On a family of AR-sets

by

R. Molski (Warszawa)

K. Borsuk has recently constructed [3] a family of \(\mathbb{R}^n\) 2-dimensional compact AR-sets such that none of them contains a 2-dimensional closed subset homeomorphic to a subset of another set. As an application of this family it has been shown that there is no universal 2-dimensional AR-set, and that a 3-dimensional cube \(Q\) has no \(r\)-neighbour on the left.

In the present note we shall show that these results can be extended to every finite dimension, and, with a slight modification, to an infinite dimension. The constructions and the proofs are suitably adapted constructions and proofs of [3].

The author would like to express his gratitude to Professor K. Borsuk and Docent A. Lelek for their valuable remarks and advice.

1. Zone. Let \(E^n\) denote the \(n\)-dimensional Euclidean space and \(E^m\) the Hilbert space. Let \(\Delta\) be an \(n\)-dimensional simplex in \(E^{n+k}\), where \(k\) is a natural number or the infinity. Let us denote by \(E^{\Delta}\) the orthogonal complementary space to the hyperspace \(E^\Delta\) of \(\Delta\) in \(E^{n+k}\), and by \(l_1, l_2, \ldots, l_n\) the orthogonal basis of the space \(E^{\Delta}\). Given a sequence \((\varepsilon_i)\) of positive numbers such that \(\varepsilon_i < 1/2^i, i = 1, 2, \ldots, k\), let us denote by \(L_i\) the segment with length \(2\varepsilon_i\) with the centre in the barycentric centre \(b_i\) of \(\Delta\), and in the direction of vector \(l_i\). By the \(k\)-dimensional zone of the simplex \(\Delta\) we understand the minimal convex subset of \(E^{n+k}\) containing the set \(\Delta\) and all segments \(L_i\). It will be denoted by \(Z(\Delta, (\varepsilon_i))\).

In this paper we use only the case where \(k = 1\) or \(k = \infty\).

Let us consider a homogeneously \(n\)-dimensional \((n > 2)\) polytope \(P \subset E^{n+k}\) with a triangulation \(T\). By the boundary of \(P\) we understand the union \(\partial P\) of \((n-1)\)-dimensional simplexes of \(T\) which are incident exactly with one \(n\)-dimensional simplex of \(T\), and by the edge of \(P\) the closure \(\partial P^*\) of the set of all points of \(P\) having a neighbourhood in \(P\) which cannot be disconnected by a simple arc. Obviously the notions of boundary and edge are independent of the choice of triangulation \(T\).

One can easily see that for \(\varepsilon_i\) sufficiently small the common part of the zones of different simplexes of \(T\) coincides with the common part
of the boundaries of those simplices. The sequence \(\{a_i\} \) satisfying this condition is said to be suitable for the triangulation \(T \). Let \(\{a_i\} \) be the sequence suitable for the triangulation \(T \). By the \(k \)-dimensional zone \((h \text{ a natural number or the infinity}) \) of the triangulation \(T \) we shall understand the polytope

\[
Z^k(T, \{a_i\}) = \bigcup_{a \in T} Z^k(a, \{a_i\})
\]

Evidently the polytope \(P \) is a deformation retract of the zone \(Z^k(T, \{a_i\}) \).

2. Construction of a finite-dimensional membrane. Given a sequence \(\{a_k\} \) of natural numbers \(>1 \), let us assign to each natural number \(k \geq 1 \) a polytope \(P_k \), its triangulation \(T_k \) and a positive number \(e^{(k)} \) satisfying the following conditions:

1. \(P_k \) is a homogeneously \(n \)-dimensional polytope \((n > 2) \) in \(E^{k+1} \) which is an \(AR \)-set with the boundary \(T_k = P_k \).

