Imbedding collections of ‘compact 0-dimensional subsets
of E* in continuous collections of mutually exclusive arcs

by
Jo Ford (Auburn, Alabama and Athens, Georgia)

If G and J& are collections of sets, then @ is said to be imbedded
in % if there is a one-to-one correspondehce f from § onto J¢ such that
g C{(g) for each g in 8. M. B. Hamstrom ([2]) investigated the imbedding
of upper-semicontinuous collections of continuous curves in continuous
collections of continuous curves, and it is proposed here to consider
several problems concerning the imbedding of collections of compact
0-dimensional subsets of B2 in collections of ares in E? or E®. The author
would like to express her gratitude to B. J. Ball for his many con-
structive suggestions.

If each element of § is a compaet 0-dimensional set in E?, it follows
eagily from Theorem 135 in [3] that § can be imbedded in a collection
of ares in E?; if, however, the elements of G are mutually exclusive,
or 8§ is upper-semicontinuous, ete., it is not always possible to imbed §
in a collection of arcs satisfying similar conditions. For example, there
is a continuous collection of mutually exclusive finite subsets of B?
whose decomposition space is an are that cannot be imbedded in any
collection of mutually exclusive arcs in E?; namely, the collection {g():
0 <1< 2} where g(f) = {(¢, 0), (2—1,0)} f 0 <t <1, g(1) = {1, 0)} and
if 1<t<?2 then g(t) = {(1,1—1), (1,t—1)}.

Suppose that § is an upper semicontinuous collection of mutually
exclusive compact 0-dimensional subsets of E2. It is shown in Theorem 1
that if §* (S* denotes the union of the elements of ) is compact and
0-dimensional and the upper semicontinuous decomposition space of §
is a subset of an arc, then there is a continuous and equicontinuous
collection of mutually exclusive ares in F? in which € is imbedded.
Reecall that a collection 3¢ of arcs is equicontinuous if for each positive
number e there is a positive number & such that if p and ¢ are two
points of an are H of J& such that the distance from p to ¢ is less than d,
then the diameter of the subarc of H having p and ¢ as its endpoints
is less than e. If G is continuous and its decomposition space is an arc
then a sufficient condition is found in Theorem 2 for the existence of
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a continuous collection of mutually exclusive arcs in B? in whi.eh 'g.is
imbedded, that is satisfied, in particular, if each element. (?f Q_ls finite
(Theorem 3); and & sufficient and almost necessary condltlo_n is found
for the existence of a continuous and equicontinuogs collection of mu-
tually exclusive ares in E® in which § is imbedded, in T?leorem 4. Some
corollaries are stated in terms of extensions of mappings, and some
questions are raised. )

Tietze’s extension theorem as well as theorems In [3] ‘are used
frequently without specific mention.

TreorEM 1. Suppose that § 48 an upper semicontinuous collection
of mutually ewclusive, compact 0-dimensional subsets of I wh.ose d{;com-
position space 18 & subsel of an are. If S* is compact and 0-dimensional,
then there is a continuous and equicontinuous collection of mutually ex-
clusive ares in E® in which § is imbedded.

Proof. Suppose that § is as in the hypothesis. Since §* is compact
and 0-dimensional, there is a homeomorphism of E? onto itself that
takes S* into {(z, 0): @ €[0, 1]}, so it may be agsumed that 8* C {(=, 0):
2 €[0,1]}. Denote by f a homeomorphism from ¢ into [0,1]. The con-
tinuous function % from §* into [0,1] defined by h(z,0) =1 if (z,0)
ef7'(t) can be extended, since §* is a closed subset of E*, to a con‘uin}lous
function k' from B! into [0, 1]. The homeomorphism k of E* onto itself
defined by k(z,y) = (v, ¥'(@, 0)+y) takes g into the are {(z, y):'O <o
<1, y =f(g)} for each ¢ in . Hence § is imbedded in the continuous
and equicontinuous collection {7 '({(#,y): 0<a<1, y= HoY): g8}
of mutually exclusive ares in E".

CoROLTARY. If K is a compact and 0-dimensional subsel of the interior
of a disk D in E?, and if f is a continuous function from K into (0,1),
then there is a continuous and open ewtension ' of f from D onto [0,1]
such that f'~(t) is an arc for each te[0,1].

