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TEEOREM 4. If X is a set with three or more elements, then the lattice
of topologies on X is mot distributive.

QuusTION. In the lattice of topologies on an infinite point set X,
does every complemented topology, which is neither discrete nor trivial,
have at least two complements?
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Introduction. In the present paper we are concerned with the
linear functional equation of the first order (cf. [3], [6])

@ olf (@)] = g(@)p(@)+F (@),

where ¢(®) is an unknown function. The values of the functions g(w),
g(x), F(w) lie in the field X of real or complex numbers, # iz a real
variable, and f(») is a real-valued function of a real variable.

We shall consider equation (1) in an interval [a, ). The functions
f(@), g(®) and F(x) will be subjected to the following conditions:

(i) The function f(x) is continuous and sirictly imereasing in [a, b),
a<fl@) <@ in (a,b), f(a) =a.
(i) The function g(x) is continuous in [a,d), g(x) # 0 in [a, b).

(i) The function B (x) is continuous in [a,d).

A theory of continuous solutions of equation (1) has been developed
in [6] under the condition that |g(a)| # 1. The case |g(a)| =1 was left
a8 an indeterminate one. In the present paper we are going to investigate the
behaviour of continuous solutions of equation (1)in this indeterminate case.

The case where g(x) =1 or g{w)=—1 has already been treated
more in detail [1], [2], [7], [8].

It is a characteristic feature of functional equations of type (1) that
in general their solution depends on an arbitrary function (cf. e.g. [5]).
However, the expression ‘“solution depends on an arbitrary function”
is not quite clear and therefore it will be given here a precise meaning.

DEFINITION. We say that equation (1) has in an interval I a con-
tinuous solution depending on an arbirary function, if there exists an
interval J C I such that every continuous function on J can be extended
(not necessarily uniquely) to a continuous solution of equation (1) in I,
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In particular, the following result is known (cf. [6]).
LemMA 1. Under hypotheses (i)-(iii) equation (1) has in (a,b) a con-
tinuous solution depending on am arbitrary function. More precisely, for
every my e (a, b) and every funclion @oz) continuous in [f (), %] and ful-
filling the condition

@) ol (@)1 = g (o) Po(it0) +F ()

there emists exacily one function p(x), continuous in (a,d), satisfying equa-
tion (1) and such that

(3 p(@) =qfw) for  we[f(@m), 2ol

As we shall see, the above lemma will not remain true if we replace
the interval (a@,b) by the interval [a, b).
§ 1. Let f*(») denote the nth iterate of the function f():

") = @),

According- to (i) the iterates f"(») are defined, continuous and strictly
increasing in [a, b). Moreover, one can easily prove the following
LeEMMA 2. If the function f(x) fulfils hypothesis (i), then for every
z e (a,b) the sequence f(x) is strictly decreasing and lim [™(2) = a.
We put e

(4) Ga(@) = [ [ 917 (@)1,

=0

@) =a, n=0,1,2, ..

n=1,2,3,..

The functions @u(x) are defined and continuous in [a, b). There are the
following three possibilities:
(A) The limit
(5) G (x) = lim Gy(w)
N-r00
exists. Moreover, G(#) is continuous in [a, b), G(z) # 0 in [a, b).
(B) There exists an interval IC(a,b) such that lim Gu(x) =
- . N0
uniformly in I.
(C) Neither (A) nor (B) occurs.

The above three possibilities determine the behaviour of continuous
solutions of the homogeneous equation

(6) plf (@)] = g(2)p(w)

in [a, b). Namely, we have the following
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THEOREM 1. Let hypotheses (i) and (ii) be fulfilled. In case (A) equa-
tion (6) has a one-parameter family of continuous solutions in [a, b). For
every number ¢ e X there exists a wnique function o (), continuous in [a, b),
satisfying equation (6) in [a,d) and fulfilling the condition p(a)= ¢. This
solution is given by the formula

14
@ (z) = “(_w)‘ y

where G(x) is defined by (4) and (5).