2. The edge \(P_k^e \) of \(P_k \) is a subset of \(P_k - P_k^e \) and its components are rectilinear segments.

3. All simplices of triangulation \(T_k \) of \(P_k \) have the diameter \(< 1/k \).

4. \(e^{(k)} \) is suitable for the triangulation \(T_k \), \(e^{(k)} < 1/k \); for \(k \geq 2 \) if \(n < k \) and \(n \) is such that all \(a \in T_k \) is such that \(\Delta \) is a \(k \)-simplex, then

\[
Z(\Delta, e^{(k)} = Z(\Delta, e^{(k-1)}).
\]

Let \(P \) denote a polytope in \(E^{k+1} \) homeomorphic to the \(n \)-dimensional simplex \(n \geq 2 \), \(T \) its triangulation with diameters of simplices \(< 1 \), and \(e^{(k)} \) a number \(< 1 \) suitable for the triangulation \(T \).

Let us assume that we have defined the polytope \(P_k \), its triangulation \(T_k \) and the number \(e^{(k)} \) in such a manner that conditions (1a), (1b), (4a), (4b) are satisfied. For each \(n \)-dimensional simplex \(\Delta \) of \(T_k \), let us consider a system consisting of \(n \) \(n \)-simplices \(\Delta_1, \Delta_2, ..., \Delta_n \) lying in the interior of the simplex \(\Delta \) and such that \(b \) is their common vertex and that \(\Delta_i \cap \Delta_j = b \) for \(i \neq j \). Let \(a_k \) be a point lying on the axis \(L(\Delta, e^{(k)}) \) at a distance \(e^{(k)/2} \) from \(b \). Consider the system of \((n+1)\) \(n \)-dimensional simplices \(\Delta_1, \Delta_2, ..., \Delta_{(n+1)n} \), their vertices are: \(a_k \) and \(n \) vertices of the simplex \(\Delta_k \). \(i = 1, 2, ..., n \).

One can easily see that the polytope

\[
R_k = (e^{(k)} \setminus (\bigcup_{k=1} a_k \setminus (\Delta_1)) \setminus (\bigcup_{k=1} a_k \setminus (\Delta_2)) \setminus \ldots \setminus (\bigcup_{k=1} a_k \setminus (\Delta_n))
\]

is homogeneously \(n \)-dimensional and is a deformation retract of the zone \(Z(\Delta, e^{(k)}) \). We set \(P_{k+1} = \bigcup_{e^{(k)}} R_k \). The set \(P_{k+1} \) is said to be a modification set of the polytope \(P_k \) corresponding to the triangulation \(T_k \) and to the number \(n_k \).

As \(T_{k+1} \) we choose an arbitrary triangulation of \(P_{k+1} \) with simplices of diameter \(< 1/k+1 \) and as \(e^{(k+1)} \) the number satisfying \((4a) \). It is easily seen by the same argument as in [1] that \(P_{k+1} \) and its triangulation \(T_{k+1} \) satisfy conditions (1a), (2a) and (3a).

The construction implies that the edge \(P_k^e \) coincides with the segments \(a_k b_k \), where \(\Delta \times T_k \), \(k < m \). Since \(a_k b_k \) is a common part of \(n_k \) simplices, we shall say that it is a segment of ramification of order \(n_k \).

It follows from (4a) that

\[
Z(T_{k+1}, e^{(k+1)}) \subset Z(T_k, e^{(k)}), \quad k = 1, 2, ...
\]

i.e. the sequence of the polytopes \(Z(T_k, e^{(k)}) \) is decreasing.

Every space \(X \) homeomorphic to the set

\[
P(\{a_k\}) = \bigcap_{k=1}^{\infty} Z(T_k, e^{(k)})
\]

will be called a membrane corresponding to the sequence \(\{a_k\} \). The polytope \(P \) will be called the base of membrane \(X \), the boundary \(P_1 \) of base \(P_1 \) will be called the boundary of membrane \(X \) and will be denoted by \(X \).

As in [1] we can prove that every membrane with a base homeomorphic to an \(n \)-dimensional simplex is an \(n \)-dimensional AR-set.