Proof. Suppose that K, D, and f are as in the hypothesis. Since
K i3 compact, there are numbers o and b such that f(K)C [a, 8] C(0,1).
Since K is 0-dimensional, it will be assumed that K is contained in
{(», 0): @ [a, b]}. The collection {HE): ¢ e F(K)) satisties the hypothesis
of Theorem 1, so from the proof of Theorem 1, there is a homeomor-
phism % of B onto itself that takes f*(t) into the are {(4,y): a <@ <D,
y =t} for each tef(K). There is a homeomorphism % of E* onto itgelf
that is the identity at points of k(K) and takes k(D) onto the rectangular
disk with vertices (0, 0), (0,1), (1,1), and (1,0). If y'(p) denotes the
y-coordinate of the point p in E?, define f by f'(w,y) = y'(Fk(w,y))
for each (w,%)eD. The function f* has the disired properties since the
collection {f'(t): te[0,1]} is a continuous decomposition of D into
mutually exclusive arcs and f*=jf at points of K.
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The hypothesis of Theorem 1 is very restrictive, but the author
knows of no weaker condition that will insure the existence of a con-
tinuous collection of mutually exclusive arcs in F? in which a given eol-
lection of mutually exclusive compact 0-dimensional subsets of E? whose
decomposition space is an arc is imbedded. The following example illus-
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trates some of the difficulties encountered. This collection ean be im-
bedded in a collection of mutually exclusive ares in EZ%, but not in
a continuous collection, even in S2.

8§ ={g(t): -2 <i<2}

where
{(—t—2, 0)} ’ i —2<i<—1,
git) = l {&,vi—e), ¢,—yi—p)} i -—-1<i<1,
{(, 0)} i 1<t<2.

The rest of the paper deals with the imbedding of continuous col-
lections of mutually exclusive compact 0-dimensional subsets of E?
whose decomposition spaces are arcs, in continuous collections of mu-
tually exclusive ares in E3.

DEFINITION. Suppose that § is a continuous collection of mutually
exclusive compact 0-dimensional subsets of FE? whose decomposition
is an are.

1. An arc in 8* is a minimal trace of G* if it intersects each element
of § in exactly one point.

2. The element g of G is said to be a change element of G if g contains
a point « that is an endpoint of a component of the intersection of two
minimal traces of §, and if » is an endpoint of both of these minimal
traces, then the component of their intersection containing « contains
no other point.

Remark. It follows from Theorem 2.1, page 186, of [7] that if G
is as in the definitions above and p is a point of G* then p is contained
in a minimal trace of S. .
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THEOREM 2. Suppose that § is a conlinuous collection of mutually

exclusive compact 0-dimensional subsets of E* whose decomposition space
is an arc. If the closure (with respect to the decomposition topology) of the
collection of change elements of § is 0-dimensional, then G can be imbedded
in a continuous collection of muiually ewclusive arcs in IP.

A rough proof of Theorem 2 is given in steps (1) through (3), so
that the purpose of the lemmas, which are rather complicated, will be
understood.

(1) 8 is written {g(): 0 <t< 1}, where g is a homecomorphism
from [0,1] onto 8, and a homeomorphism f is constructed of E® onto
1tsdf that takes g(t) into the plane {z =1} Denotc by €' the collection
{fg(t); 0 <t<<1}.

( ) The closure, %, of the collection of change elements of § is
imbedded, by means of Theorem 1, in a continuous collection of mu-
tually exclusive ares so that each arc is in the same z-plane as the ele-
ment of §' it contains.

(3) Lemma 2 (whose proof is shortened by Lemma 1) gives a con-
structive method of imbedding closed intervals of the arc §' that are
strictly between elements of ¥ in continuous collections of mutually
exclusive arcs. Since such an interval containg no change element of &,
the union of its elements is the union of a collection of mutually ex-
clusive arcs (portions of traces) rising from one z-plane to another.

(4) Lemma 3 shows how to imbed all of the elements of § between
(and including) two elements of J€ in a continuous collection of mutually
exclusive arcs, using the arcs constructed in Lemma 2.

(5) ALl of these collections are combined to form a continuous col-
lection of mutually exclusive ares m which (under 77%) the collection
§ is imbedded.

Lewvwa 1. Suppose that A(0) is an arc in the plane {z = 0}, A(1) is
a straight line segment in the plane {2 =1}, and B is a collection of vertical
straight line segments each having ome endpoint on A(0) and the other
on AQ1). If B(0) and B(1) are elements of B joining the endpoinits of A (0)
to those of A(1), then there is a colleclion of ares {A(t): 0 < t< 1), each
joining o point cf B(0) to & point of B(l) such that if 0 <t< 1, then
*~{g =1} CA{) C{e =1}, and such that the collection {A(1): 0 <t <1}
8 continuous.

