction re: (Ui, Fr(Ui)—~
—(Ps, Py—Uy) i defined so a8 to leave fixed every point e P; and
to map each component of U;—P; onto the single point which is its

boundary. Next, r(2) is defined as the point with the coordinates ri(a:).
The retraction » has the following two properties:

There is & homotopy hi: © =~ 1, where 1 18 the identity map and hi:
(T, Fr(U)) > (U, Fr(TU)) for tel.

If weP and ordy Xi<2 for each 1<<i<<n, then the set r~*(»)
consists only of the point .

To prove (3.1), let us notice that the fact that the set U; is an
absolute retract implies the existence of a homotopy his Us—>T; such
that hio(ws) = @1 and hy(wi) = ro(@i) for e Usy as well as hog(w) = @
for @ e Fr(Uy), t e I. Next, defining hy») as the point with the coordi-
nates hyy(a;), we obtain the desired homotopy .

To prove (3.2), suppose that the point z P satisties the condition
mentioned there and let ¥ e *(w). Then, by the definition of r, y: € 77 (@1).
From the properties of U; and from the facts that x; e Ps and ordy X1 <2
we infer that the point a; cannot be the boundary of any component
of U;—P;. Consequently, the set #7"(w) consists only of the point ar,
and therefore y;= x;, which proves that y = z.

Now we pass to our lemmas.

(3.1)

(3.2)
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LeMMA 5. Let o°e X. Then:

() If there is an L < ¢ << n such that ordey Xy = 1, then fa(a X) = 0.

(i) If ords Xi=2 for each 1 <i <<m, then Bu(a® X)=1.

(iii) If neither the assumption of (i) nor that of (ii) is satisfied, then
Ba(a, X) = 2.

Proof. To establish (i), assume for instance that ord.X; = 1. Let
U be any regular neighbourhood of a°. The set Fr(U) may be repre-
sented as the union

(P (Ty) x BT LT, X Fe( LTI,

) n
where the common part of the ingredients is Fr(Uy) x Fr( ; PU;). Since,
]

in our case, Fr(U,) consists of one point, that common part is easily
seen to be a strong deformation retract of the second ingredient. Con-

no__
sequently the first ingredient, being homeomorphic to [P Ui, i a de-
. =2 )

formation retract of Fr(U). Therefore H,—.(Fr(T)) ==En_.1(i P Ty =0.
2

Since, on the other hand, H4(U) = 0, making use of the Exactness Axiom
we conclude that Ha(U, Fr(T)) = 0. Finally, by the strong form of the
Excision Axiom valid for the Cech homology groups, Ha(X, X—T)=0,
and therefore LH,(2° X) = 0, because the point 2° has arbitrarily small
regular neighbourhoods. Thus fu(2?, X) = 0, which proves (i).

To prove (i), let us consider any pair U, V of regular neighbour-
hoods of a* such that U D V. Let P denote the polyhedron constructed
for U in the way described at the beginning of this section. Consider
the following commutative diagram:

Hy(P, P~T) S =P, P—)
Ho(X, X—TU)> Ha(X, X—V),

where all the maps are natural. In our case, the polyhedron P is an

n-cell whose boundary is P—U. Consequently the group Hu(P, P—T)
iy isomorphie with the group of all rational numbers. Since, as is easily
seen, PNV is a subcell of P (with respect to a certain triangulation),
it follows that ¢ is an isomorphism. From (3.1) and from the strong form
of Excision Axiom valid for the Cech homology groups we deduce that
Z i3 an isomorphism. For similar reasons, having observed that the cell
PNV coincides with the cell constructed for V in the way deseribed
at the beginning of this section, § also is an isomorphism. Hence, by
the commutativity of our diagram, we conclude that 1: Hy(X, X—TU)—
—Hy(X, X—~V) is an isomorphism, all groups being isomorphic with the

e ©
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group qf rational ’mlmbers. It follows that the group LHy(a" X), obtained
by taking the direct limit, also ig isomorphic with that group. Thus
Pn(e®, X) =1, which proves (ii).

To prove (iii), assume for instance that ord,? X, >3 and ord, 1 Xy > 2
for 2 <i<n. Then the space X contains the set 4 — Tx@"™, where
T is a dendrite of the form T, such that 20 lies ingide the ramification
(n—1)-cell of this set. Since fu(2?, 4) = 2, applying Lemma 4 we deduce
that fa(a% X) > 2, which proves (iii).

Remark. The following formulas are eafy consequences of the
lemma which has been proved:

(3.3) _ I=[reX: \ ordyXi= 1.
1<i<n
(3.4) I~ [weX: ; </,-\<,. ord,, X¢ = 2].

18 __ . .
(8:5) I =loek: (1</t\<nord“ Xi=2)A (1<\i/<nordz‘ Xi=38)].

Thus we obtain an invariant characterization of the sets appearing on
the right-hand sides of these formulas.

Levyma 6. Let o° be such a point of the space X, at most one coordinate
of which 18 a ramification point of the respective factor Xy Ifa® e A= ACX

and Ba(a, A) > 0, then the set A contains a cell Q" of the form ; I,; I, where
=]

LiC Xy is an are such that o eIl for 1 <i<m.

Proof. The assumption that fa(z?, A)> 0 implies that LH,(a0, A)
# 0, and therefore there is a regular neighbourhood U of #° such that
Hy(A, A—TU) # 0. By the strong form of the Excision Axiom valid for
the Oech homology groups, we infer that

(3.6) . Ho(A~T, A~Fr(T) #0.