3. Construction of an infinite-dimensional membrane. Let \(W \) be a polytope and \(T \) a triangulation of \(W \). We shall say that the polytope \(W \) is strongly connected in the dimension \(m \) if, given two simplices \(\Delta \) and \(\Delta' \) of dimension \(\geq m \) of \(T \), there exists a sequence of simplices \(\Delta = \Delta_1, \Delta_2, ..., \Delta_m = \Delta' \) of \(T \) such that for \(\Delta_i, \Delta_{i+1} \) one of them is the face of the other and \(\dim \Delta_i \geq m \), \(i = 2, ..., m-1 \). Obviously this property is independent of the choice of the triangulation \(T \). One can easily see that if an \(n \)-dimensional polytope with a triangulation \(T \) is strongly connected in the dimension \(m \), then its \((n-1)\)-skeleton, that is the union of all \((n-1)\)-simplices of \(T \), is strongly connected in the dimension \((m-1) \).

Now, given a sequence \(\{a_k\} \) of natural numbers \(>1 \), let us assign to each natural number \(k \geq 1 \) a polytope \(P_k \), its triangulation \(T_k \) and a sequence \(e^{(k)} \) of positive numbers satisfying the following conditions:

1. \(P_k \) is a homogeneously \((q+1) \)-dimensional \((q \geq 3) \) polytope in \(E^{q+1} \) and is an \(AR \)-set strongly connected in a dimension \(\geq 3 \).

2. The edge \(P_k^e \) of \(P_k \) is a union of disjoint rectilinear segments.
(3) The simplex of the triangulation T_k has diameters $<1/k$. For each point $x \in P_k \cap P_k'$ the union of all simplices of T_k containing x is a homogeneously $(k+q)$-dimensional \mathbb{R}-set strongly connected in a dimension ≥ 3.

(4) The sequence (δ_k) is suitable for the triangulation T_k, $\delta_k \geq 1/k$, $\delta_k < 1/2k$, $\delta_k < 1/8$, $\delta_k > 1/4$, $k = 1, 2, ...$, if $\delta' > 0$, and $\delta' \in T_k$ is a $(q+k)$-dimensional simplex of T_k such that $\delta' \in T_k(\delta_k)$, then

$$Z^{(q)}(\delta', (\delta_k)) \subseteq Z^{(q)}(\delta', (\delta_k)).$$

As P_k we take a polytope in \mathbb{R}^{δ_k+1} homogeneously $(q+1)$-dimensional ($q \geq 3$) which is an \mathbb{R}-set strongly connected in a dimension ≥ 3 satisfying (3), so P_k, its triangulation with simplices of diameter <1, as (δ_k) we set a sequence satisfying (4).

Let us assume that we have defined the polytope P_k, its triangulation T_k and the sequence (δ_k) in such a manner that conditions (1), ..., (4) are satisfied. Let $A_1, A_2, ..., A_{k+1}$ denote two systems of $(q+k)$-simplexes defined in the same manner as in the construction of polytope P_{k+1} in the finite-dimensional case. We set

$$E_k = (\delta - \sum_{i=1}^{k+1} A_i) \cup \left(\bigcup_{j=1}^{k+1} A_j \right),$$

and $E = \bigcup_{k=1}^{\infty} E_k$. Let T_k be a triangulation of the polytope E with the simplices of diameter $<1/k+1$, and let δ_{k+1} be a number suitable for the triangulation T_k and such that $\delta_{k+1} < 1/(k+1)$.

We set $P_{k+1} = Z(T_k(\delta_{k+1}))$ and let T_{k+1} be its triangulation. $Z(T_k(\delta_{k+1}))$ is an \mathbb{R}-set and since E is a deformation retract of it, E is also an \mathbb{R}-set and consequently P_{k+1} is an \mathbb{R}-set. One can easily see that we can choose the triangulations T_k and T_{k+1} in such a manner that the $(q+k-1)$-dimensional skeleton of T_k is included in the triangulation T_{k+1}. The edge P_k^{1+k} is the union of the edge P_k' and all segments of the form $\alpha_{k+1}k$, where α is a $(q+k)$-dimensional simplex of T_k.

