Connectivity functions and images on Peano continua

by
J. L. Cornette (Ames, Towa)

The concept of a connectivity function is intermediate to that of a con-
tinuous function and that of a Darboux function and has proved useful and
interesting in the study of fixed point properties of continua. For example,
Hamilton [1] answered affirmatively the question [5] as to whether every
connectivity map f: I”->I" has a fixed point. Stallings [7] augmented
this argument, extended the result to polyhedra, and presented the
notion of almost continuous function and some relations between these
and connectivity functions. Hildebrand and Sanderson [2] established,
among other things, that every connectivity retract of a (finite) polyhedron
which has the fixed point property also has the fixed point property.

In this paper there are presented three results concerning con-
nectivity functions and answers to two of the questions raised in [7].
In §2 it is shown that every conmnected separable metric space is the
image under a connectivity mapping of the closed number interval
[0,1] = I. In contrast to this it is shown in § 3 that a certain connected
separable metric space (an explosion set in the plame) is not the image
under a connectivity mapping of the square dise IxI=I2 In even
stronger confrast to § 2, it is shown in § 4 that each connectivity retract
of a unicoherent Peano continuum is a unicoherent Peano continuum.
Using methods similar to those of § 2, there is described in § 5 a connec-
tivity function f: I I that is not almost continuous and which, consid-
ering I embedded in I xI ag I x 0, cannot be extended to a connectwlty
map I xXI-I. This answers nega‘mvelv Questions 1 and 2 of [7], p. 261.

Added in proof: After t]ns pa.per was submltted a mmﬂa.r example by J. H. Ro-
berts appeared in Zero-dimensional sels blocking ty functions, Fund. Math. 57
(1965), pp. 178-179. ‘

1. Preliminaries.

. DEFiNtTION 1. If X and ¥ are topological spaces and f: XY is
a transformation, the graph of f is {(»,7(®)): @ ¢ X} considered as a sub-
set of the topological product. space X x Y.

DEFINITION 2. The statement that f is a connectivity function means
that for ¢ a connected subset of X, {(z,f(#)): we C} is a counected
subset of X x Y. C
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Since the projection map of X x¥->Y is continuous, it follows
immediately that for ¢ connected in X, f(C) is connected in ¥ (ie. f is
a Darboux function). The first lemma iy an alteration of a lemma due
to Stallings [7]. The proof here is essentially that of Stallings and is
given because of the importance of the lemma to this paper. See also [6].

SrarniNgs’ LEMMA. Suppose that X is a compact metric semi-locally-
connecled space and f: X ~Y is a connectivity function where Y is a T,
space. Then if C is a closed subset of ¥ and G’ denotes the collection of
components of f(C), the set G consisting of G' together with all the de-
generate subsets of X—f H(0) is a monotone uppersemicontinuons decom-
position of X, and @ as a subset of the decomposition space is totally
disconnected.

{A compact metric space X is semi-locally-connected if X is connected
and for each point z of X, every open set containing # contains an open
set V containing z such that X—V has only a finite number of com-
ponents. A monotone wuppersemicontinuous decomposition of a compact
metric space X is a collection G of mutually exclusive closed and con-
nected subsets of X whose sum is X such that if ¢ is in @ and U is an
open set containing ¢ there is an open set V containing ¢ such that
every element of @ that intersects V is a subset of U.)

It is immediate that the elements of ¢ are mutually exclusive and
connected. Bach element g of G is closed since if P iy a limit point of g
not belonging to g, then ¢ is a component of (), P does not belong
to f7}(0), and g v {P} is connected but f(g v {P}) is not. Suppose that
there is an open set U containing an element g of & such that every
open set containing ¢ intersects an element of @ that is not a subset
of U. Then for &> 0, there is an element of & which contains a point
of X—U and a point at a distance less than ¢ from a point of g. From
compactness of X, one may select a sequence {¢,}ne1 Of elements of G
which converges to a continuum @ that contains a point of g and a point
of X—U. Then @ contains two points and is not a subset of an element
of & (or @) and consequently contains a point 2z of X—77(0) and a point
w distinet from X. Since X is semi-locally-connected, there is an open
set N containing # but not w such that X—2XN has only a finite number
of components. There is a component B of X—XN and a subsequence
{gn}31 Of {gnnes such that each g, intersects both B and N and is con-

