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On a class of universal algebras
by
K. Urbanik (Wroctaw)

1. Introduction. X. Marczewski introduced some classes of uni-
versal algebras in which the notion of independence (see [3]) has fun-
damental properties of linear independence. These classes are: v-algebras
(called also Mavezewski’s algebras; see [2] and [6]1), v*-algebras (see [1],
[4], [5], [8] and [9]) and o%-algebras (called also v**-algebras; see [6]).
A full deseription of all v-algebras and v*-algebras is contained in papers
{11, [77, [8], [9] and [10]. The representation problem for v:—adgebraé
is not solved yet. A partial solution as well ag examples are given in [6]
and [10].

For the terminology and notation used here, see [3]. In particular,
for a given universal algebra (4; F), wheve 4 is a set and F is the class
of fundamental operations, by 4™ (n>1) we shall denote the class
of all n-ary algebraic operations. Further, by 4® we shall denote the
clags of all algebraic constants. If 0 < % < n, then 4™ will denote the
subclass of 4™ consisting of all operations depending on at most %
variables. :

Tet f,geA™ (n>1). We say that the equation

F@y, @y ooy Bn) = g (21, 2, vy @n)
depends on a certain variable if there exist an integer § (1 <j < n) and
a system aj, @y, y, ..., an 0f elements of 4 such that
Flony @y ey Bty gy Qgiry ooy ) = G0y, ..., Aj—1y Oy Qjt1y -eey On)
and, “
,f(“l’ gy vy Uiy, a;’: Ajq1y -y a") #* .(/(alv gy oeey By, afla Qjtiy ooy Gn)

An algebra (A; F) is called w v,-algebra if for every pair f,g e 4™
{n = 1) for which the equation
{1.1) Ty oy wooy Tn) = (B, Bay oory Tn)
depends on a certain varfable there exist an index % (L <% < n) and
an operation % e A™™ gsuch that equation (L1) is equivalent to the

equation
W == (@, Wyy ooy Bmyy Bhoty oey Ln)
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This eoncept is due to W. Narkiewicz. It is very easy to see that the class
of v,-algebras contains the class of v-algebras and is contained in the
class of v*-algebras. The aim of the present paper is to prove a repre-
sentation theorem for v,-algebras. The idea of the proof is similar to
that in [7].

2. Admissible sets. In this section R will denote an associative
ring with the unit element, without divisors of zero, such that for every
pair a, g of elements of R there exists an element y ¢ R satisfying the
equation a = By or the equation f = ay. Let 4 be a unital left-module
over R satisfying the cancellation law, i.e. a left-module satisfying the
condition 1z = @ for every # ¢ A and such that for any aeR and ye 4
the relation ay = 0 implies ¥ = 0 whenever a # 0. ’

A subset B of the Cartesian product RX A is said to be admissible
if it satisfies the following conditions:

(i) <1,0) ¢B.
(ii) If (4, a) e B, then the element A is invertible in K.

n
() Ty oy ooy pin € Ry ;;::“1:1 and {J,a>eB (j=1,2, ey ),

<2Mlh ZMW>EB-
j=1

F=1

then

(iv) Ha,1eR, a0, ae A and {1+ al— a, aa) € B, then {4, ad ¢ B.

Now we shall give some examples of admissible sets. A submodule A4,
of a unital left-module A over the ring R is said to be divisible if for
any aeR (a7 0) and any a ¢ A the relation aae 4, implies the relation
aed,. . '

(a) Let 4, be a divisible submodule of a unital left-module 4 over
the ring R. The set {1} x4, is an admissible subset of RxA4. In fact,
conditions (i), (ii) and (iii) are obvious. The condition (iv) is simply the
divisibility condition for 4.