From the construction it follows that the condition (4) is satisfied. We can also choose a sequence (δ_{k+1}) so that δ_{k+1} is decreasing.

Every space X homeomorphic to the set

$$P'((\delta_{k+1})) = \bigcap_{j=1}^{\infty} Z(T_k(\delta_{k+1}))$$

is said to be an infinite-dimensional membrane corresponding to the sequence $((\delta_{k+1}))$. The polytope P_k' will be called the base of the membrane X, and its boundary P_1' the boundary of the membrane X and will be denoted by X'. From the construction of T_{k+1} it follows that the triangulation T_{k+1} contains the $(q+k-1)$-dimensional skeleton of T_k. Thus $P'((\delta_{k+1}))$ contains the $(q+k-1)$-dimensional skeleton of T_k for $i = 1, 2, ...$, and consequently the set $P'((\delta_{k+1}))$ has an infinite dimension.

We can say more. Namely, every point of $P'((\delta_{k+1}))$ has arbitrary small neighborhoods whose boundaries have finite dimension. Thus $P'((\delta_{k+1}))$ has transfinite dimension (6).

The $(q+k-1)$-dimensional simplices of T_{k+1} contained in $Z(T_k(\delta_{k+1})))$, where δ is a $(q+k)$-dimensional simplex of T_k form the triangulation T_{k+1} of the polytope $Z(T_k(\delta_{k+1})))$, which is an \mathbb{R}-set. It follows that $Z(T_k(\delta_{k+1})))$ is also an \mathbb{R}-set. Thus there exists a retraction r_k of the set $Z(T_k(\delta_{k+1})))$ to the set $Z(T_k(\delta_{k+1})))$. Since $Fr(\delta, (\delta_{k+1})))$ (the boundary $Fr(\delta)$ is taken relatively to the polytope P_k), $r_k(x)$ is for $x \in Fr(\delta)$, $r_k(x) = r_k(x)$ for $x \in Z(T_k(\delta_{k+1})))$, $\delta \subset T_k$, we infer that the mapping r_k is a retraction of $Z(T_k(\delta_{k+1})))$ to $Z(T_k(\delta_{k+1})))$ such that for every $\delta \subset T_k$

$$r_k(Z(T_k(\delta_{k+1}))) = Z(T_k(\delta_{k+1}))) \quad (\delta_{k+1}).$$

Let us set $r_k(x) = r_k(x) \quad r_k(x)$ for $x \in Z(T_k(\delta_{k+1})))$. The mapping r_k is a retraction of $Z(T_k(\delta_{k+1})))$ to $Z(T_k(\delta_{k+1})))$, and if $x \in Z(T_k(\delta_{k+1})))$ and $\delta \subset T_k$, $\delta \subset T_k$, then every point $r_k(x)$ for $i = 1, 2, ...$, belongs to $Z(T_k(\delta_{k+1})))$. Since the diameter of the zone $Z(T_k(\delta_{k+1}))) < 1/(k+1)$, then the sequence $r_k(x)$ converges uniformly to a map r of $Z(T_k(\delta_{k+1}))) \to P'((\delta_{k+1})))$. For every $x \in P'((\delta_{k+1})))$ we have $r(x) = Z(T_k(\delta_{k+1}))) \to Z(T_k(\delta_{k+1})))$, and $r_k(x) = x$ for every $k = 1, 2, ...$, consequently r is a retraction of $Z(T_k(\delta_{k+1}))) \to P'((\delta_{k+1})))$. Since the zone $Z(T_k(\delta_{k+1})))$ is a compact set, we conclude that every infinite-dimensional membrane is a compact \mathbb{R}-set.