Proof. Suppose A(1)={(0,y,1): 0<y<1}. For each point
P = (2,9, 0) of 4(0), denote by j(p) either ( 1) the straight line segment
from p to (0,0,1) if y < 0, (2) the straight line segment from p to
(0,9,1) if 0 <y <1, or (3) the straight line segment from p to (0,1,1)
if y > 1. Define a function f on A(0)x[0,1] by f(p, 1) =3 (p) ~ {z—t}
Clearly f is continuous and f is one-to- -one on 4(0) x [0, 1). Furthermore,
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{f(p,0): peA(0)} =A4(0) and {f(p,1): pA(0)} = A(1). Hence, if for

0<t<1, A(t) is defined to be {f(p,?): p e A(0)}, then A(f) is an arc

in {# =1} and the collection {A(f): 0 <t <1} is continuous. If B is an
element of $ and p is the endpoint of B in 4 (0), then j(p) = B. It fol-
lows that if 0 <t< 1, then $*~ {2 =1} CA(t), and the endpoints of
A (ty are in B(0) v B(1). Thus {4 (f): 0 <t < 1} is the desired collection.

DEFINITION. An ascending arc is an arc that intersects each z-plane
in at most one point.

LevmaA 2. Suppose that B is a continuous colleciion of mutually ex-
clusive asdending arcs each with one endpoint on the are 4 (0) in {z = 0}
and the other on the arc A (1) in {z = 1} such that (i) H* is compact, (ii) no
vertical line contains two points of 33*, and (i) B contains two arcs B(0)
and B(1) joining the endpoints of A(0) to the endpoints of A (1) such that
B*—(B(0) v B(1)) is closed. If D is a simple domain in {z =0} such
that D coniains the projeciion of A(0) v A(1) v B* into {z = 0}, then there

- 48 a collection {A(1): 0 <1< 1} of arcs having one endpoint on B(0) and

the other on B(1) such that (i) {A(f): 0 <1< 1} s continuous, and (ii) ¢f
0<t<], then B*~ {z =1t} CAW) C{(x,¥,2): (#,y,0)eD, 0 <z<1}.

Proof. Two homeomorphisms, f and g, of E® onto itself will be
defined so that 4(0), A(1), and B, under f, will satisfy the hypothesis
of Lemma 1, and the collection of arcs assured by the conclusion of
Lemma 1 will, under gf %, be contained in the cylinder over D as re-
quired. For the construction of g it is necessary to trace points.directly
above A (1) and points directly below A (0) through f. For this purpose,
choose a point w directly above a point w’ in A(1) as a representative.
The case will be similar for points directly below A(0). The homeo-
morphism f will be defined as the composition of four homeomorphisms
of E?® onto itself, f = f,f,fsfs, Whose construction is defined in steps (1),
(2), (3), and (4).

(1) Denote by p the pro;ectlon map of E? onto {# = 0}. Define
a function % from p(%*) onto [0,1] by h(z,y,0) =z if (z,y,2) ¢ B*
The function % is well defined since no vertical line intersects two points
of B* and is continuous since B is. Since p (H*) is closed, there is a con-
tinuous extension A’ of h from {z = 0} onto [0,1] such that A'(g) is in
(0,1) if ¢ is in {# = 0}—p(BH*). Define a homeomorphism f, from E*
onto itself by fi(z,y,?) = (»,y, 2—h'(z,y,0)). Note that f, has the
following properties:

) ABNC{=0}
(i) /(4 (1)—9*) C {e >0}, A(4(0)—B*) C {z <0},
(iif) f(w) is above fi(w'), and
(iv) f, changes mo @ or y coordinate.
Fundamenta Mathematicae, T, LVIIT 4
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(2) Since {f,(B): Be®} is a continuous and equicontinuous collec-
tion of mutually exclusive arcs filling up a compact subset of {# =0},
it follows from results in [1] that there is a homeomorphism % of {z =0}
onto itself which lines the arcs up so thab (i) kfl(B(O)) is the straight
line segment {(z,0,0): 0 <& <1}, (i) EH(B@) is {(#,1,0): 0<w <1},
and (iii) if B ¢ $— {B(0), B(1)}, then there is & number ¢ in (0, 1) such
that &f,(B) = {(z, ¢, 0): 0 <& <1}. Furthermore, %k can be constructed
so that for each ¢

BB~ =1) C{(1—1,9,0): 0<y <1}.