Consider the polyhedron PC U constructed in the way deseribed
ab the beginning of this section. Since fa(a?, 4)> 0, it follows from
Lemma 4 that a°¢ X™. Therefore, by (3.3) and by the assumption on
the coordinates of a°, the polyhedron P is easily seen to be the umnion
of some n-cells Q7, where i=1, 2, ..., m, m > 2, with exactly one com-
mon. face of dimension n—1, whose interior contains #?. The cells Q7 are
the Cartegian products of arcs, the set P—U being the union of their
remaining (closed) (n—1)-dimensional faces.

Let #: (T, Fr(U)) (P, P—T) be the retraction as defined at the
beginning of this section. The diagram

Ha(A ~ T, A ~Fr(U)) > Hy(T, Fr(0)
¢("| Ani—’)t ¢"o
Halr (4 ~ T), 7(4 ~ U)—T) > Ho(P, P—T),
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where the horizontal maps are induced by inclusions, is commutative.
Since dim X = dim T = #, it follows that the horizontal maps are mono-
morphisms. By (3.1), 7« is an isomorphism. Consequently (r| 4 ~ T),
is & monomorphism, and therefore Ha(r(4 ~ U),7(4 ~ U)—T) 5 0 with
regard to (3.6). This implies that the set 7(4 ~ U), being a closed sub-
set of P, must contain at least two of the n-cells @7. Otherwise there were
some points ¢ e Q}°, where for instance 2 < ¢ < m, such that r(4n D)

CP— (nj (¢"). This lagt set can be retracted by deformation onto P— U,
=2

and therefore we would have Ha(r(4d ~T),7(4 ~ U)—U)=0. The union
of two cells Q7 contained in »(4 ~ U) yields a cell @" of the required
form.

It remains to show that @ C A. For this purpose, first observe that
the fact that the. set of the ramification points. of a local dendrite ig
(at most) countable (ef. [7], p.227) implies that the set M = [z e X:

V ordg X¢> 3] is the union of a countable number of closed, (n—1)-
<isn

dimensional sets, and therefore has dimension equal at most to n—1.
Consequently, the set Q" ~ (X—M) is dense in Q™. Now, let us notice
that (3.2) implies that for each point # of this set one has the equality
#"Y@) = (v). This and the inclusion Q"Cr(d ~ U) imply that ¢"C 4,
which completes the proof.

Lumwa 7. Let A be a closed subset of X containing o amd let
Bu(a® A) > 0. Then, given some 1 <14 <<n, there exists an arc IC[weA:
4\1 @y = 3] such that a° e I°.

?

Proof. First observe that in order to establish this lemma it suf-
fices to show that:

(8.7)  For every number n > 2, for every space X being a Oartesian prod-
uot of n local dendrites and for every point a® € X the following
implication holds: If af e A= ACX and fa(a® A) > 0, then, for
each 1 <i<m, frafa®[med: o =a3]) > 0.

Indeed, from this condition and from our assumptions, using the
induetion. on %, we can deduce that the first local Betti number of the
set [weAd: A @ =aj] at the point o° is positive. Now observe that this

EE

5ot is equal t0 4 ~ D, where D= [z ¢ X: A a; = )] is a local dendrite
fi

homeomorphic with X;. It follows that it must contain the desired are I.
Otherwise, if D' CD is a dendrite constituting a neighbourhood of a°
in D, then the dimension at the point #° of the intersection of 4 with
the closure of each—except at most one—component of D'—a? is equal
to 0 (ef. [7], p. 112, No. 9). Hence orduwD ~ A = ordpD’ ~ 4 <1,
and therefore (2% D ~ A) =0, which is a contradiction.
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Passing now to the proof of (3.7), fizst observe that by the local
character of this condition and by the fact that each po’int of a local
dendrite has a neighbourhood which ig & dendrite, it suffices to show
(3.7) for the spaces which are Cartesian Droducts of dendrites. For sim-
plicity, we fixi=1 and first we establish (3.7) under the assumption
that ord.2 X; < w. We proceed by induction on thig order.

It ordz.;X1= 1, then fu(a% X)= 0 in virtue of Lemma 5 (i). Then
Lemma 4 implies that pa(a®, 4) = 0 for each set 4 =4 CX contain-
ing 2°. Thus (3.7) is satisfied in the vacuum.

Now let m > 2 and suppose (3.7) to be valid for each space X which
is a Cartesian product of » dendrites in every point a2°e¢ X such that

. ”
ords2 X; < m. Consider a space X = . }i X¢, where X; are dendrites, and

let 2° ¢ A = 4 C X, where 0rd0 X = m and fa(a% A)> 0. Select one of
the m components of X;—a and denote it by By, andlet B=[zeX:
@, ¢ B]. We shall consider separately two cases: first, when the number
Ba(#" A ~ (X—B)) is positive, and, second, when it is equal to 0.

For the first case, let us observe that the induective hypothesis may

. ’ n
be applied to the set X—B = (Xy—By) x‘ I:X;, which iy the Cartesian

product of n dendrites, and to our point 20 because 2° ¢ X—B and
ordzg (X;—B,) = m—1. Hence our inequality Pnfa® 4 ~ (X—B)) > 0 im-
plies that fn.(a® [@ € A ~ (X—B): @, = af])> 0. Since [wed: & =2l
= [0 €A ~ (X—B): @, =af], the desired inequality follows.

In the second case, represent 4 ag the union (AdnB)v (A4~ (X—B)) .