4. Hits of a membrane. As in [3], by a hit of a membrane X (of finite or infinite dimension) we understand a membrane Y (corresponding to an arbitrary sequence $((\delta_{k+1})))$ of naturals ≥ 2 such that $Y \subset X$ and that $X \cap \overline{X} \subset \overline{Y}$. One can easily see that if a set Q is a union of simplices of the triangulation T_k homeomorphic to the $(q+k)$-dimensional ball $(n > 2)$ in the finite-dimensional case, and to a homogeneously $(q+k)$-dimensional \mathbb{R}-set strongly connected in the dimension ≥ 3 in the infinite-dimensional case, and if T denotes the triangulation of Q which consists of simplices included in T_k, then the constructions of § 2 and § 3 applied only to the simplices of the triangulations T_{k+1} ($k = 1, 2, ...$, lying in $Z(T_k(\delta_{k+1})))$ ($j = 1, \infty$) define a set $X_Q = P'((\delta_{k+1}))) \cap Z(T_k(\delta_{k+1})))$ where $j = 1, \infty$. ?
which is a bit of membrane \(X \) corresponding to the sequence \((m_{k+1})\), and with base \(Q \).

By an \(m \)-membrane we shall understand a set \(Y \) which is a union of \(m \) membranes \(X_1, \ldots, X_m \) (of finite or infinite dimensions) such that there exists a simple arc \(L \) satisfying the condition \(X_i \cap X_j = X_i \cap X_j = L \), \(i \neq j \). The arc \(L \) will be called the edge of the \(m \)-membrane \(Y \) and will be denoted by \(Y^* \). By \(Y \) we shall denote the interior of \(Y^* \). The membranes \(X_i, i = 1, 2, \ldots, m, \) will be called the strings of the \(m \)-membrane \(Y \). By the boundary \(\partial \) of the \(m \)-membrane \(Y \) we shall understand the set \(Y = \bigcup_{i=1}^m X_i \).

By the \(m \)-bit we shall understand a subset \(Y \) of a membrane \(X \) which is an \(m \)-membrane and \(Y \cap X - \{y \} \subset Y^* \).

We omit the proof of the following lemma because it is completely analogous to the proof which (in the case \(m = 2 \)) is included in [3].

Lemma 1. A closed subset \(Y \) of an \(m \)-dimensional membrane \(X \) is \(m \)-dimensional if and only if it contains at least one bit of \(X \).

Obviously every open subset of an infinite-dimensional membrane contains a bit of this membrane.

5. Topological classification of points of a membrane. Let us consider the following subsets of the membrane \(X \) (of dimension \(m \) or \(\infty \)):

- \(X_1 \) consists of all points \(x \in X \) such that for every \(e > 0 \) there exists a neighbourhood of \(x \) in \(X \) which is a bit with diameter \(< e \). The points of \(X_1 \) are said to be regular points of \(X \).
- \(X_{m} \) consists of all points \(x \in \partial X \) such that for every \(e > 0 \) there exists a neighbourhood of \(x \) in \(X \) which is an \(m \)-bit with diameter \(< e \). The points of \(X_{m} \) are said to be points of the order \(m \) of the membrane \(X \).

\[X_{m} = X - X_{\infty} \cup \bigcup_{m=1}^\infty X_{m} \]

The points of \(X_{m} \) are said to be singular points of \(X \).

These definitions imply the topological invariance of the sets \(X_1 \), \(X_{m} \) and \(X_{m} \).

Example. Let \(X \) be an infinite-dimensional membrane (in the finite-dimensional case the argument is analogous) and let \(x \in X \). There occurs one of three cases:

(i) There exists a natural \(l \) such that \(x \) belongs to the \((l+q-1)\)-skeleton of triangulation \(T_l \) and \(x \) does not belong to \(P' \). It follows that \(x \) belongs to the \((j+q-1)\)-skeleton of triangulation \(T_j \), and that \(x \) does not belong to \(P' \) for any \(j \geq l \). From (3) we infer that \(x \in X_1 \).