In case (B) equation (6) has in [a,b) a continuous solution depending
on an arbitrary function. Every continuous solution of equatzon (6) in [a, b)
fulfils then the condition

(7 pla)=0.
In particular, if there ewists an x, e (a,d) suck that [f(wo)', 5] C I, then

for every function go(x), continuous in [f(m,), 2] and fulfilling the condition

@olf (@6)] = g (o0) polezo)

there exists ewactly one function (x) continuous in [a,b),
tion (6) in [a, b) and fulfilling condition (3).

In case (C) the function p(x) =0 is the only continuous solution of
equation (6) in [a, b).

satisfying equa-

The proof of the above theorem does not differ from that given
in [9] (theorem 9.1) for the particular case g (%) = s/f'(») and is therefore
omitted.

Theorem 1 is valid independently of the value of g(a). If [g(a}| # 1,
then we have the cage considered in [6]. It is easily seen that if [g(a)| < 1,
then case (B) occurs, and if |g(e)] > 1, then (C) is the occurring case.

Case (A) may occur only if

®) gla)=1.

Only in this case the product [191#%x)] may converge (cf. (ii) and
lernma 2). But condition (8) alone does not guarantee that case (A)
occurs. If (8) holds, then we may have all the three cases (A), (B), (C)
(cf. [9]). Below we prove a theorem which gives a sufficient condition
for case (A).

Suppose that the functions f(#) and g(z) fulfil the following con-
ditions.

(iv) There exists a constant &,

) 0<d<1,
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such that the inequality
(10) If (@)—a| < #lz—a

holds in a meighbourhood of the point a (*).
(v) There emist constants M >0 and p>0 such that

(11) lg(@)—1| < M|o—al"

in a neighbourhood of the point a.

THEOREM 2. If hypotheses (i), (ii), (iv), (v) are fulfilled, then case (A)
0coUrs.

Proof. We shall prove that the sequence Gn(x) econverges uniformly
in every interval [a,d], a <d<b, to a function G(x) = 0. For this
purpose it is enough to show that the series

(12) 2 gt @)1-1]
n=0
uniformly converges in I ={[a, d] (cf. [4], § 51).

Let N be a positive integer such that inequalities (10) and (11) held
for o e Iy = [a, /¥ (d)]. Such an N exists in view of lemma 2. Now, for
# eI we have f(2) e Iy and hence (@) e Iy for n > N, # ¢ I (cf. Lemma 2).
So we have by (v)

|9l @)]—1] < M|f"@)—al*, n>=N, wel,
and by (iv)
o) —a| <" VY (@)—a|, =N, wel,
whence .
gL (@)]—1] < M)V | (@)—al* < M)V |1 (d)—af*

for n > N, # ¢ I. The above inequality shows, in view of (9) and since
4> 0, that series (12) uniformly converges in I. It follows by (i) and (ii)
that function (5) is continuous in [a, b).

The above theorem generalizes a result of G. Szekeres [10] (theo-
rem la; cf. also [9], theorem 9.2).

‘We shall also give a sufficient condition for case (B). Suppose that:

(vi) There exist constants M >0 and u>0 such that

(3) [ (2)— a— 2| < Mal+s

in_ a neighbourhood of the point a.

. () Throughout this paper by a neighbourhood of the point a will be meant an
interval [a, a- 6] c[a, ), 6> 0.
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(vii) There exists a x>0 such that
(14) lg ()] < ==

in o neighbourhood of the point a. (u is the constant occurring in (13).)

THEOREM 3. If hypotheses (i), (ii), (vi), (vil) are fulfilled, then case (B)
00CUTS.

Proof. Let us choose an @, € (&, b) such that inequalities (13) and
(14) hold in [a,,] and put I= [ (@), @oly ®n = f"(2,). Then we have
(@) = @n4a for @ e I. Further, it was proved in [11] (cf. also [10], § 5)
that there exists a constant K > 0 such that on—a > Kn~Y# for n suf-

ficiently large. Hence

(15) @) —a > K @n+1)7"
for x ¢ I and large m, and it follows by (14) thatb

ae lglM@)]} < o EPeE

for # e I and n sufficiently large. (16) implies that sequence (4) uniformly
converges to zero in I.