sequently a member of @ and a subset of }7(C). Let D= B w {g} u O Onye
ne=l

Then D is connected, but {(z, f(#)): # € D} is not since the open subset
N x(¥—0) of XxY contains only the point (z,f(2)) of that set. This

is a contradiction and G is a monotone uppersemicontinuous decom-
position of X.
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If K is a component of &', then the sum of the elements of X is
a connected subset of f7(C) and is therefore s subset of an elemerit
of @ so that K is degenerate.

The following lemma and corollary are used in §§ 4 and 5.

LeMMA 1. If K is a subset of a unicoherent Peano continwum H and
H—K is not connected, there is o continuum C lying in K such that H— ¢
is not conmected.

Since H is metric, there is a closed subset K’ of X that separates H.
Since H is a Peano continuum, there is a closed subset ¢ of K’ that
separates @ ¢ H from y ¢ H and is minimal relative to this property. If ¢
is not connected, € is the sum of two disjoint closed sets C; and C,
neither of which separates H; from the “Phragmen-Brouwer Property”
of unicoherent Peano continua ([9], p. 47), ¢; v C, = C does not sep-
arate H, which is a contradiction.

COROLLARY 1. If W is a unicoherent Peano continuum which has
no cut point, no totally disconnected subset of W separates W.

2. Connectivity image of an interval.

THEOREM 1. If Y is a connecled separable metric space, there is a con-
nectivity function with domain I =1[0,1] and range Y.

In order for a function f with domain I to be a connectivity fune-
tion, it is mnecessary and sufficient that the graph of f be connected.
Therefore, to prove Theorem 1 it is only necessary to construct a con-
nected subset I' of I X Y such that for each ¢ in I, #; '(f) contains only
one point of I' and such that m(I") is Y. (n; and =, denote the pro-
jections of IxY onto I and ¥, respectively.) The procedure used
iz analogous to one used in [3] to construct certain real valued func-
tions.

Let H denote the collection of all closed subsets h of IxY such
that the cardinality of m(h) is ¢, the cardinality of the continuum. Since
I and Y are separable metric, I XY is separable metric, hence ‘com-
pletely separable, and it follows that the cardinality of H is c¢. Assume
H to be well ordered into a sequence hy, Ay, ..., Bay ... such that no ele-
ment of H has ¢ predecessors. Let P, denote a point of hy, and for the
process of transfinite induction, for each ordinal ¢ less than c for which
Py has been defined for all ordinals g < a, let P, denote a point of h,
such that =,(P,) does mot belong to ,;L<j m(Pg). The fact that my(h,) has-

cardinality ¢ and h, does not have ¢ predecessors implies that such a point
P, may be selected. Let y, denote a specific point of ¥ and let.

D=1 Poo f(a, go)s @ e [T—J m(Pa)]}-

a<t
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It is possible that the induction process will exhaust the points

of I in which case I' is simply (J P,. The second set is used to insure
a<t

the condition that =y (I") is I; that m/I" is one-to-one is obvious from
the construction. Since for y in ¥, T x {y} belongs to H, it is immediate
that (I} is ¥, and it only remains to show that I' is connected.

Suppose that I"is not connected. Then I" is the sum of two mutually
separated sets A and B and since I X Y is metric, there exists mutually
exclusive open sets a and § in I xY containing A and B respectively.
Let K denote I X Y—(a v 8). Then K is closed and does not intersect I,
and since I' intersects every element of H, K does not belong to H.
Consequently, the cardinality of a,(K) is less than ¢ and it follows that
I—m(K) is dense in I. However, z; is an open mapping and since a w g
contains I', m(a) and m,(B) are open sets which cover I and therefore
m(a) ~ my(f) must exist and is open and contains an element ¢ of I— m,(K).
Then s7; }(t) is a connected subset of a w # which intersects both a and g
and this is a contradiction.