(ii) For every \(l = 1, 2, \ldots, \), the point \(x \) belongs to the set \(\bigcup_{j=1}^\infty (Z_{(q)}(d_j, \{c_{d_j}\}) - \delta) \),

thus \(x \in X_1 \).

(iii) There exists a natural \(l \) such that \(x \in P \). Only in this case \(x \) can belong to \(\infty \cup_{m=1} X_{m} \).

It follows that every point of ramification and every singular point of \(X \) belongs to one of the segments of ramification \(a_k b_k \), and one can easily see that if \(x \) belongs to the interior of the segment \(a_k b_k \), then \(x \) is not a singular point. Thus only the end-points of the segments of ramification \(a_k b_k \) can be singular and consequently the set of singular points is countable.

6. Points of ramification.

Lemma 2. There are only two possibilities: either the simple arc disconnects the \(m \)-membrane into \(m \) components or it does not disconnect it at all.

Proof. Let us suppose that there exists a simple arc \(L \) which disconnects the \(m \)-membrane \(Y \). Let us assume at first that the arc \(L \) is an irreducible cutting, that is that no subset \(L \subsetneq L \) disconnects \(Y \). Let \(G_1, G_2, \ldots, G_6 \) denote the components of the set \(Y - L \). Then \(L \) is a common boundary of \(G_1, G_2, \ldots, G_6 \) ([5], p. 175). Let us show that no regular point of \(Y \) belongs to \(L \). Suppose to the contrary that \(x \in L \cap X_{m} \). Then there exists an arbitrary small neighbourhood which is a bit of \(Y \). We can assume that this neighborhood is of the form \(X_{m} \), where \(Q \) is an \(r \)-dimensional polytope connected in a dimension \(\geq 3 \) if \(r > 3 \), and \(Q \) is homeomorphic to an \(r \)-dimensional ball if \(r = 3 \). Since \(L \) is the common boundary of the components of \(Y - L \), we infer that the set \(L \cap X_{m} \) disconnects \(X_{m} \) and since \(Q = (Q^{\infty} - \partial Q^{\infty}) \) denotes the \((r-1)\)-skeleton of the polytope \(Q \), the set \(L \cap (Q^{\infty} - \partial Q^{\infty}) \) disconnects \(Q^{\infty} - \partial Q^{\infty} \). But this is impossible because, if \(r > 3 \), then \(Q^{\infty} - \partial Q^{\infty} \) is connected in a dimension \(> 2 \) and \(\dim (L \cap Q^{\infty} - \partial Q^{\infty}) < 2 \). If \(r = 3 \) it is impossible because then \(L \) disconnects the set \(Q^{\infty} \), homeomorphic to a 2-dimensional sphere.

Thus the arc \(L \) contains only the points of ramification or the singular points of \(Y \) and, since these points belong to the segments of ramification which are disjoint, we infer that \(L \) is included in one of...
them. If $m = 1$, that is if Y is a membrane, one can see at once that none of the segments of ramification disconnects Y. If $m > 1$, then by the definition of an m-membrane there exists an edge Y^* which disconnects Y into m components X_1, X_2, \ldots, X_m. If there exists in Y an other simple arc L which disconnects Y into p components and $p \neq m$, then $L \nsubseteq Y^*$. However, no arc is included in the edge disconnects Y.

Now let L be any simple arc in Y. Since Y is an AR-set, L contains an irreducible cutting of Y ([7], pp. 176, 287, 335). If Y is a membrane, that is, if $m = 1$, then L does not disconnect Y, since no irreducible cutting does. If $m > 1$, and if L disconnects Y, then $L \supsetneq Y$ and therefore L disconnects Y into k components where $k \geq m$. But if $k > m$ then for some i the arc $L \cap Y_i$ disconnects the membrane Y_i, which is impossible. Thus $k = m$ and the proof is finished.

Let us put $X_i = X_i^1$.

Lemma 3. The sets $X_i^1 \cap X_j^1$ are disjoint for $p \neq m$.