‘We conclude this section with an example showing that in case (B)
the sequence Gu(w) need not tend to zero in any interval of the form
[f (@) s %o]-

ExamprE 1. Take [a,D)=[0,1), f(®) =pz, 0<p <1, g(@)=1-+

sin (2nlogy®) _ Ny
+—————1+10ng for @ e (0,1), g(0) = 1. We have f'(w)=p"s and gl (@)

=1+

nto+1’ where v = logy®, 4 = sin2zv. Hence

n—1

auo) = [ (1+ —]

lim=1

Now, for & e (p++i2, pk), where k is an integer, we have % >0 and
lim Gp(w) = + co. For @ e (pk+, p¥+i2) we have u < 0 and Hm@Gyu(x) = 0.
(The convergence is uniform in every compact subinterval.) Lastly, for
2=pk2 we have u=20 and lLmG@a(s)=1. Thus the convergence
Ga(@)->0 does not oceur in any interval [f(2), o] = [P0, Tol-

§ 2. Since the difference of two continuous solutions of equation (1)
is a continuous solution of equation (6), from theorem 1 results imme-
diately the following

TEEorEM 4. Let hypotheses (1), (i), (ifi) be fulﬂlled._ In case (A)
equation (1) has a one-parameter family of continuous solutions in [a,b),
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or none. If equation (1) has a continuous solution @\(®) in [a, b), then the
general continuous solution n [, b) is given by the formula
- _ ¢
17) ¢(@) = wl@)+ g
where ¢ € X is an arbitrary constant and G(x) is defined by (4) and (5).

In case (B) equation (1) has in [a, b) a continuous solution depending
on an arbitrary function or it has no continuous solution in [a,Db).

In case (O) equation (1) has in [a, D) exactly one continuous solution,
or none.

Thus as we see, the problem remains to decide whether equation (1)
has at least one continuous solution in [@, ). In the sequel we shall deal
with this problem. We shall also give some criteria of the existence
of solutions.

§ 3. In this section we shall assume that case (A) occurs.

THEOREM 5. Let hypotheses (i), (ii), (iii) be fulfilled, and suppose that
case (A) occurs. Then equation (1) has a continuous solution in [a, b)
if and only if the series

NP @)

(18) —d Gy ()

o) =

converges to a continuous function in [a, b). The general continuous solution
of equation (1) is then given by formula (17).

Proof. 1. Suppose that (18) defines a continuous function ¢,(x)

in [a, b). Put
(19) miw) =— D] %%%0)—)1 .
‘We have =

Palf ()] = 9 () nsa(@)+-F (@) .
Passing to the limit as n->co we see that the function gy(@) (= lim a(x))
N—>00

satisfies equation (1). Formula (17) results then from theorem 4.
2. If there exists a continuous solution g(#) of equation (1) in
[a, b), then
_olf™@)]
()

o(») = gn(@) ,

where gn(z) is given by (19). (This may be shown by induction.) Hence

Hm gu(@) = ¢ (2)— 7 —

(20)
N~+00 G(m) !
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where ¢ = g(a). This means that series (18) converges in [a,b) and its
sum (20) is continuous in [a, ).
Of course it may happen that series (18) diverges. Then equation (1)
has no continuous solution in [a, b). It is so e.g. in the following example.
ExAMPLE 2. Take [a, b)=[0,1) and consider the equation

(21) o[5255) = - apte)+o.

Here
noy_ O _ 1-+no
(@) = TTna’ Gn(z) = (1—m)m

and lim Gp(x) = 1— 2. Consequently case (A) oceurs. On the other hand,
N0

geries (18) becomes
oo
.z E L
1—a 14 (n+1)o
n=0

and thus evidently diverges. Consequently equation (21) has no con-
tinuous solution in [0,1).

The below theorem gives a sufficient condition of the existence
of a continuous solution of equation (1) in [a,b). Suppose that the
function F(x) fulfils the following condition.

(vill) There ewist constamts L >0 and » > 0 such that

(22) P (2)] < L|z—al*

in a neighbourhood of the point a.