- n
Since B = E,_x‘ 1:X¢ and ordzgﬁl =1, it follows from Lemmag 4 and 5

that  fu(a®, A ~ B) < Ba(#®, B) = 0. Hence, in our case, the -m-th local
Betti number at the point #? of either ingredient of the union under con-
sideration is equal to 0. Since Bn(a® A)> 0 asg assumed, using Lemma 1 )
we conclude that fu-.(a°, A ~ B ~ (X~B)) > 0. Finally, observing that
AnBA(X—B)=[wed: o, =al], one obtains the desired inequal-
ity again. :

It remaing to establish (3.7) in the case where ord2 X; = w. Pro-
ceeding by reductio ad absurdum, suppose that with the assumptions
satisfied we have.fu1(2" [@ € A: @ = a3]) = 0. Selecting a finite number
of the components of Xl——w?, denote by Xji-the closure of their union
and let X' = [» e X: o X}

Next, let r: X X' be the retraction which carries e X—X’ into
the point r(w), the first coordinate of which is o and the remaining
ones-equal to those of . In addition, let us set U = r~1( U’), where U’
is a fixed neighbourhood of a® in X', Clearly, if X{ contains a suf-
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ficiently great number of the components of X;— o} and if U’ ig suf-
* ficiently small, then U is an arbitrarily small neighbourhood of a° in X.
Now set A' = A ~ X’ and consider the commutative diagram

Ha(d'y A'—T) — k > Hu(4, A—T)
[ 1 .

H4' Fr(X), (4' o Fr(X")—T) > Ha(4' v T=X, (4’ T=X)-T),

where all the maps are induced by inclusions. First, we shall prove that
4 is an isomorphism. For this purpose, adopting the convention that,
for any B=BC X, E'In(B) denotes the group Ha(B, B—U) (or, which
is the same, the group H,(B*), where B* is the quotient space obtained
by identifying all points of B—U), consider the Mayer-Vietoris sequence
(cf. [6], p. 39):

oo > Ha(A" AFr (X)) >Ha(A") © Ho(Fr (X)) »Ha(4' © Fr (X)) >
>Hy(A' A Fr (X)) > Hya(A") @ Hyes(Fr (X)) ...

Since dim Fr(X') = n—1, it follows that ﬁ,.(A’ A Fr(X’)) =0 = ﬁn(Fr(X’))

and that the natural map of H,—i(4’ ~ Fr(X")) into H,_,(Fr(X") (and

therefore also into ﬁ,..,l(A’)@.ZTI,,_l(Fr(X’))) is a monomorphism. Hence,

by exactness, the map i: Ha(4') >Ha(4’ © Fr(X’)) is an isomorphism.
The map j is also an isomorphism, because the retraction

(A X-X): (A’ X=X, (A" X—X")—T) >
(4’ v Fr(X), (4’ v Fr(X")-T)

after composition with inclusion is easily seen to be homotopic with the
identity map. By the commutativity of the diagram in consideration,
it. follows that I is an epimorphism, being also a monomorphism, because
dim(4’'v X—X') <dim X =n. Thus % must also be an isomorphism.

Now let e Hy(4d, A—TU) and let %' be an element of Hy(A', A" T)
such that %(u’) = 4. From our supposition that fi-i(2% [# € 4: @, = 237)
=0 and from the special' case of (3.7) established above as applied to
A'=A4 X CX', we deduce that Ss(a?, 4’) = 0. Therefore LHz(a? 4')
= 0, because the n-th local homology group is a vector space over the
field of rational numbers. Consequently, there is a neighbourhood V
of o° in X such that V.C U and h'(w')= 0, where h': Hu(d', A'—T)—>
-—+Hpn(d'y A'—V) denotes the natural homomorphism. Finally, by ex-
amining the commutative diagram .

Hy(d', 4'~T) LS 0

l___V)
Ho(Ay A—T) D Hy(4, A7),

where all the maps are induced by inclusions, we conclude that &(u) = 0.
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Thus we have proved that there exists an arbitrarily small neigh-
bourhood U of #° such that for each u ¢ Hy(d, A— U) there is a neigh-
bourhood V of &® such that ¥V C U and that the natural homomorphism
h: Ho(A, A—U)>HuyA, A—V) carries u into 0. It follows that
LHn(4" A) = 0, and therefore fu(a®, 4) = 0, which contradicts the as-
sumption and thereby completes the proof of our lemma.

4, The definitions of the families R and S. Let X be
a Cartesian product ; P X; of local dendrites, where n = dimX > 2.
=1

As announced in the Introduction, we shall define here two families,
R and S, consisting of subsets of the space X.

DEFINITION OF THE FAMILY R. A set M = M C X belongs to the fam-
ily R if and only if for some 1<¢<n there is a point ? e X; such
that M = [o ¢ X: @ = a5] and, in addition, ord.X;> 3.

Accordingly, family R consists of certain (n—1)-dimensional sections
of the space X obtained by fixing a coordinate. Since that coordinate
is agsumed to be a ramification point, it follows that, in the case where
all the factors are manifolds, family R is empty. In another case, when
exactly one factor X; has some ramification points, this family con-
sists of disjoint sets homeomorphic with the manifold which is the
Cartesian product of the .remaining factors. o

DEFINITION OF THE FAMILY S, A set A= A C X belongs to the fam-
ily S if and onmly if: ’ )

- Al. 4 is an (n—1)-dimensional ANR homeomorphic with the
Cdrtesian product of n—1 local dendrites.