Proof. Obviously it suffices to consider the case $p < m$. Suppose to the contrary that $x \in X_i^1 \cap X_j^1$. Since $x \in X_i^1$, there exists a neighbourhood Z_i which is a p-bit with the wings Z_1, Z_2, \ldots, Z_p and since $x \in X_i^1$, there exists a neighbourhood Z' which is a p-bit with the wings Z_1', Z_2', \ldots, Z_p' and such that $Z_1 \cap Z_1' \neq \emptyset$ for each pair i, j, the arc $Z' \subseteq Z_i$ and $Z_i \subseteq X_i^1$ into m components Z_1, Z_2, \ldots, Z_m and since $Z_1 \cap Z_1' \neq \emptyset$ for each pair i, j, the arc $Z' \subseteq Z_i$ and $Z_i \subseteq X_i^1$ into at least m components, which by Lemma 2 is impossible because $p < m$.

Lemma 3 implies that if $X = P((x_k), i)$, then every point lying in the interior of one of the segments $a_k b_k$, where d is an n-simplex of the triangulation T_k in the finite-dimensional case ($k + 1$) of T_k in the infinite-dimensional case), belongs to the set X_i^{1+n} (to the X_i^{1+n} in the infinite-dimensional case). Consequently, for each subsequence (n_k) of the sequence (n_k) and for each open set G of the membrane X, the set $G \cap X_i^{1+n_k}$ (the set $G \cap X_i^{1+n_k}$ for $k > k_0$) is of the power 2^m. On the other hand, the set $\bigcup X_i^1 \cap X_i^1$,

where N is the set of all natural numbers which do not belong to the sequence (n_k) (to the sequence $(k + 1) \cdot n_k$), is at most countable because it contains only the end-points of the segments of ramification.

7. Main theorem and corollaries.

Theorem. For each n, where n is a natural number or infinity, there exists a function $\Phi(t) \in \mathbb{R}^n$ in such a manner that, for $t \neq t'$, if n is a finite number then no n-dimensional closed subset of $\Phi(t)$ is homeomorphic to any subset of $\Phi(t')$, and if n is the infinity then no open subset of $\Phi(t)$ is homeomorphic to any subset of $\Phi(t')$ which contains an inner point.

Proof. If $n = 2$ the theorem was proved in [3]. The proof in the case of $n > 2$, n finite, is completely analogous and will be merely outlined. In the same manner as in [3] we construct a function assigning to every real number t an increasing sequence of natural numbers (n_k) such that for $t < t'$ the sequence (n_k) contains an infinite sequence (m_k) whose terms do not belong to (n_k). We set

$$\Phi(t) = P((n_k)).$$

Let us suppose that there exists a homomorphism h of the subset A of the membrane $\Phi(t)$ to the subset $h(A)$ of the membrane $\Phi(t')$, where A is an n-dimensional closed set. The set A contains a bit Y of the membrane $\Phi(t)$. The points of ramification of order n_k included in an arbitrary open set of $\Phi(t)$ form a set of the power 2^{n_k} while the points of ramification of n_k included in the membrane $\Phi(t')$ form the set at most countable. Consequently, there exists in the open set $Y = Y$ a dense subset R consisting of all points of ramification of order n_k and such that any point of the set $h(R)$ is a singular point or a point of ramification of order n_k. Further there exists a point $a \in R$ such that $h(a)$ is an interior point of $h(Y)$. But this is impossible because a is a point of ramification of order n_k while $h(a)$ is neither a singular point nor a point of ramification of order n_k.

In the infinite-dimensional case, we construct a function assigning to every real number t an increasing sequence of natural numbers (n_k) in a little different manner. It is easy to construct an enumeration (x_k) of all rational numbers $t \in [0, 1]$ such that the set $(x_k; n = 1, 2, \ldots)$ is dense in the segment $[0, 1]$. Let us define an increasing sequence of natural numbers (n_k) by the formula

$$n_k(t) = \min \{n_t : n > n_t(t), |t - n_t + 2\delta_t| < 1/k \}, t \in [0, 1].$$

It is easy to see that if $t \neq t'$, then the sequence $(n_k(t))$ contains a subsequence (m_k) such that the sequence $(q + k) \cdot m_k)$ does not belong to $(n_k(t))$. We set $\Phi(t) = P((n_k(t)))$.