(b) Let p be a prime and let R, be the ring of all rationals n/(pm-+1),
where n and m are arbitrary integers, under usual addition and multipli-
cation. It is very easy to prove that for any pair a, f e R, at least one
of the elements a and f is left-divisible by the other one. Let 4 he an
arbitrary unitary left-module over R,. Further, let 4, be a divisible
submodule of A and let ¢ be an element of 4 such that for any a, feRy,
and a € 4, the left-divisibility of ac+a by B implies the left-divigibility
of a and & by 8. For instance, if 4 is a product of n copies of the ring
Rp: A =RpXRpX ... xRy and A; = {0} X RpX ... X Ry, then a5 an ele-
ment ¢ each element <y, 0,0, ..., 0> with invertible y € R, can be taken.

® aa® |
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Let B be the get of all elements

4+l n—m
@1 <pm+1,p—-—m+lc+a>,

where n,m are arbitrary integers and & e 4,. We shall prove that the
get B is an admissible subset of R,x 4.
We note that the equation )

pr+l _ pe+l
pm-+1 pr41

implies the equation

n—m _ g—r

pm+1 " pri1 ’
and, consequently, the coefficient of ¢ in (2.1) is uniquely determined.
Since <1,0)> ¢ B and all elements of the form (pn--1)/(pm-+1) are inver-

tible in Ry, conditions (i) and (ii) for admissible sets are satisfied. In
order to prove condition (iii) consider a system s, g, ey fin € Rp, with

kL -

D uy =1 and a system <ij,ap eB (j=1,2,..,5). It is very easy to
i+1
prove that the elements uy, 4; (j =1, 2, ..., n) can be written in the form

__my 1 =pk,+1
) pm—+1’ - pm+—17 )

where m,mys, k; (j =1,2,..,n) are.integers. Moreover,

- foj—m
= omt1
where bs e A;. Hence, setting

e-+by (j=1723-"7n)7

n ”n )
Q=m+2mﬂ¢u r = m*p+2m, b=2l‘lbh

Fuud F=1

we get the equations

n n
-+1 \ ! q—7r
ZﬂfZ'J:%z':‘ﬁ; ZM“!=m0+bv

Je1 I

which, according to the relation b e 4, and (2.1), imply

n » !
"
<Z#Mn g, mw} €B.
=i =

Condition (iii) is thus proved.


GUEST


330 K. Urbanik
Suppose that a,leRy, a0, ac A and ¢1+ai—a, as> ¢ B. Con-
sequently,

% _pn+l n—
pm—+1’ 14ai— “pmFi’ pm-}-l

whe;re k, n, m are integers, & = 0 and b ¢ 4,. From the definition of the
element ¢ it follows that b and (n—m)/(pm-1) are left-divisible by a.
Thus b = ab, and, by (2.2), n—m = ks/(pg-+1), where s and ¢ are integers.

(22) a= c+d,

Consequently,
8
RETES SRR
and
2o Plto+L
pg+1

Hence it follows that the element <4, a) is of the form (2.1) and,
consequently, belongs to B. Condition (iv) is thus proved. The set B in
question is an admmalble subset of R, x A and is not of the form {1} x 4,,
where 4,C 4.

Now we shall prove some Lemmas for arbitrary admissible subsets B
of KX A.

Lemma 2.1. If <A, &) ¢ B, then <A™, —1"a> € B.

Proof. We note that, by condition (ii), the element A is invertible.
Put py "—‘"‘1_11 g =14+1"" and Ly ay =4y @), (hay 8> = <1, 0).
Since g4+ ps =1, we have, according to condition (iii),

Spndy+ pgdas o0+ phatsd € B .
Taking into account the equations pd+ pely = 477, yay+ paay = —). ‘a,

we obtain the assertion of the Lemma.

LeMua 2.2. If gy a>€B (j=1,2,...,n) and

<21’j” a> eB,
then =
\erlj y 27;a,+a> eB.

i=1 izl

Proof. Set wu; =1 (j=1,2,..,n), Py =1,

Hnts = — Z”J y o Sty Gy =< th a>
and = =
Anizy Gnig) = A,0>. -
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n+2
Since fZ’l 5 =1, we have, according to condition (iii) of the definition

of admissible sets, the relation

n+2 n4o
2 Hidg ] 2 ﬂjaj/ eB.
7"1
Hence and from the equations
n+2 n+2
D) ks = 2”7‘}‘!; D) way —Zv,aj+a
7=1 F=1 =1

the assertion of the lemma follows.