A2, A—4MCcx™.

A3. There exists a set F=F CX such that:

(i) 7 is a neighbourhood of 4 in X.

(ii) F' is irreducibly separated by A. .

(iii) If a° ¢ 4 and @ is an arbitrary component of F—A, then
ﬁn(wo ) G‘) =0. ‘

(iv) If Q""*C A and @ is an arbitrary component of F—A4,
then there exists a cell Q*C @ such that @"~ 4 =@Q" " CQ™.

(v) Let 2°c A and let {G"} denote the sequence of all the
components of F—A. Then there exists a sequence I = {I™} of ares
such that ad®eI™, I"—a*C @ for every m and having the following
property: If Q" C X, o € Q™, and if there exists a neighbourhood of 2°
in Q™ contained in 4, then there is a subare I of gome arc I™ such that
ICQ" and a®el”. o

" It is seen that the family § has been defined in a topological manner

by giving some conditions concerning the form and the position in X
“ 7%
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of the sets belonging to it. These conditions were illustrated in a way
in [9]. The identity of R and S, which will be proved in sections 5-7,
shows that these conditions express the characteristic properties of the sets
Dbelonging to R. It is worth noticing that, if the space X is a manifold,
the family S, like the family R, is empty. Indeed, in this case, the set
X® is empty by definition and therefore no set 4 satisfying A1 can
satisfy A2.

Remark. As noticed by Z. Furdzik, if one considers a space X, not
necessarily compact but homeomorphic with a Cartesian product of con-
nected spaces, in which each point has a neighbourhood which i a den-
drite, then, retaining the definition of R and appropriately modifying
in the definition of S the condition Al only, one carries over our proof
of the identity of these families to such spaces. Indeed, as may be ver-
ified, only local properties of the space X intervene in an essential manner
in this proof.

Finally, we give two simple properties of the family R which will
be useful for us in proving the inclusion SCR.

(4.1)
(4.2)

The family R is at most countable and covers the set X™.

If M, N eR and M # N, then cither M~ N =@ or dim (M ~ N)

=n—2. )
Property (4.1) follows from the fact that the set of all ramification
points of local dendrite is at most countable and, with respect to the
second part of this condition, from formula (3.5). Property (4.2) is an
immediate consequence of the definition of R. :

5. Proof of the inclusion RCS. Let M be a given set of the
family R. For convenience, we assume that

=[peX: 371—“'1];

where 4f is a fixed ra;miﬁca.tmn point of the local dendrite X,;. To prove
M ¢S we must verify the conditions M1, M2 and M3, obtained by
substituting M for A in the definition of S.

The truth of M1 15 a consequence of the fact that M is homeo—

morphiec with the Oartesmn product PX‘ The inclusion M2. follows
from the definition of M and from formulas (3.3)-(3.5).
To prove M3, let us define the set F by the formula
L P = F.’,x px,, ‘

where P, C Xy iy a dendrite constltutmg a nelghbourhood of o in X1
We must verify conditions (i)-(v). .
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The truth of {i) is obvious. Since ord, 4 X, = ord9F; > 3, it follows
that t;he point ) ureduclbly separates the dendrite #,. This fact and
the formula F— M = (F. —w;)x PX; imply that:

(8.1)  Bach component of F—M has the form G = Gyx IgX;, where @ is
a component of Fy—aj. =

This implies (ii). To establish (iii), it suffices to apply Lemma 5 (i)

to the set @ = @lxt _}:iX;, because ordss & = 1.

- Now, passing to the proof of (iv), consider any given cell Q"' C M
and a component @ of F—M of the form described in (5.1). The desxred
cell @"C @ is defined by Q" = I, x@3~", where I, C @, is an arc with
ag one of the end-pomte and @3~ is the homeomorphic image of Q"

under the natural projection of X onto the factor _;)X,.

It remains to prove (v). For this purpose, givel_w::; point #° ¢ M and
G;"xfzx, of F—M, select an arc I™C G with af
a8 one of the end-points and set

I"=[weX: mell’ A N\ we=a3].
2<I<n

a component G =

We shall prove that the family 3 = {I™} satisfies the required conditions.

Evidently a4 eI™ and I"—a’C @™, because Ii'—afC 6. Now,
given any cell Q" C X whose boundary contains a cell Q" such that
Q" 'C M and 2° Q" "°, we may assume that the cell " contains no
subarc of the are I'eS such that #° is one of its end-points. TUnder this
assumption, beside Q", we sha]l also consider the cell

Q= Ix@y™,
where @f~' is the homeomorphlc image of the cell " C M under the
natural projection of X onto PX4 Since Q"1 CQ" A QF, I'CQT and

o e P—Q", it follows that the sef; QF—Q" is disjoint from Q"' and its
clogure contains o°. Consequently, by Lemmsa 3, we have 19,._1(.'17 Q" ~
~ @™ > 0. Hence, in view of Lemma 1 (ii), we infer that fa(«", @" v @)
> 0, because fn-1(a’, Q") =0= Bn-1(2’, QF). Finally, applying Lemma 7
we. conclude that the set [@eQ™ v Qf: /\ o= #7] contains an arc L

such that a° ¢ L°. It follows from the defmmon of ¥ that this arc must
contain two subares I%, L? either with #° as one of the end-points, con-
tained in two distinct arcs belonging to J. Then at least one of these
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subares must be contained in Q", because the cell @F has been defined
50 that its only one common point with any arc of 3 different from It
is the point «°. This econcludes the proof of (v), and thus the inclusion

(5.2) RCS
has been completely proved.