The homeomorphism f, of E? onto itself (which will extend %) is
defined by fo(@, ¥, 2) = k(z, ¥, 0)+(0, 0, 2). Notice thab f» has the fol-
lowing properties: :

(i) The set fofi(4(1)—3*) and the set fofu(4(0)—B*) are above
and below, respectively, the plane { =0}, and no vertical line inter-
gects either set in more than one point;

(ii) the point f,fy(w) is directly above the point fofa(w’); and

(iii) the point set fofo($*) is in {(#,¥y,0): O <® <1, 0<<y <1}

(8) A homeomorphism f» of E* onto itself will be constructed so
that the are fyfofs{4 (1)) is contained in the wniom of two upper half

planes through the line {w =0, # = 0}, the are fofsfi(4(0)) lies in the

wnion of two lower half planes through the line {# =1, 2 = 0}, and f; is
the identity on {z =0}.

Denote by V the union of all vertical lines containing a point of
fof(A(1)) =A’. If L is a vertical line intersecting A’, then there is
exactly one point, (m(L),y(L),z(L)), of A’ on L. Deﬁne a function hz
of B* onto itself by: hz(r) =r(jw(L)|/2(L)) i r>0 and #(L)>0, and
hifr) =7 if r < 0 or 2(I) = 0. {No 2(L) is less than 0.) Define a homeo-
morphism h of V onto itself by h(z,y,2) = (v, y, hi(2)), where L is the
vertical line containing (#,y,#). The function % is the identity on
VAf{e<0}, and h(A")C {(#,y,2): 2= |2]}.

Since the projection of A’ into {# = 0} is an are, there is a homeo-
morphism ¢ of E® onto itgelf that takes ¥ onto the strip V' = {(0, ¥, #):
0 <y <1} such that ¢ does not change the z-coordinate of any point
and takes each vertical line onto a vertical line. Since any homeomor-
phism of V' onto itself which takes each vertical line onto itself and is
the identity on {z < 0} can be extended to a homeomorphism of E® onto
itgelf with the same properties, it follows that there iy an extension of h
to a homeomorphism 2’ of F® onto itself which takes each vertical line
into itself and is the idemtity on {z < 0}.
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Similarly, there is a homeomorphism ¢’ of E® onto itself that takes .
the arc fofi(4(0)) into {(z,y,2): # =—|s—1]} such that ¢’ takes each
vertical line onto itself, and is the identity on {z > 0}.

The homeomorphism f; =hk'¢g’ has the desired properties.

(4) The ares fofofo(4 (1) and fofofyi(4(0) are in the sets (¢ = |o]}
and {# =—|s—1|} respectively; it is a relatively simple matter to con-
struct a hon;eomorphism f. of E® onto itself that takes the ares into
the vertical planes {# = 0} and {x = 1} respectively, is the identity on
{,y,0): 0<@<<1}, and takes fsfofi(w) into a point with negative
w-coordinate. (See diagram on Fig. 2.)

.‘/fsjzfx w)

e

/
identity here {x=1}

Fig. 2

The homeomorphism f = f,fsf-f; of E® onto itself has the following
properties:

1)  f{4@)C{w =0}, and f(4(0) C{z =1}, :

2) 1(B(0) ={,0,0): 0 <w<1}, and f(BA)) = {(#,1,0): 0 <z <1},
(8) if Be®, then for some ¢ in [0,1], f(B) ={(z,¢,0): 0 <o <1},
(4) it 0<t<1, then f(B* (& =1}) =F(B*) ~ {z =1—1},

(5) flw) is in {w< O}

With the arcs so positioned it follows from Lemma 1 that there is
a continuous collection 7€ = {H(t): 0 <t<1} of mutually exclusive arcs
such that (i) H(0) =7{4(0)) and H(1)=f4(1), () if 0<i<1,
{w =1—1} -~ f(B*) C H(1), (iii) the endpoints of each H(t) are on f(B(0))
and fB(1), and (iv) f(w) is not in J*. .