Lumma 2.3. If <1,a)> ¢ B, then the element 1—2 is not invertible.

Proof. Contrary to this let us suppose that the element 1— A is
invertible in R. Put « =1—1 and b = (1—1)"". Since ¢4, a) = A+ax
X0—a, aby, we infer, in view of condition (iv), that <0,b> e B. But this
contradicts condition (ii), which completes the proof.

In the sequel O--¢, where ced and CCA, will denote the set
{a+c: a e C}. Further, for any A e R by A, we shall denote the set of all
elements @ € 4 such that (1, a) ¢ B.

TamorEM 2.1. The set A, is o divisible submodule of A. Moreover,
for any AR cither the set A; is empty or Az = A,--¢, where ¢ e A,.

Proof. Let ay, ay e A, and py, py ¢ R. Setting ay = 0, pg =1— p— p,
and 4 =}, =1 =1, we have, by condition (iii) of the definition of

admissible sets, the relation ¢ }_, L, 2 a5y € B. Since 2 s =1 and

2 Bi0y = a0+ piotly,
a submodulo of A.

Further, suppose that a e R, a0, a ¢ A and aa € 4,. Since (1, aa)
= {14-a—a, aay, we infer, by condition (iv), that <1, a) ¢ B and, con-
gequently, @ € 4,. Thus the submodule A4, is divisible.

Ifce A and a ¢ Ay, then, by Lemina 2.2, (1, a+¢> ¢ B. Consequently,
A;+¢C 4, Further, by Lemma 2.1, <27, —17%) e B and, consequently,
for every pair {1, ¢;> ¢ B we have, in view of Lemma 2.2, the relation
KM, o—6) € B. Thug ¢,— 0 € 4, which implies the inclusion 4; C 4,4 e¢.
The theorem iy thus proved.

The following theorem is o direct consequence of Theorem 2.1 -and
Lemma 2.3.

THEOREM 2.2. If R is a field and A a linear space over R, then each
admissible subset of R X A is of the form {1)x A;, where A, is a linear
subspace of A.

we infer that ua;+ e, € A;. Consequently, 4, is
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3. Examples of v,-algebras.

3.1. Let & be an associative ring with the unit element, without
divisors of zero and such that for any pair a, § ¢ R the element « is left-
divisible by # or the element B is left-divigible by a. Let 4 be a unital
left-module over R satisfying the cancellation law and 4, a divisible
submodule of 4. Further, let F be the class of all operations

n
(3.1) o1, @ ey ) = Dy Tt

=1
where Ay, Ay, ..., In € R and a € 4,. It is very easy to prove that the algebra
(4; F) is a v*-algebra. This algebra is a modification of the algebra
presented in [6] Section 2.

3.2, Let B be an admissible subset of R x4 and F the class of all

operations {3.1) where

n
(3.2) ' (X, a)eB.
CNE
We shall prove that the algebra (4; F) is a v*-algebra.
First of all we shall prove that each algebraic operation in the algebra
in question is of the form (3.1) with coefficients satisfying condition (3.2).
To -prove thig it suffices to show that the composition of operations of
the form (3.1) with condition (3.2) is of the same form. Suppose that

n

k
gH{®y; By -y Tn) =2”.1"”i+“1 g5{(@1y Ta, ..., Tx) ""‘Z}*ﬁm“l““J

j=1 {=1
and

n - k
(DwayeB, (DigapeB (=1,2,..,9).
i=1 i=1

n k noo-
Since, by Lemma 2.2, the pair { Y 3'viy, > vas+a) belongs to B, the
f=1 {=1 =1
composition ’ !

g(gl($l! Dy ey Tk) 5 Goly, By ..., ), wey Gn(@yy @y .oy a"k))

is of the form (3.1) and satisfies condition (3.2).

Let f, € A%, i.e. f,(z) = Az a, where (1, @) ¢ B. Since /7 (@) = A" 'w—
~17%a and, by Lemma 2.1, (A™},— A %y ¢ B, we infer that the inverse
operation f7* belongs to 4 .