6. The non-existence of cells " 'C 4 ¢S such that none
of the projections p4(@"") reduces to a single point. In order
to prove this fact, we proceed as follows: Given a set 4 of the family §,
first we define ‘(this was already done in [9]) a special kind of (n—1)-
dimensional cells contained in A, called bent cells. Next we establish
that every cell " C A such that none of the projections ps: X X,
carries it into a single point contains a bent cell (see Lemma 8). Finally,
we prove that the set 4 cannot contain any bent cell (see Lemma 9).
This proof depends on showing that a contradiction holds between the
possession by A of a bent cell and condition A3, which describes the
position of 4 in X.

DEFINITION OF BENT OELL. A cell Q" 'CA4eS is sand to be bent
at a point 2 Q" if there exist two indices j, %, 1 <j <k < m, such
that Q" =@} L @8, where

@ =P Lyx@E)x( P 1), @@= (P Iyx@x(, B 1),
{mel [CYESE

IiCX:, abel; for i=4f,k, ‘aield for ¢4,k
and if the point #° satisfies the following two conditions:

(i) ordsX¢>3 for i =j, % and ordg X;=2 for i %4, % _

(ii) There exists such a decomposition of 4 into the Cartesian prod-
uct of n—1 local dendrites that all coordinates of a® (except at most
one) in this decomposition have the order equal to 2.

Hence, 5 bent cell is a union of two (n—1)-dimensional cells inter-
secting on a common face of dimension n— 2; on either cell a coordinate
(but not the same one) is fixed. In addition, what is an 1mpormnb fact,
both these coordinates are ramification points.

Now we pass to our lemmas.

LEMMA 8. Bvery cell Q5" C.A ¢S such that none of the projections
Q™) for L.<1i < n reduces to a single point contains a bent cell. '

Proof. Clearly, the cell @i~ may be covered by s finite number
of (n—1)-cells, each contained in the Cartesian product of » dendrites
which are subsets of the factors Xy, in such a way that these cells can
be ordered to yield a sequence such that the intersection of any pair of
adjacent cells has dimension equal to n—1. Having observed that at
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least one of such cells must satisty the agsumptions of our lemma with
respect to @™, we may assume that:

(6.1) QS‘“C‘}?D‘,

where D;C X, is a fixed dendrite.
T # €Qp™°, then, by Lemma 4, Brn—a(z, 4 ) >0, Hence e A—A™,
and therefore, in virtue of A2, Q”‘“CX[“’ Reducing again the cell
6" when necessary, we may assume that QF~*CX™. Then, in view
of (4.1), the family R constitutes a countable covering of Q3 by closed
sets. Let G denote the set of those points of Q™" which have a neigh-
bourhood in Q7' contained in a set belonging to R. By the Baire Theo-
rem, that set is both open and dense in Q). It follows from (4.2) that:

(6.2) For every component H of G there exists a set M ¢ R such that

HCwMm.

Let F = Qs '—@. From (6.2) and from the assumption that none
of the sets p«(Q5 ™) reduces to a single point we infer that F ~ Q vl £ @,

Now our immediate objective is to find a cell Qf™" C Q)" such that
the sets Q7" ~ & and Q7™ A F would have some properties simplifying
further consideration. For this purpose, apply the Baire Theorem to the
covering of F by the family R. Thus we obtain a set U open in Qf*
and a set M eR such that & = U' ~ F A Q3'° C M'. For simplicity,
we assume that the points of M. have the coordinate », fixed. Hence
there exist a cell Q7' C U* and a point 4} ¢ X, such that

(6.3) QY AF~£0 and QP AFCM =[x eX: x =atl,
where ord X; > 3.
Now we prove the following property of @F™*:

(6.4) If a sequence of poinis {p™} selected from distinct components of

fblt

Qt—m converges to p, then p Qs

Given some m, suppose firgt that p™¢ QL™ a,nd let H™ be the
component of @} *— M" containing that point. By (6.2), H™ is contained
in a set of the family R. This set consists of points with a coordinate
@ fixed, and i3> 2 becauge H™C Qi —M" while @G+ H"—H"C M
Therefore, " may be rega.rded a8 a subset of the Cartesian product
of n—1 local dendrites and Lemma 7 applies. Consequently, if

. —_— m-
" =[weH™ </;\<na;(-p;],

then for each point @ ¢ O™ ~ (H™—@}™**) there is an arc contained in O™
with # as an interior point. In particular, this holds for the point p™.
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On the other hand, since O™ is homeomorphic with the projection p,(0™)
of itself, and therefore, by (6.1), with a closed subset of the dendrite D,,
it follows that each of its components must be a dendrite. Consequently,
it must possess two end-points at least, and therefore there is a point
g™ € 0™ such that ordys 0™ =1 and ¢7" # o2. Hence ¢™ ¢ (H™ —H™) U Q7.
However, since g CleeX: = 23] in virtue of (6.3), it follows
that the point ¢™ must belong to the set Q"'l'

In case where p™ ¢ QF™"", we set ¢" = p™. Clearly, we may assume
that lim ¢" = ¢. This implies that g e@?™"*. Since the points p™, and

consequently q ,belong to'the closures of distinet components of Q7 — M,
follows that o, q e M', whence p, = 2; = ¢,. From the definition of U’"
we infer that ¢ = p7 for 2 < i<, because ¢" ¢ O™. Thus p; = ¢ for
1<i<n, 50 that p=gqeQi™", which proves (6.4).