TrroREM 6. Let hypotheses (i), (i), (iii), (iv), (v) end (viil) be ful-
filled. Then equation (1) has a one-parameter family of continuous solutions
in [a, b), given by formula (17) with (18).

Proof. It follows from theorem 2 that case (A) occurs. Let us fix
a de(a,b). It was shown in the proof of theorem 2 that the sequence
Galz) uniformly converges to a continuous function G(x) # 0in I = [a, d]-
Consequently there exists a constant K > 0 and an index N such that-

|Gu(w)| = K

PFurther we may assume that ¥ has been chosen so large that inequal-
ities (10) and (22) hold in Iy = [a, f(d)]. Since () € Iy for eI and.
n =N, we have

IP[f"@)]| < ZIf"(w)— af* <T@V (@) —al"

for a=N, zel.

for zel,n=N,

and

L

.F[f”’(m)] < ’K‘ (ﬁ_u)n.—NVN(d)_ alu

vel, n=N.
Grpa(m)

for
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Thus series (18) uniformly converges in [a, d] (ef. (9)) for every d « (a, b).
By (i), (i), (iii) its sum is continuous in {a, b) and the theorem results
from theorem 5.

§ 4. Now we pass to case (B). Put
123) Fi(w)=F(@)+clg(@)—1],
where ¢ ¢ is a constant (%) and

n—2 n—1
(24) Hom)= Y [] ol @1 P @)]-
. i=0 j=141
TaBOREM 7. Let hypotheses (1), (il), (ili) be fulfilled and swppose that
case (B) occurs. In order that equation (1) possess in [a, b) a continuous
solution fulfilling the condition

{25) pla)=c

4t is necessary that Fia) = 0 and the sequence Hy(x) tend to zero uniformly
in I. On the other hand, if there ewists a ¢ such that Fg(a) =0 and an
Zye(a, b) such that

{26) Lim Gy() = lim Ha(z) = 0  uniformly in [f(2), %] ,

then equation (1) has in [a,b) a continuous solution depending on an
arbitrary function: to every fumction o) continuous in [f(x,), @, and
fulfilling condition (2) there ewists ewactly ome fumction @(x), continuous
in [a,d), satisfying equation (1) and fulfilling condition (3). AU these
solutions fulfil (25).

Proof. Put
{27) p(@) = @(x)—e¢.
If p(x) is a continuous solution of equation (1) in [a, b) fulfilling con-
dition (25), then y(x) is a continuous solution of the equation
{28) plf ()] = g () p (2)+F2 ()

such that u(a)=0, and conversely. Therefore we may confine our-
selves to the study of equation (28).

1. Suppose that lim@(2) = 0 uniformly in an interval I C (a,bd).
We may assume that I is closed. Further suppose that equation (28)
has in {a, ) a continuous solution w(#) such that y(a) = 0. By induction
we obtain from (28)

{29) Ha(@) = p[@)]—Ff" " (@)]— Gu()v (@) .

(®) Concerning the choice of ¢, ef. the remark after theorem 7.

icm°®
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On setting # = ¢ in (28) we obtain F¥(a) = 0. Hence in view of lemma 2
the sequences p[f"(®)] and FH* ()] tend to zero uniformly in 7. Thus
Hy() also tends to zero uniformly in I.

2. Now suppose that (26) is fulfilled and ¢ is chosen so that F*(a)
= 0. The function F3(a) fulfils hypothesis (iii). Consequently by lemma 1
to every funetion y,(») continuous in [f(«,), #,] and fulfilling the condition

(30) ol ()] = g (o) yo(20) +Fe ()

there exists a unique function y(x) continuous and satisfying equation (28)
in (@, b) and such that (@) = y(@) in [f(w,), #,]. If we extend y(z) by
putting p(a) = 0, then p(x) satisties (28) in [a, b). It remains to prove that

(1) Jim y(z)=o0.
Since () satisfies (28), we have in view of (29)
(32) PIY(@)] = Hular) +-FH1" ()14 Gnle) p (x) .