Suppose that f,g ¢ A™ and the equation

(3.3) f(@y, @y -0y a) = g(®1, Tay .., Tn)

° ©
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depends on a certain variable. Put
h@) =fl@, o, ...,a),
Fo@s @y vy @) = F7f (1, @, ., 20)
9@y B2y vy B0) = f7(g (4, @ ..., @) .
Of course, equation (3.3) is equivalent to the equation
(3.4) folty, @y ..y @) = goly, @, ..., @n) .

Moreover, fy®, ©, ..., ) = # and, consequently,

n
Tol@y, ey .., 14) = Zlfwi )
=1

where
(3.5) Ny=1.
=1
Furthermore,
Go(@y 5 Tz ..., ) =ZMWI+“ ’
=1
where
n
(3.6) { X w, a@)eB.
j=1
Put
(3.7) a5 = Ay—p; (§ =1,2,..,n).

Then equation (3.4) is equivalent to the equation

n
(3.8) 2 s = a .
7=1

Since this equation depends on a certain variable, at least one coetficient

@y Oy ..., 0y I8 different from zero.

Taking into account the divisibility properties of the ring R, we can
prove by induction with respect to » that there exists an index % AI<<k<n)
such that all elements a; (j =1,2,..,n) are left-divigible by the ele-
ment ax. In fact for # = 2 this holds by the definition of the ring R.
Suppose that @, ay, ..., as-1 arve left-divisible by ay. If o is not left-
divisible by a;, then o and, consequently, all elements ay §=1,2,..,m)
are left-divisible by @, which completes the proof.

Therefore without loss of generality we may assume that a # 0
and all elements a,, ay, ..., an are left-divisible by o, i.e.

(3.9) Clj=(l1,Bj (j=2,3,...,n),
Fundamenta Mathematicae, T\ LVII 23
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where f;e R. Since equation (3.8) depends on a certain variable, there
exists 2 system @y, @y, ..., an of elements. of A such that

n
Z g = .
i=1

\J .
Consequently, by (3.9), setting b = a;+ 2,2 Bisa; we have the equation
: =

(3.10) a=ab.

Hence and from (3.9) in view of the cancellation law it follows that equa-
_ tion (3.8) is equivalent to the eqqation ‘

oy =—~2ﬁy.’ﬂ;—|—b .
j=2

Put 2 =— D By. It remains to prove that <{A,b> ¢ B. From (3.5), (3.7),
=1
(3.9) and (3.10) we obtain the equations

n n n n
A4 ah—a, ab) = <1—2a7, a>= <1—‘Z:'11+'21’,“17 a’> = <12;”h a‘>7
7=1 j= i= =
which, by (3.6) and condition (iv) of the definition of admissible sets,
imply the relation {1,b) ¢ B. Thus (4; F) is a v*-algebra.

3.3. Let § be a semigroup of one-to-one transformations of a non-
empty set A into itself containing the identical transformation and
satisfying the following conditions

(%) each transformation that is not the identical transformation has
at most one fixed point in 4,

(%) if g1, go€ S and gy(A) ~ ga(4) 7 9, then there exists a transfor-
mation g e8 such that g; = gag or g, = g19.

Let 4, be a subset of 4 containing all fixed points of transformations
from § that are not the identical transformation and satisfying the con-
ditions g(4,) C 4, and g7%(4,) C 4, for all geS. If Fis the class of all
operations f defined as :

(311) @y, @y oy 20) = g(@)  (1<G<n),
(3.12) F(@y; B2y oy @n) = @,
where ge8 and a e 4;, then (4; F) is a v*-algebra.
Indeed, it is’ very easy to verify that each algebraic operation in

(45 F) is of the form (3.11) or (3.12). Moreover, if ¢,,¢, €S and the
equation

(3.13) Gu(®1) = ga(ms)

©
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depends on a certain variable, then $(A) ~go(4) = @ and, consequently
g1 = =4 OF g5 = (hg, Where ¢ is an element of S. Si .