For 0 <t < 1, define A'(f) to be f*(H(f)) and denote by # the col-
lection {A'(f): 0 <t?<C1}. Then # is a continuous collection of mutually

4%
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exclusive arcs in which the collection {B*~ {z = th: 0<< t.< 1} is im-
bedded such that A4(0) =.4'(0), 4'(1) =4(1), and no point of A* ig
directly above a point of A(1) or directly below a point (_)f A (0). The
azes of # are not, however, necessarily contained in thfa cyllnfier over D
(see statement of Lemma), so that another homeomorghism, g, is rcqul?ed.

Recall that p derotes the projection map of_ E? onto {z.= 0}. Since
plA(1)w A(0) v B¥) is a closed subset of the simple domain D, there
is a simple domain D" in {2 =0} containing it whose closur‘e is con-
tained in D. Since #* is bounded, there is a simple domain D' in {z = 0}
containing D u p(4*). There is a homeomorphism % of {z =0} onto
itgelf which is the identity on D’ and takes D’ onto .D. Denote by g’
the homeomorphism of L® onto itself defined by §'(»,y,2) = hiz,y,0)+
4(0,0, 2). The collection {g’(4’()): 0 <t <1} has all of the listed prop-
erties of # with the additional property that the projection of each
arc is in D.

The ares still need not be in {0 <z <1} as desired, so a homeo-
morphism ¢’ of E* onto itself will be defired with the property_ that
g is the identity on 4 (1) v 4(0) v &%, ¢ changes no @ or y coordinate,
and for ¢ strictly between 0 and 1, ¢”g'{4'(¥) is in {0 <2< 1}. The
bomeomorphism ¢ will be defined as g¢”¢' and the collection {4(I):
0<t< 1), where A(f)=g(4'(2)}, will be the desired collection of arcs.

Define two functions f” and f' on {z =0} by:

(@, 9,0) =Tub{e: (@,9,2) e B* VAL Lz =1,
f(®,9;0) =1 for each (#,y,0)e {z =0}.

For (z,9,0) in {# = 0}““17(144(1)} =K, {"(@,y,0) <f(x,y,0); /"8
upper semicontinuous; and f' is lower semicontinuous. By Theorem 2
of [5], there is a contintous function f, from K into (},1) such that
(@, 9, 0) < fol, 4,0) < f'(z,9,0) on K and such that the function f
defined to be f, on K and the constant function 1 on p(_A (1)) is a con-
tinuous extension of f, to {# = 0}. Define the continuous function ¢ on
{# =0} by e(2,9,0) =+1i(2,9,0).

There is a number s such that if (x,¥,#2) is in A(1) v ¢'(4*), then

.2 < m. Define two functions b’ and 2" on {# =0} by:

1 it (2,9,0)ep(4),

k(®,y, 0 ={
® 9, 0) m, otherwise;

(2,5, 0) =lub {z: (2, 2) e g'(#¥) U & =1}} .
Since b’ is lower semicontinuous, h'’ is upper semicontinuous, and h”’ < b’

(since no point of g'(A*) i directly above A (1)), by Theorem 1 of [5]
there i8 a continuous function h on {2 = 0} such that A" <h <k
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Define a homeomorphism % of E® onto itself by k(z, v, 2) = (2, ¥, 7),
where 1 = 6(z, 9, 0)+[(z—h(z, y, 0))(e(z,9,0)—f (=, 3, 0)] /(b (=, y, O)—
—f(z, 9, 0)) it (#,9,0)is in K and 2> f(x,9,0), and r =2 if («,y, 0)
€p (A (1)) or 2z < f(z, ¥, 0).

In particular, k(m, ¥, h(@, 9, 0)) = (5’77 Y, 6(2, Y, O)):
is in g'(#A*)—A(1), then %k(z,y,2) is in {0 <z < 1}.

Similarly, there is a homeomorphism %' of E® onto itself such that
L' is the identity at points of {¢ = 1} v 4(0) v B*, k' changes no & or y
coordinate, and if (z,y,2) is in g¢'(4*)—A4(0), then ¥(z,y,2) is in
0<z<1}.

Define g'" to be k%', and g” is the desired homeomorphism of E®
onto itself. This completes the proof of Lemma 2. )

so that if (z, ¥, 2)

LemmA 3. If, in the statement of Lemma 2, the requirement thai the
elements of B be mutually exclusive is replaced by the hypothesis that the
interseclion of any pair of elements of B lies on the lower arc A(0), and the

‘requirement that B be continuous is replaced by the hypothesis that ¢f

2" > 2 >0, then the collection {B {2 2222} BeB) is continuous,
then the resulting statement is true.