Put K= sup |po(@)|. (If wo(w) =0, we take K =1.) Given ¢> 0, we
can find anzoﬁo such that

(33) |Gu(w)] < ¢BK  for ze[f(mo),m)y, =N,
(34) | Hn(2)| < 23 for welflwy), %), n=N,
(35) |F3@)| < g3  for  wela, @)l

This is possible in view of (26) and of the fact that Fg(«) is continuous
at a, Fi(a)=0.

Let us fix an arbitrary « e (s, Fid (). There exists an Z e [f(z), @]
and an n >N such that z = f"(Z). (32) gives then

(&) = Ga(@)wo(@) -+ Ha(®) +FL (3],
whence in view of (33), (34) and (35)
(36) ly(@)| <e.

Since # has been chosen arbitrarily in (a,, fN (mo)), (36) holds generally
in (@, f¥(2)), which proves relation (31). Now, if @) is an arbitrary
function continuous in [f(®), #,) and fulfilling condition (2), then th.e
function wy(@) = go(w)—¢ is continuous in [f(w,), %] and fulfils condi-
tion (30). () can be extended, on account of what has just been pro-
ved, to a continuous solution y(z) of equation (28) in {a, b). Therefore
the function ¢() obtained from (27) is a continuous solution of equa-
tion (1) in [a, b) fulfilling condition (3). The last statement of the present
theorem follows from theorem 1. This completes the proof.
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Remark. Setting # = a in (1) we obtain with notation (25)
¢c=g(a)c+F(a).

If g(a) # 1, (37) allows us to determine ¢ uniquely and this is the only
possible ¢ in theorem 7. On the other hand, if g(a) =1, then (37) gives
only F(a)=0 as a necessary condition of the existence of a solution
of equation (1) in [a, b). If this condition is fulfilled, then F¥(a)= 0
with every choice of ¢. But it follows from theorem 1 (compare in par-
ticular relation (7)) that all the continuous solutions of equation (1)
in [a, b) take on the same value at & = a. Consequently condition (26)
may be fulfilled for at most one value of ¢.

Of course, it may happen that in case (B) equation (1) has no con-
tinuous solution in [, b) as it may be seen from the following example.

ExAMPLE 3. Take [a, b) =[0,1) and consider the equation

(37)

z .
(38) ¢(m—_H)=(1—m)¢(w)+mﬂ, 0<a<l.

Since 1—x < e, case (B) oceurs in virtue of theorem 3. We have
moreover

n—2

_ b il - Fo\l—a O(In—l)w
Hy(z) = T =Tz ; 1+ i) T+m—1z"
Further
n—2 n-2
. —a —a ——-——-1 e
g(l-l-m)l >1+0f (Atto) ™t = 14— (L (n—2)o] 1) ,
whence
7 [+ (n—2)a™"  e(n—1)w
B S e () R

Consequently ii_ﬂﬂn(w) = + oo for every = ¢ (0, 1), independently of the

choice of ¢. Thus equation (38) has no continuous solution in [0, 1).

On the other hand, in this case it is difficult to find a suffici-nt
condition for the existence of continuous solutions of equation 1) which
would be of a satisfactory generality. Since

n—2 .
Fi{f'(@)]

{39)
Giya(e) ’

Hy(®) = Gu(z)

=0

it is sufficient that lim Gu(w)= 0 uniformly in [f(s,), #,] and the series

N—+00

ﬂgo FH{f"(#)]/Gnsa(®) converges (or, more generally: does not diverge too
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fast) in [f (@), %] in order that condition (26) be fulfilled. This may be
realized in various ways; unfortunately we could find no natural con-
ditions of f, g and F ensuring the fulfillment of (26) and sufficiently
general as to cover a variety of cases.

We conclude this section with one more example.