Further the proof is the same as in the finite-dimensional case. It suffices only to replace the points of ramification of order n_k by the points of ramification of order $(q + k) \cdot m_k$.

Remark. Let D'_t, $t = 1, 2, \ldots, f_k$, denotes the set of all n-simplexes (the $(q + k)$-simplexes in the infinite-dimensional case) of the triangulation T_k. Let us assign to each pair (i, k), a number $r(i, k) = t + t_i + t_k + s = 0$, and let $(n_{(k)})$ be an increasing sequence of natural numbers > 1. It is easy to see that if we build the membrane by constructing the modification set on $D'_t T_k$ by means of $n_{(k)}$ simplexes $A_1, A_2, \ldots, A_{n_{(k)}}$ that is, if we cut off from every simplex in
every path of the construction another number of simplexes, then we obtain a compact AR-set \(P((n_w)A) \) with the following property: if \(\dim P((n_w)A) = n \), then no two homogeneously \(n \)-dimensional different closed subsets of \(P((n_w)A) \) will be homeomorphic, and if \(\dim P((n_w)A) = \infty \), then no two different open subsets of \(P((n_w)A) \) will be homeomorphic.

Remark 2. The polytopes \(P_s \) are smoothly connected ([6], p. 124) in the dimension \((n-1)\), and we can construct a polytope ([6], p. 128) subordinate to the polytope \(P_s \).

Let us denote it by \(P_s \). Now if \(P_s+1 \) denotes the modification set on \(P_s \), then we obtain a sequence of polytopes \(\{P_s\} \). If we use them for the construction of the membrane in the same manner as in § 2 and, moreover, if we modify in a suitable manner the definition of the subordinate polytope, then we can obtain a family \(\Phi(t) \) the elements of which are all irreducible \(n \)-dimensional AR-sets [6].

Corollary 1. Let \(Y \) be an arbitrary \(n \)-dimensional (infinite-dimensional) ANR-set. There exists a family \(\Psi \) consisting of \(2^X \) \(n \)-dimensional (infinite-dimensional) ANR-sets such that \(Y \in \Psi \) and none of the elements of \(\Psi \) contains an \(n \)-dimensional closed subset (open subset) homeomorphic to a subset (containing an inner point) of the other element.

Proof. In the finite-dimensional case it is the consequence of the following theorem [2].

In an \(n \)-dimensional ANR-set every family of \(n \)-dimensional subsets which are ANR-sets with the common part of any two of them at most \((n-1)\)-dimensional is necessarily at most countable. From this theorem we infer that the subset of elements of \(\Phi(t) \) such that their \(n \)-dimensional closed subsets are homeomorphic with the subsets of \(Y \) is at most countable. Thus, if we remove these elements from the family \(\Phi(t) \), and add the set \(Y \), then we obtain a family \(\Psi \) which has the desired property. In the infinite-dimensional case the proof follows and once from the separability of \(Y \).

The theorem cited in the proof of corollary 1 can be used also in the proof of

Corollary 2. There is no universal \(n \)-dimensional AR-set, that is an AR-set which contains all the other \(n \)-dimensional AR-sets.

In the infinite-dimensional case we can formulate this corollary in the following manner:

Corollary 2’. For an arbitrary infinite-dimensional AR-set \(X \), there exists another infinite-dimensional AR-set \(Y \) such that for every injection \(\varphi \) of \(Y \) in \(X \) the set \(\varphi(Y) \) is a non-dense set in \(X \).

Corollary 3. The \(n \)-dimensional cube has no \(r \)-neighbours on the left ([1]).

The proof is the same as in [3] in the case of \(n = 2 \).