Proof. For each positive integer s, denote by P(n) the set .4(0) v
U p(B* ~ {2 < 1/n}). Since P(n) is a continuum in {z == 0}, there is a de-
creasing sequence {D(%)} of simple domains in {# = 0} such that D(1) =D
and if ¢>1 then P(i)C D(¢) and the boundary of D(i) lies in the
1/¢-neighborhood of P(i). For each n let C(n) denote the ecylinder
{(®,9,%): (x,9,0) e D(m), 1/n+1) <z<1/n}, and let A(1/n-+1) denote
an arc in the simple domain C(n) n C(n+1) with endpoints on B(0)
and B(l) which contains the compact, 0-dimensional set B* ~ {z =
1/(n--1)}. Since B is continuous and B* ~ {z = 0} C 4(0), the sequence
{D(¢)}, and hence the sequence {C(%)} converges to 4 (0). '

It follows from Lemma 2 that for each m, there exists a collection
{4(): 1/(n+1) < t< 1/n} of arcs each with endpoints on B(0) and B(1)
such that (i) {4(): I/(n+1)<t<1/n} is a continnous collection of
mutually exclusive ares and (ii) if 1/(n+1) < t < 1/n, then B* A {2 =1}
is contained in A () which is contained in the interior of C(n).

The only possible discontinuity of the collection £ = {4 (f): 0 <t < 1}
of mutually exclusive arecs is at the arc A(0). Since the cylinders {C(n)}
converge to A4(0), the collection 4 is upper-semicontinuous at 4 (0), and
if a sequence of elements of A converges to a subset of 4(0), the subset
must be connected and must contain the endpoints of A (0) (since the
endpoints of each .4 (%) are oh the arcs B(0) and B(1l)) and hence must
be equal to 4(0), so that 4 is also lower-semicontinuous at 4 (0). It fol-
lows that the collection 4 is continuous and it clearly satisfies the other
conditions. :


GUEST


b4 - Jo Ford

Tt ghould be noted that if the irregularities that oceur at the lower
are A(0) also occur at the upper arc A (1), then only a slight modification
of the above construction is needed. -

Proof of Theorem 2. It may be assumed that the compact set
G* is contained in the interior of the unit square {(#,¥,0): 0 <& <1,
0<y<1}. Let g denote a homeomorphism from [0, 1] onto the upper
semicontinuous decomposition space of § (which ig an arc), and for
each t, define g'(t) to be g(t) v {(t, 0,0), (t,1,0)}. Denote by 8" the
collection {g'(?): 0 <t <1}

The closure, Jt, of the collection of change elements of 8’ is 0-di-
mensional, so by a modification of Theorem 1, At can be imbedded in
a continuous collection 3¢’ of mutually exclusive arcs in {2 = 0} such
that if H'(f) denotes the element of &' containing the element g'(t) of M,
then the endpoints of H'(t) are (2,0, 0) and (¢,1,0).

The function f' from §™* onto [0, 1] defined by f'(p) =1 if p is an
element of g'(f) is continuous, and §™* is closed, so there is a continuous
extension 7 of f from {z = 0} into the real numbers. Denote by f the
‘homeomorphism of E® onto itself defined by f(w,,2) = (@, y, e+
+1"(@, 9, 0)). Note that fg'(t) C {z =1} for each ¢ so that if B is a trace

of @', then f(B) is an ascending arc. In particular, ]‘({(t, 0,00t 1}) ‘

=B(0) and f{{(t,1,0): 0<t<1})=B(1) are ascending straight line
gegments. : .

For each ¢'(1) in A define H(#) to be the arc {(z,y,?): (z,y,0)
eH'(t)} in {¢ =1}, and denote by J& the collection {H(t): g'(t) e Jb}.
Then 6 is a continuous collection of mutually exclusive arcs such that for
each H (t) of %, f¢'(t) C H (1) and the endpoints of H (¢) are on B(0) and B(1).