ExaMPLE 4. Take [a, b) =[0,1) and consider the equation

(40) o(35) = A-oip@+20+2.
- v Y i | a7 » # - 1___m___
By theorem 3 case (B) occurs. We have moreover Gnlz) = Trm—0a’
Fi¥w) = (2—c)w+a* and
o (n—1)z ? N 1
H(w) = (2 C)1+(n~1)m+1+(n~1)mi=0 iris:

Consequently (26) is fulfilled if and only if ¢ = 2. Equation (40) has in
{0,1) a continuous solution depending on an arbitrary function. Every
continuous solution ¢(z) of equation (40) in [0,1) fulfils the condition

§ 5. Finally we are going to study case (C). In this case we know
very little about the behaviour of the sequence Gn(x). Therefore, in order
to be able to prove some theorems concerning the existence of contin-
uous solutions of equation (1), we shall assume additionally that the
sequence 1/Gn(#) is bounded in [a, D):

(ix) There ewists a constant M >0 such that

1

(41) <M

for wela,b)and n=1,2,3,..

TurorEM 8. Let hypotheses (1), (if), (iii), (ix) be fulfilled 'a«nd -S'M,ppose
that case (C) oceurs. Then equation (1) has o continuous solution in [a, b)
if and only if there ewists a ¢ such that the series (%)

-3

n=0

(*) Here F*(z) is given by (23). It follows from theorem 1 t?mt in the pres(.mt
case equation (1) may have at most one solution; consequently series (42) (depending
in fact on the constant ¢) may converge at most for one value of 6. The constant ¢
in (23) and (43) must be chosen so that (42) converges. If series (42) diverges for every

. value of ¢ ¢ J0, then equation (1) has no continuous solution in [a, b).
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converges to a continuous junction in [a, b). The only continuous solution
of equation (1) in [a,b) is then given by the formula

= @o(m)+¢.

Proof. If series (42) converges, then we verify as in the proof of
theorem 5 that the function y(2) = @(w) satisfies equation (28). Conse-
quently p(x) = @,(#)-+¢ is a continuous solution of equation (1) in [a, b).
The uniqueness results from theorem 4.

(43) (@)

icm°

If, on the other hand, ¢(z) is a continuous solution of equation (1)

in [a,b), then the function @|(z) = ¢(v)—¢, where ¢ = @(a), is a con-
tinuous solution of equation (28) in [a, b) and gy(a) = 0. Hence (compare
formulae (32) and (39))

_ wlf"@)] Fif(@)]
Gn(2) Z Gip1(@)
and formula (42) results on letting n->oo.

Remark. Let us note that hypothesis (ix) was used only in the
proof of the necessity. And it would be sufficient to assume (here ag
well as in theorem 9 below) that inequality (41) holds in a neigh-
bourhood of a. The theorem could then be applied to the interval
[a, a+ 8) instead of [a,bd), and by lemma 1 there is a one-to-one cor-
respondence between continuous solutions of equation (1) in [a, a--8)
and in [a, b).

THEOREM 9. Suppose that hypotheses (i), (i), (ili), (ix) are fulfilled
and case (C) occurs. If there ewist a constamt ¢, a bounded fumction B(w)
and a constant 6, 0 < O <1, such that the inequalities

(44)
{45)

|Fé(@)] < B(a),
Blf(#)] < 0B(a),

hold in a neighbourhood of a, then equation (1) has a wunique continuous
so}ution in [a,b), given by formulae (43) and (42).

Proof. Let de(a,d) be arbitrarily fixed and let N be chosen so
that (44) and (45) hold in [a, /¥(d)]. Then we have by (41), (44) and (45)

for n= N
F3[f"(@)]

Gria(@)

< MB[f"(2)] < MO""B[f(#)] < M6"sup B (1),

[a,d]
which shows that series (42) uniformly converges in [a, d]. Since d € (a, by
has been arbitrary, formula (42) defines in [a,b) a continuous function
#(z) and the assertion follows from theorem 8.
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Let us note that inequalities (44) and (45) (where B(x) = L|z—al*
and @ = 9") hold if hypotheses (iv) and (viii) (with F¥(») in place of F(x))
are fulfilled.
The above theorem generalizes a previous result ([8], theorem 5)
concerning the case g(#) =—1. But subtle criteria given for that case
by M. Bajraktarevié [1] are not contained in our theorem 9.
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