Now we can already find a point 2% at which some cell contained
in @7 will be bent. For this purpose, let us observe that the countability
of the set of the ramification points of a local dendrite implies that the
set of such points of Q”"l whose at least 3 coordinates (in the Car-

tesian produet X = PX;) are ramification points is a countable union
=1

of closed sets with dimension equal to n—3. The same may be said
about the set of such points of this cell whose at least two coordinates

n—1
in & fixed decomposition of 4 into the Cartesian product ; PA; of local
-]

dendrites (cf. Al) are ramification points. Hence the union of these
gets has dimension less than or equal to »—3. On the other hand, let
us notice that the set F, being non-dense in @7, must separate this
cell. Otherwise, (6.2) and the definition of & imply that @¢*° C &, which
contradicts (6. 3) Hence dim(F ~ Q7 ™'°)=n—2, and therefore there
exists a point o anQ” ‘o, whose at most two coordinates in the

Cartesian  product PX¢ ‘and at most one in the Cartesian product
n-1

PA¢ are ramification points. Observe at once that, by the formula
m"’ eQ"‘“ C A and by A2 and (3.3), none of the coordinates of a° in these
Cartegian products can be an end-point.

First we show that for the point #° which has been fouynd condi-
tions (i) and (ii) appearing in the definition of the bent cell are satisfied;
the cell which is bent at the point 2 will be defined later.

(ii) follows directly ﬁ'om the choice of 2°. To prove (i), first observe
that, by the formula &’ eIf’mQ” ! and by (6.3), the first coordinate
of 2° coincides with the point «} conmdered above (which justifies our
notation), and thereby ord, S0 X; > 8. Since 2 eF A @17, it follows from
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(6:3) and (6.4) that there is a neighbourhood U of z° in @ such that
every component of U—M* is a subset of @, a° being contained in its
closure. Such components must exist by the def.lmtwn of F, ag a0 e F.
From (6.2) and from the fact that, besides 2%, at most one coordinate
of #° may be a ramification point we infer that all such components
must be contained in a set M2 eR on which a coordinate »; with > 2
is fixed. Therefore, we may assume that
M=[zeX: w,=a3],

where ord,?X,> 3. Thus (i) is satisfied under the substitutions j=1
and k= 2. Moreover: U C M*u M2, However, any neighbourhood of z?
in U can be contained neither in M* nor in M2

Now let us notice that the set My M2 ig homeomorphm in a nat-

ural way with the Cartesian product (X, v X,) X PX;, where the points

‘o) and 25 have been identified in the (disjoint) union X, v X,. Clearly,

in this decomposmon only the first coordinate of #* is a ramification
point. Sirice o° € @77, it follows that ﬁ,,_l(m" U)> 0 and Lemma 6 applies
to U. Therefore there exists a cell Q2 1CT constituting the Cartesian
product of arcs in the above decomposition of M*o M? in which the
respective coordinates of a® are interior points. Since the ecell Q¥ can
be contained neither in M?* nor in M?, it follows that it must have the
form deseribed 1n the definition of the bent cell. Thus we have proved
that our cell Q3" contains the cell @ bent at the point o?, which com-
pletes the proof of Lemma 8. :

LeMMA 9. No set A eS can contain any bent cell.

" Proof. Suppose otherwise, i.e. let Q5 C 4 be a cell bent at a point
#" €@ 7*°. Then, by the definition of the bent cell, where, for conve-

melgne, it is assumed that j=1.and %= 2, and the arcs I;= I, and
Ii'=1, are renamed respectively as If and L; , we have:
cordg X¢=3 for i=1,2, ordgX;= for 3 <i<<n;

7t =[( .’Dl)XIaULX(-’”z)]X PIH
where o} el for i=1,2, atel} for 3 <i<n.
Let D= PD‘ be the Cartesian product of dendrites constltutmg
2 nelghbourhood of #° in X and so small that .D C F, where F is & fixed
set with the properties described in A3. Reducmg—lf necessary—the cell

@57, however leaving its structure unchanged, we may assume that
”"1 CD. Further, for i =1, 2, let: Dy denote the component of Di—a}

such that I;—m; C D; and let
= [ m,) ><.Dg v D; X (a:z)] X PDt
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Since the sets D xDj and (D, XDy)— (DixDh) = [Dy X (Dy—Di)] u

u [(D,—D}) xD,] are connected, it follows that:

L
(6.8) Z separates D into two components: Di XD ><i fs'Df

J—— — L — — n
and D— (D xDhx {Pst) = [(D, X Dy)— (D1 X D2)] ><i1:Di.

In the next part of the proof we shall construct an n-cell with
properties yielding a contradiction. First of all, we shall construct its
“hage” QFY, satistying the following conditions:

N n
QU CA~[D—(DixD; Xi}:Dt)] )

(6.6)

P QP dim(Qr T A Z) <n—2 .

For this purpose, let us consider the cell
n .
Q1 = 1’XI§'X{PSI¢,

where, for 4=1,2, I} is an arc contained in D;—D; and such that
ateIy°. Such arcs exist, because ordgX¢>3 for i=1,2. Since
2® € Q! A A, it follows from Lemma 4 and condition A3 (iii) that no
neighbourhood of #? in this cell can be contamed in the closure of any
component of F—A. Consequently ay(z’, @'—A)> 0, and therefore, by
Lemma 2, Bn-1(a" Q7 ~ A)> 0. In view of condition (ii) appearing in
the definition of the bent cell Lemma 6 applies to the set Q¥ ~n ACA.
Thus there exists a cell Q¥ CQF ~ A such that o° € Q7. Since the def-

inition of QF yields Q{‘CD——(D;XDgX{ PD;) and QY A Z= (D{ A I{")x
=g
x(b';ng')x[}iz‘= (@) % () 1’:‘1;, it follows that (6.6) is sabistied.