3. Connectivity image of a square dise. In view of Theo-
rem 1, it appears that for very simple domain spaces X, the range ¥
of a connectivity function f: X ¥ may be quite varied. However, it is
found that by complicating the domain slightly, a greater restriction is
placed on Y. Perhaps this is due to the increase in the number of or
types of connected sets in the domain. ’

Let B denote an explosion point set in the plane with explosion
point e. (L.e. B i3 a nondegenerate connected subset of the plane which
contains a point ¢ such that E—e is totally disconnected. Such a set
was deseribed by Knaster and Kuratowski [4].) Then B is separable
metric and connected and by Theorem 1 is the range of a connectivity
function with domain an interval. However,

TEEOREM 2. There does not ewist a connectivity function with domain
IxXI=1I* and range B.

Suppose that f is a connectivity function which maps I* onto E.
Let @' denote the collection of components of f~*(¢) and let G denote ¢
together with the degenerate subsets of I°—f~(¢). From Stallings’ Lemma
it follows that G is a monotone uppersemicontinuous decomposition of I*
and @ is totally disconnected. From a theorem of Whyburn ([81, p. 172)
it follows that each true cyclic element of the decomposition space (also
denoted by @) is either a 2-sphere or a 2-cell. (A true cyclic element
of a (compact) semi-locally-connected metric continuum M is a non-
degenerate connected subset of M which has no cut point and which
is not a proper subset of a connected subset of M which has no cut point.
Every point of M either belongs to a true cyclic element of M or is

icm°
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a cut point of M or has arbitrarily small neighbourhoods with degenerate
boundary ([8], p. 64).)

It is also true that @ is a Peano continuum and there is an arc a
in @. Since @' is totally disconnected, there is a cut point % of o that
does not belong to G'. Then % is a degenerate subset of I2, does not
separate I? and therefore is not a cutpoint of @, and since “small” neigh-
borhoods of k must have two boundary points in a, it follows that %
must belong to a true cyclic element W of Q.

Since W is either a 2-sphere or a 2-cell, and G' is totally discon-
nected, it follows that W-—@' i3 connected and since @ is monotone,
the set (W-—G")* (the sum of the elements of W—@&) is a connected
subset of I2. Observe that (W—@')* does not interseet f~(¢) and there-
fore f[(W—@')*] is a subset of the totally disconnected set E—e. Since
f preserves connected sets, f[(W—@*]) is a single point ¢'. However,
W is a connected set and since G is monotone, W* is a conneeted subset
of I*t. Tt may be seen that f(W*) is f[(W—G')*] v f[(G')*] which con-
sists of two points (¢ and ¢') and is therefore not connected. This is
a contradiction and Theorem 2 is proved.

4. Connectivity retracts of Peano continua.

DepiNrTioN 3. If ¥ is a subspace of a topological space X, then
Y is o connectivity retract of X if there is a connectivity function f: X -¥
guch that for each point # in Y, f(o)=2.

Hildebrand and Sanderson ([2], Theorem 3.13) have shown that
every connectivity retract of a (finite) polyhedron which ?ms the fixed
point property also has the fixed point property. (A continuum M has
the fixed point property if for every eontinuous function f: M ->M, there
i§ a point @ in M such that f () = «.) Furthermore, they describe a ]?ean_o
continuum M in the plane which has a connectivity retract which is
the closure of the graph of y = Sinl/s, 0 < # < 1. There was a na.{sul.‘a,l
suggestion that investigation of connectivity retxza,cts of a square fhsc-
might yield some results relating to the long standing un'settled fluestmn:
Does every nonseparating plane continuum have the fixed p01n13 prop-
erty? However, one of the consequences of the next theorem is that
such a program will not yield new results.

THROREM 3. Bvery connectivity relract of a unicoherent Peamo con-
tinuum 48 a unicoherent Peano conttnuum.