T W={t0<t<l, g'(l)¢ &}, then W is the union of a countable
(or finite) number of mutually exclusive open intervals (1), E(2), ..,
R(3), ... For each 4, (1) denote by e¢; and d; the right and left endpoints,
respectively, of R (1), (2) denote by L(z) the projection of {fg'(?): t € R()}* v
U H{dy) v H(es) into the plane {# =di}, (3) denote by D(¢) a simple
domain in {# = d} containing L(i) whose boundary is in the 1/i-neigh-
borhood of L(4), and (4) denote by O(:) the eylinder {(w, ¥, #): (&, ¥, &)
eD(1), di<z <eq)

The collection of ascending arcs in f(8™) from H(dy) to H(es), the
simple domain D(i), and the cylinder (i) satisfy the hypothesis of
Lemma 3 so there exists a collection {H(f): di<t< e} of arcs such
that if di < t< e, then fg'(t) C H(¢), the endpoints of H(t) are on B(0)
and B(l), and H() is contained in the interior of 0(i); and the col-
lection {H(f): di <!< e} of mutually exclusive arcs is continuous.

Denote by N the collection {H(f): 0 <t <1} of mutually exclusive
arcs in which the collection {fg'(t): 0 <t <1} is imbedded. In order to
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show that N is upper-semicontinuous, it is sufficient to prove that if
{ts} is a sequence of numbers converging to the element ¢ of [0,1]—W,
and fer each 4, #; belongs to the interval R(i"), then the sequence {H (i)}
converges to a subset of H(f). It may be assumed that e;—d; < 1/¢ for
each positive integer ¢. The sequence {d¢} converges to i, and since the
collection {g'(t): te W} {H(t): t¢ W} is upper-semicontinuous, the se-
quence {L(i")} converges to a subset of H(¢). BEach H(f;) is contained
in the cylinder C(4') whose height, ex—dy, is less than 1/i’. Since the
distance from the boundary of D(i’) to L(i') is less than 1/i’, it follows
that since the sequence {L(¢')} converges to a subset of H(f), then so
does the sequence {C(i")}, and therefore also the sequence {H (t)}. Hence
N ig upper-semicontinuous. Since the subset of H(t) to which the se-
quence {H (t;)} converges is connected and contains ‘the endpoints of H (1),
it is equal to H(t), so that N is continuous.

Thus the colleetion {f*(JI(#)): 0 <t<1} is a continuous collection
of mutnally exclugive arcs in E® in which &', and hence G, is imbedded.

THEOREM 3. If § is a continuous collection of mutually exclusive finite
subsets of E? whose decomposilion space is an arc, then G can be imbedded
in a continuous collection of mutually exclusive arcs in IEP.

Proof. Define ¢ to be the function from § into the positive integers
defined by ¢(g) =n if g has exactly n elements. It will be shown that
the collection of change elements of § is a subset of X, the points of
discontinuity of ¢, and that X is a closed and 0-dimensional subset of §
in the decomposition topology.

Suppose that there is a change element ¢ of § at which ¢ is con-
tinuous. Then there is an interval 3’ of the arc § containing g such that
¢(h) = c(g) if h e ¥'. Since g has ¢(g) elements, it can be properly covered
by ¢lg) mutually exclusive open sets such that the set of elements of §
that are properly covered by these open sets is a subinterval 3 of J°.
(A cover of a set M is proper if each element of the cover intersects I.)
Since g is a change element, there is a point « in g thit is an endpoint
of a component of the intersection of two minimal traces of §. Hence
the open set containing .» contains two points of some element h of I,
which implies that ¢(h) > ¢(g)--1. This involves a contradiction, so that
the collection of change elements of § is a subset of X.

Since the set of points of continuity of any function into the inte-
gers is an open set, J is closed. For each positive integer ¢, denote by

%(3) the set {g: g e X, ¢(g) <i}. If each (i) is closed and 0-dimen-
o0

gional, then ¥ = | X (i) is 0-dimensional. Suppose that ¢ is an element
=1

of J— X (i). Since ¢(g) > 4, there is-a collection ¥ of more than i mu-
tually exclusive domains in E* properly covering g such that the set W
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of elements of § which are properly covered by ¥ is’open in § in the
decomposition topology. Since each element of W has at least <41
points, U ~ K(4) is empty. Hence () is closed.

Suppose that J(i) has a non-degenerate component. Since X(z) is
a subset of an are, this component contains an open interval ¥ of 8.
Since ¢ is bounded above by 4 on Jo(¢), there is an element g of 3" such
that ¢(g) > c(h) for each h e . Since H(c(g)—1) is closed, there is a sub-
interval 3 of ¥ containing ¢ which does not intersect (e(g)—1). Thus,
if b is an element of 3, then ¢(g) = o(k), and ¢ is continuous at g. This
is impossible and ¥ is closed and 0-dimensional. °

Since the closure of the collection of change elements of 8 is 0-di-
mensional, it follows from Theorem 2 that § can be imbedded in a con-
tinuous collection of mutually exclusive arcs in JE°.