Next we shall construet an arc I! satistying the conditions

n
(6.7) o ¢IL', I'— 2’ C Dj x Dy x ‘PD¢ and L' CI° €3, where 3 43 a fived
- ‘
family of arcs with the properties described in A3 (V).

For this purpose, let us consider the cell
n n

Qz = I x I3 x iPI« .
: g

Since its boundary contains our bent cell Q5" and a° ¢ Q)™ C 4, it
follows from A3 (v) that there is an are I' C QF such that a® ¢ L* and
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It CI°e3J. Consequently Il—g®C [0—20C X—A and therefore the in-
clusion @3~ C A implies that
aad (4 ‘4 ki
I'—a*CQ—gs™ (Il—wg)x(Iz-—wg)X{PLCD{xD;x PDs.
=3 {m3

Thus (6.7) is satisfied.

Now let G° denote the component of F——A containing I°— & where
I° ¢ 3 is the arc appearing in (6.7 ) (cf. A3 (v) to determine this component).
Applying A3 (iv) to the cell QI C 4 previously constructed (see (6.6))
and to this component @°, we find a cell @} satlsfymg the conditions:

(6.8) GCE and QAA=qrlCQr.

This is just the n-cell mentioned above, with properties yielding a con-
tradiction, as we shall proceed to show.

First we prove that Bo-a(o Qa I Z) > 0. For this purpose, cbserve
n 4 and by A3 (v), there is an
arc L' C Q3 contained in an are belongmg to 3 and such that a°eL’.
The inclugion QFC & and the properties of .the family ¥ imply that
I? must be a subare of the arc I° Therefore, reducing L* when necessary,
we may assume that I C L' and, by-(6.7) 7 we obtain L*—a° C D} ><D2><

X PD4 It follows that the closure of the set Qf ~ (DfxDix PD;)

contzuns #°. By (6.5), this set is both open and closed in @y nD Z,
being disgjoint from Qi in v1ew of (6 6) Since 2" ¢ Z, D is a neigh-
bourhood of 2° in X and «° ¢QP° C @3, applying lemma 3 we con-
clude that Ba-a(a", @F ~ Z) > 0.

Now, taking into consideration the definition of Z, one sees that
this set decomposes in a natural way into the Cartesian product of n—1
dendrites and that all the coordinates of #° in this product have the
order equal to 2. Hence, lemma. 6 applies to. the set Qi ~ Z C Z, whose
(n—1)-th local Betti number at z° has been proved to be greater than 0.
Therefore there exists a cell @3> CQ% ~ Z constituting the Cartesian
product of ares in this decomposition of Z and such that #® ¢ @8 ~*°. On the
other hand, let us notice that Z contains our bent cell Q""l, which also
constitutes the Cartesian product of ares in this decomposition and satisfies
the condition a°eQF'°. It follows that the cell @7 can be reduced

80 as to be contained in @f~'. Consequently

P ICQE~ANZ,

because Q' C A. Thus we obtain a contradiction, since (6.6) and (6.8)
imply that dim(QF ~ Z ~ 4) = dim(Qi™" ~ Z) < n—2. This proves that
the set A cannot contain any bent cell and thereby completes the proof
of the lemma.
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Lemmas 8 and 9 having been proved, it follows immediately that:

(6.9)  For each cell Q" C A ¢S exactly one of the projections 2@
- where 1 <i < ny reduces to-a single point. :

H

7. Proof of the inclusion SCR. Let 4 be a given set of the
family S. In view of Al we may assume that 4 'is the Cartesian prod-

e 5 n-1
uet ,,'P Ay of local dendrites. Select a cell Q5> = P I;, where I;C 4.
el =1

By (6.9), for a fixed j, where 1 <j<n, we have p,(Q5™") = () C X;.
Then ordggX; > 3. Otherwise, in view of A2 and (3.5), for each point
@ €Q37'° a coordinate other than #; would be a ramification point, and
therefore the fixation of @; and the countability of the set of the rami-
fication points of a local dendrite would imply that dim (QF™) < n—2.
Therefore:

P CM=[veX: oy=0]<R.

- Let agA. For each 4, where 1 < ¢ << n—1, there is an arc I;C 4,
containing the ith coordinate of @ and a subarc of the arc I

—1
Hence, if Q" = :}: I}, then 6 e Q" C 4 and dim (@™ A QB") = n—1.

In virtue of (6.9), for some %, where 1 < % < #, the set px(Q™ ") reduces
to a single point. If we had % 5= j, then on the set @~ ~ @™ the co-
ordinates #; and m would be fixed, which is impossible considering the
dimension of this set. Therefore p;(@"")= (a}), so that a <Q"*C M,
which proves that 4 C M,

By A3 (i), (ii), each sufficiently small neighbourhood of 4 in X
is separated by the set 4 itself. In particular, a set homeomorphic  (in
a natural way) with the Cartesian product of a connected neighbourhood
of 4'in M and a dendrite must be separated by 4. However, this ig
impossible when 4 C M # A, and therefore 4 = M-¢ R, which proves
the inclusion: ' ‘

(71) SCR.
(5.2) and (7.1) immediately imply that
(7.2) The families R and S coincide.