Suppose that X is a unicoherent Peano continuum, Yisa sub_space
of X and f: XY is a connectivity function such that for each‘ zin ¥,
f(#) = @. It has already been shown ([2], Theorem 3.5) that Y is a con-
tintum. Tt will be shown first that ¥ ig locally connected and then thatb
Y is unicoherent.
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Y is locally commected. Suppose that P is a point of Y at which

Y is not locally connected. Then there are open sets B and D containing

P such that D (closure) is a subset of R and there is a sequence M, M,, ...

of components of ¥ ~ D which converges to a nondegenerate continuum
oo

M which contains P but no point of | J M, and such that no component

ne=1

of Y ~ R intersects two elements of M, M,, ... Let G’ denote the col-
lection of all components of f(¥—R) and let ¢ denote G together with
all of the degenerate subsets of f(R). From Stallings’ Lemma, @ ig
a monotone uppersemicontinnous decomposition of X and @ is totally
disconnected. Since each monotone decomposition of a unicoherent Peano
continuum yields a unicoherent Peano continuum ([8], p. 138), G is
a unicoherent Peano continnum and since unicoherence is cyclicly re-
ducible ([8], p. 82), each cyclic element of G is unicoherent. Further-
more, each cyclic element of G is a Peano continuum ([8], p. 69).

Let 7': X -@ denote the continuous transformation associated with
the uppersemicontinnous decomposition ¢ of X. Observe that the se-
quence T'(MM,), T'(DM,), ... converges to T(M) in G and that since M ig
a subset of R~ Y and f is the identity on ¥, M does not intersect
F{Y—R) and it follows that 7 is one-to-one ou M and consequently
T(M) is nondegenerate. From Theorem 4.1, page 70 of [8], there is
a true cyclic element W of @ containing 7'(M) such that the sequence
W AT (M), W~ T(M,), ... converges to T(M). Since G is totally dis-
connected, it follows from Corollary 1 that W— @& is connected.

Since W ~ T(M,), W ~ T'(M,), ... converges to T(M), W obviously
intersects infinitely many 7'(M,) and since M, is a subset of R and 1 is
the identity on M, (a subset of ¥), M, does not intersect F(Y—R)
s0 that T'(M,) does not intersect G'. Consequently W— @ intersects
infinitely many T'(M,) and because W— @ is connected and 7' is mono-
tone, T~ W—@') is comnected and must intersect infinitely many of
My, My, ... Observe also that T™YW-—@") is a subset of R. Now,
FIT™{W—@)] must be connected and a subset of B ~ Y, but since f is
the identity on ¥ and no component of R ~ ¥ intersects two of M, M,,..,
T (w— @')] interseets infinitely many components of R ~ ¥ and this
is a contradiction.

Y s unicoherent. Suppose that ¥ is mot unicoherent. Since uni-
coherence is eyelicly extensible ([8], p. 82), there is a cyclic element
V of ¥ that is not unicoherent. Then V does not have the “Phragmen-
Brouwer Property” ([9], pp. 48, 49) so there are two points P and @
of ¥V and two mutually exclusive closed subsets 4 and B of V neither
of which separates P from @ in V, but such that 4 v B does separate
P from Q in V. Notice also that 4 u B separates P from @ in ¥, for
otherwise there would be an arc in Y—4 U B with endpoints P and @
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and each such arc is a subset of V. Let &' denote the colleetion of com-
ponents of F A v B) and let & denote ¢ together with all of the de-
generate subsets of X—f'(A U B). Since f preserves comnected sets,
each element of G is a component of 7(4) or of {Y(B). As before, & is
2 monotone uppersemicontinuous decomposition of X, & is totally dis-
connected, and the decomposition space is a unicoherent Peano con-
tinuum and each cyclic element of @ is a unicoherent Peano continwim.
Also, T': X —»@ will denote the associated continuous transformation.