The author knows of no weaker condition than that stated in
Theorem 2 that will insure the existence of a continuous collection of
mutually exclusive arcs in F® in which a given collection of mutually
exclugive compact 0-dimensional subsets of F? whose decomposition
space is an arc is imbedded, or indeed whether or hot every such col-
lection ‘can be so imbedded. Theorem 4 is of interest in deciding which
collections can be imbedded in continuous and equicontinuous collections
of mutually exclusive ares in E?,

THEOREM 4. Suppose that S is a continuous collection of mutually
-emclusive compact 0-dimensional subsets of the plame {# =0} whose de-
composition space is an arc. If there exists a homeomorphism f of B® onto
dtself such that if g €S, f(g) C E? and no two of its points have the same
@-coordinate, then S can be imbedded in a continuous and equicontinuous
collection of mutually emclusive ares im EP.

Proof. Denote by g a homeomorphism from [0,1] onto the are 8.

Since §* is compact, it ‘will be assumed that f(§*) is contained in
{(#,9,0): 0< @ <1, 0<y <1} The function %’ from the closed subset
§* of E* into the real numbers, defined by ¥'(@,y, 0) =1t if (v, y,0) i8
in g(t), is continuous, so there is a continuous extension & of %' to all
of E=. .

Define a homeomorphism %’ of E® onto itself by W(w,y,2) = (#,¥,
2+k(@,y,0)). Then if 0<t<1, Rfg()C{z=1t} and no two of its
points have the same x-coordinate. For each point (z,0,1) in the projec-
tion of A’f(8*) into the plane {y = 0}, define ¢(x,0,¢) to be that unique
number y such that (z,y,?) e h’f(8*). Since ¢ is continuous and the

~ projection fis closed, there i3 a continuous extension ¢’ of ¢ from
{y = 0} into the real numbers. Define a homeomorphism % of E* onto
itself by h(@,9,2) = (z,y—¢'(z,0,2),2). For each te[0,1], hh'fg(t)
-C{{x, 0,1): 0 <@<1}. If ¢’ denotes the homeomorphism %h'f then § is

icm
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imbedded in the continuous and equicontinuous collection {g'~*({(x, @, %)
0 <z <1}): 0 <t <1} of mutually exclusive ares in E®.

The hypothesis of Theorem 4 is almost necessary in that if the eol-
lection 8 of subsets of {# =0} can be imbedded in a continuous and
equicontinuous collection J€ of mutually exclusive arcs in E* whose de-
composition space is an arc, then there is a homeomorphism f of §* into
{# = 0} such that if g ¢S, then no two points of f(g) have the same
g-coordinate. This partial converse is a direct result of the proof of
Theorem 14 of [6], which implies that there is a homeomorphism from
Je* onto the unién of a collection of vertical straight line segments in E=.

CorOLLARY. Suppose that K is a compact subset of {z = 0} and that
K is contained in the ball D in B2 If & is a light continuous muapping
from K onto [0, 1] such that for each t [0, 1] no two points of k(t) have
the same x-coordinate, then there are two conlinuous and open mappings
h and g such that (1) g is a mapping from D onio [—1, 2] that extends &
and if t e[—1, 2] then g} (2) is a disk, and (2) b is a mapping from D onto
(—1, 21 x [—1, 2] such that if (r,s) e[—1,2]1x[—1, 2] then BN, 8) is an
arc contained in the disk g~(s) and if 1 €[0,1] then k'(t) CH™X(0,1).

Proof. The collection {™'(): 0 <t < 1} satisfies the hypothesis of
Theorem 4, and from its proof there is a homeomorphism v of E* onto
itgelf such that if p e K then o(p)C |(®,0,%(p)): 0 <o <1}. There is
a homeomorphism w of E® onto itself that is the identity at points of
v(K) and takes the ball »(D) onto the relatively large cube {(2, 9, 2):
—1<a<? ~1l<y<?2, —1<ez<2). If pis a point of D define g(p}
to be the z-coordinate of wv(p) and define h(p) to be the ordered pair
the first term of which is the y-coordinate of wv(p) and the second term
of which is the z-coordinate of wv(p) and g and h are the desired mappings.
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