8. Proof of Theorem 1 in the case where the space X is
connected. Let X be a connected space satisfying to the assumptions
of our Theorem. Then each (non-trivial) at most 1-dimensional factor
of any Cartesian decomposition of X, as it is homeomorphie with a retract
of X, must be a connected 1-dimensional ANR; and therefore a local
dendrite (ef. the beginning of Section 3). Hence the space X decomposes
into_the Oartesian product of local dendrites and the uniqueness of thig
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decomposition must be proved. For this purpose, we introduce the fol-
lowing definition: Given a Cartesian product }’;Xg and a space D, the
Tml

number of the subscripts ¢ such that X is homeomorphic with D will be
called the muliiplicity of D in that Oartesian product. It is clear that
our theorem results at once from the following proposition:

(Tw) For each n > 2 the following implication holds: If the Cartesian

n n
products {PX{ and ‘PXQ of local dendrites are homeomorphic and if in
wal -]

the sequence (Xy, Xy, ..., Xu) and also in (X}, X3, ..., X4) ai most m of
the terms have ramification points, then, for each local dendrite D, the
multiplicities of D in those Cartesian products are identical.

We prove Tn, using induction on m.

T, follows at once from a theorem of K. Borsuk (see [2], 1. 159,
Corollary).

Now, given some m > 2, suppose T-1 to be true and consider two

n n
Cartesian products, . PX; and . P X, satisfying the assumptions of Ty,.
- -]

We may assume that exactly % of the local dendrites X;, where 2 <%
< m, have some ramification points. Consider the family R consisting

of subgets of ﬁX; as defined in Section 4 and consider the Cartesian
fnal

decompositions, which have been determined in a natural way, of the sets
belonging to R. We distinguish 2 cases: when all the sets of the family
R have the same decomposition (i.e. when all factors X; having rami-
fication points are homeomorphic) and when there are 2 sets, M, N R,
having different decompositions. In the first case the multiplicity of

N n

& local dendrite D in the product ‘PX4 is greater by 1 than its multi-
-1

plicity in the decomposition of any set M ¢ R if the latter multiplicity

is positive and if D has some ramification points, and it is equal to
that multiplicity in the remaining case. In the second case the multi-

n - C)
plicity of D in the product{ PX; is equal to its maximal multiplicity
=1
in the decompositions of the gets belonging to R.

n
Now let R’ be the respective family consisting of subsets of ; 131X§.

By the topological character of the family S as defined in Section 4
and by (7.2), there is a oné-to-one correspondence between the sets of
the families R and R’, the corresponding sets being homeomorphic. Hen(:,e
R’ 5+ @ and, since the sets belonging to R’ cannot be manifolds, it
follows' that also at least two of the local dendrites X; must have
ramification points. By the hypothesis of induction, the multiplicities of
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each local dendrite D in the decompositions of corresponding sets M <R
and M’ e R’ must be equal. These mulmphcltles determine in the same

way the multiplicities of D in the produets PX‘; and PX i3 it follows

that the latter must also be equal. This completes the proof of Ty,
and therefore Theorem 1 in the case considered has been proved.

9. A proof of Theorem 1 in the general case. X. Borsuk has
gshown (see [3], p.148) that the uniqueness of the decomposition of an
arbitrary polyhedron into the Cartesian product of topologically prime
spaces of dimension <1 follows from the fact that such decompositions
are unique for connected polyhedra (that proof was already utilized
in [8]). Since the only property of polyhedra used in that proof iy the
fact that they have a finite number of components, it follows that the
proof of K. Borsuk carries over mutatis mutandis to the (compact)
ANR-spaces. Thus the proof of our Theorem is complete.
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Corrections to my paper
“On a certain class of abstract algebras”
Fundamenta Mathematicae 54 (1964), pp. 115-124
by
W. Narkiewicz (Wroctaw)

In the above paper the following changes should be made:

(1) In example (a) on p.116 it must be assumed that I satisfies
the cancellation law, ie. from 74 =0 with r ¢ R, zeL follows r =0
or #==0.

(2) In the example (b) on the same page condition (iii) is not suffi-
cient and must be replaced by the following two:

¢“(ili) For any two elements f, g of § there exists such an element h
in § that /= gh or g=fh.

(iv) For every g ¢ 8 from g(a)= g(b) with a, b ¢ X follows a = b".

(3) In the Remark on p.122 “left-cancellation” must be replaced
by “right-cancellation” since it is obviously that fact which is proved
there.

(4) In view of (3) theorem IV on p. 122 is false, because there may
be no left-cancellation law in §. What is really proved there is the fol-
lowing fact: If 4 is a v**-algebra in which every operation depends on
at most one variable, then either A consists of algebraic constants only or
there ewists a semigroup S of transformations of X such that the identical
transformation belongs to 8, the right-cancellation law holds and for any
f19,F, @ in 8 from fg = F@ it follows that with a suitable H ¢ 8, g = HG
or @ = Hg. Moreover, every algebraic operation has the form given in (D),
pp. 116-117.

However, not every algebra so constructed must be a v**-algebra
and so this theorem fails as a representation theorem.

The main results of the paper are unaffected by fhese changes.

I am indebted to Professor K. Urbanik for calling my attention
to these facts. ) .

Regu par la Rédaction le 30. 5. 1965
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