It will next be shown that T'(P) and 7'(Q) belong to the same cyelic
element of @ Using an alternate definition of eyclic element, two points
of a Peano continuum M belong to the same cyclic element of M if no
point separates those two points in M ([8], p. 66). Consequently, if no
cyclic element of & containg T'(P) and T(Q), there is a “point” ¢ of G
that separates T'(P) from T(@) in &. Either ¢ is degenerate, {x}, or g
belongs to @'. If g is {x}, V— is connected and T(V—=z) is a connected
subset of G—g¢ that contains T7'(P) and T(Q). If ¢ belongs to @' and is
a component of j7'(4), then g ~V is a subset of 4 and does not sep-
arate P from @ in ¥ consequently ¢ does not separate T'(P) from T(Q)
in T(V), or in @. A similar contradiction is reached if ¢ is a component
of F7H(B).

Let W denote the cyclic element of & that contains 7'(P) and T(Q).
Now, ¢ is totally disconnected and W is a unicoherent Peano continuum
which has no cut point. From Corollary 1, W— &' is connected. Since
T is monotone, T~ W— &) is connected and since f preserves connected
sets, (27 (W— @)] is connected, but /[T~ (W— )] is a connected subset
of Y—A u B that containg P and @ and this is a contradietion.

5. A connectivity function f: I that is not almost con-
tinuous.

DEFINTTION 4. A transformation f: X —Y between the topological
spaces X and Y is almost continuous if every open subset of X x ¥ tl}a,t
containg the graph of 7 also contains the graph of a continuous function
from X to Y.

It follows from Corollary 1 of {7] that every real valned connectivity
map on I™ (n 3 2) is almost continuous and Question 1 at the end of
the paper asks (in o slightly more general setting) whether the same
ig true for = 1. Question 2 is an alternate way of visualizing the prob-
lem and asks whether, considering I embedded in I* as IxO, a con-
nectivity map I->X can be extended to a connectivity map Iﬂ—>.X.
That the answer to both questions is no may be seen by the following
example. o

The procedure is to first describe a Cantor set O in I* which mt‘er-
sects the graph of every continuous function from I to I. Then using
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a slight alteration of the methods of § 2, the graph, I', of a connectivity
function f: I I is described as a subset of I*— C. Obviously then I*— ¢
is an open subset of I? that contains the graph of f and does not contain
the graph of a continuous function from I to I so that f is not almost
continuous.

I

Fig. 1

Degcription of 0. Ses Figure 1. For P = (a,d), (@, b+w), (¢, d),
(¢, d4-w)> (w > 0) a parallelogram disc in the plane, 7'(P) will denote
the set consisting of the two parallelogram discs

3w Hw at+e¢ b-+d, bw a+¢ b4d  Tw
<(a, b+’§'); (a, b+§~), ( 5 "'2—+'é—), ("2—, —'2——'|“'§")>

and
atc bt+d, w\ fa b4+d 3 3 5
(o5 2 (452 22, 0 2), )
If K i3 a collection of such parallelogram diges, T(K) will denote
e

Let K, K,,K,,... be such that K, is the parallelogram disc
<(0,—1/2), (0, 1/2), (1,1/2), (1, 3/2)> and for = a positive integer, K, is

T'(Kn-1)- Then € is (| K%. Note that since K5 (n=1,2,...) intersects
A==l

the graph of every continuous function from I to I, 0 does also.
Description of I'. Let I', denote the collection of all the centroids

of all the parallelograms in \U K, together with the centroid of K,.
Th=sl

(It is a countable subset of I'.) Let =, (m) denote the projection map
of I* onto the first (second) coordinate space. Let H denote the col-
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lection of all closed subset kb of I*— ¢ sueh that the cardinality of s, (h)
ig ¢, the cardinality of the continuum. Using a transfinite induction
process similar to that of § 2, a subset I, of I2— ¢ may be selected such
that (1) I'; intersects each element of H and (2) if # and ¥ belong to Iy,
m(®) is not in m(I%) and is not m(y). Then
=TI ulv {(t, 1): te [[0, 1/2]—:11(1“1\:1’,)]} v
v {(¢,0): tell1/2,1]—a(yw )]} .

The last two sets insure that m(I") is [0,1] and are selected so as
to avoid points of 0. It is obvious that I" is the graph of a function
f: I->I and as previously noted, f is a counectivity function if and only
if I" is connected.

I' is connected. Suppose that I' is not connected. Then I” is the
sum of two mutually separated sets A and B and there exist mutually
exclusive open subsets ¢ and f of I* containing A4 and B, respectively.
Let K denote I*—(aw f). Then from Lemma 1, K contains a conti-
nuum % that separates I?, but it is shown in the next paragraph that
k is a proper subset of vertical interval in I? which presents a contra-
diction and the argument iy complete.

{w1)

(21122)
P

1,0}
Fig. 2
Sincé % does not intersect I, it is only necessary to show that (k)
is degenerate. Suppose that P and @ are t?vo points of k& such that 75;1(‘1’)
i8 not w,(Q). Then (Figure 2) there is a point (2, 2;) of I'y and a positive
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number ¢ such that (1) the square dise {(ml., @) € I?: |w1—~z1‘<29’
|y— 2,| << 20} does not intersect K and (2) the interval {; e I: [~ 2|
< 20} is between x(P) and m(Q). Let §; and §, denote respectively

the strips
{(wy, @) e I?: 3,—2p <y <%H—o, 0 \<"'I"2 < %) ’
{(@, @) e I 20 <my <zt+20, 3 <y <1},

Then K ~ 8; and K ~ 8, are closed subsets of I*— ¢ that do not inter-
sect I" and consequently m,(K ~ §;) and m(IK ~ §,) are both of cardinality
less than ¢ Therefore there are points # and v of I such that 2,—2¢
Su<z—o nto<v<z+20 and u does not belong to m(K A &)
and v does not belong to m(K ~ 8;). However {(u,2:): 0 < @, <2} u
Uy, 7)) w <y <)o {(v, @) 2 < 2y <1} I8 an are which separates
P from @ in I? and does not intersect %, which is a contradiction.
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Locally Hamiltonian and planar graphs
by
Z. Skupiein (Krak6w)

1. Introduction. In this paper we consider finite graphs which
contain no loops and no parallel edges. By a graph we mean an ordered
pair <V, B> where V is a finite non-empty set (the set of wertices) and
E is a set of two-element subsets of V (the set of edges). Thus a graph
is a zero- or one-dimensional simplicial complex and sometimes, when
misunderstandings are improbable we will identify it to its topological
realization. By a circuit we mean a graph whose topological realization
is a simple closed curve. A graph is called planar if it has a homeomor-
phism into the two-sphere S

Two vertices #, y ¢ V are called adjacent (neighbours) in G = <V, B>
i {w,y}eE. A graph H=(U,D) is called a subgraph of a graph
G =V, B>, or Gis said to contain H, if UCV and D C B. A subgraph
H of @ is said to be spanned by a set UCV if H= (U, {e: ¢eB and
¢ C U}>. The subgraph of G = <V, ¥) spanned by a set of vertices ad-
jacent to a vertex @ ¢ V, i.e. by the set {y: {@, 4} € B}, is denoted by G (x).

A graph @ is called Hamiltonian if it has a Hamiltonian circuit,
ie. a circuit whose set of vertices is all the set V. @ is called locally
Hamaltonian if for every @ ¢V the graph G(») exists and is Hamiltonian.
Obviously a 1-skeleton of any triangulation of a closed surface is a con-
nected and locally Hamiltonian graph. @ is called a triangulation graph
if it is the 1-gkeleton of a triangulation.

The main theorem of this paper is the following

TuroreM 1. If a connected and locally Hamiltonian graph G has n
vertices, m edges and m <3n—6 then @ is an S triangulation graph.

Remark 1. Clearly the converse implication is also valid and an S2
triangulation graph with n vertices has 3n—6 edges.

Remark 2. Other easy characterizations of the §% triangulation
graphs exist, e.g. such is every connected locally Hamiltonian and planar
graph or every planar graph with n > 4 vertices and 3n—6 edges (the
last assertion and its generalization to the case of other 2-manifolds
follows immediately from [10], pp. 24 and 61); for other characterization,
see [1].
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