: nee the transformafions
from 8 are one-to-one, equation (3.13) is equivalent to the equation

@, = g(x,) in the case g, = g,¢ and to the equation @, = g(x,) in the op-
posite case.

If 9,,9: €8 and the equation
(3.14) $(7) = gu(@)

depends on the variable @, then g,(4) ~ 9.(4) #= 9. Consequently, one
of the transformations ¢y, g, is left-divisible by the other one. Without
loss of generality we may assume that g, = 929, where g € 8. Of course, g is
not the identical transformation. Moreover, equation (3.14) is equivalent
to the equation « = g(v), i.e. an element » from A satisfies (3.14) if and
only if it is a fixed point of the transformation g. Thus there exists an
element ¢ A4, such that (3.14) holds if and only if # =¢.
Finally, suppose that ge$, ae 4, and the equation

(8.15) g(@) =a

depends on the variable «. Since the transformation g is one-to-one, there
exists an.element ¢ e A such that equation (3.15) holds if and only if
@ = ¢. Furthermore, ¢ e A, because of the inclusion g-(4,)C 4,. Thus
(4; F) is a v,-algebra.

4. A representation theorem. In the preceding section we
presented a eonstruction of three types of v,-algebras. Now we shall
prove that each v,-algebra can be obtained in this way. Namely, we
shall prove the following representation theorem.

THEOREM 4.1. Let (A; F) be a v,-algebra.

D) If A9 %0 and AP %A, then A is a unital left-module
satisfying the cancellation law over an associative ring R with the unit element,
without divisors of zero such that for any pair of elements of R at least one
element is left-divisible by the other ome. Moreover, there exists a divisible

submodule A, of A such that the class of algebraic operations is the class
of all operations defined as

n
F@yy @y ooy @) = ) dpyta
j=1
where yy Ayy ooy I e Roand a € 4,.

(@) If A9 =0 and AP £ A%, then A is o unital left-module
satisfying the cancellation law over an associative ring K with the wnit element,
without divisors of zero and such that for any pair of elements of R at least
one element is left-divisible by the other one. Moreover, there exists an admis-

23*


GUEST


336 K. Urbanik

sible subset B of R x A such that the class of algebraic operations is the class
of all operations defimed as
n
F(@y Bay oy ) = D, hs+a,

i=1
: L)
where { 3 4, a) B.

i=1

(i) If A® = A®, then there is a semigroup 8 of one-to-one transjor-
mations of the set A into iiself containing the identical transformation and
satisfying the following conditions: '

(%) each tramsformation that is mot the identical transformation has at
most one fiwed point.

(%%) if g1,ga¢8 ond gi(4A) ~ g(A) # B, then at least one element of
the pair gy, g, is lefi-divisible by the other one. Moreover, there exisis w subset A,
of the set A containing all fiwed points of tramsformations from § that are
not the identical transformation and satisfying the conditions g(d4,)C A4,
g YAy) C A, for all ge8 such that the class of algebraic operations is the
class of all operations defined as

F(@yy @ay ooy@n) = g(w7) (1<j<m),
F (@1, By oey @) = 0,
where ge8 and ae Ay,

Before proving the Theorem we shall prové some lemmas. We agsume
that all algebras considered in this section are v,-algebras.

Levya 4.1. If f,9e A™ (0> 3) and f(@y, Ty ovop &) = g2y, Ty, v, Tn)
whenever: &y, = my 0r @, = %y, then [ =g.

Proof. Suppose the contrary. Then the equation

(4.1) Fl@yy Tay ooy @n) = g0, Tpy ..., @)

depends on a certain variable. Consequently, there exist an index k
(1<k<n) and an operation hed4™ " guch that (4.1) is equivalent to
the equation

g = h(@yy Byy euey Br—1,y Briay voey Tn) -

First consider the case k = 1. Then equation (4.1) is equivalent to
the equation

Ty = h(%sy By, -e-y ) .

Sinee equation (4.1) holds for #; = @,, we have the formula:

- (4.2) Ty = h{ty, @3, ..., Tn)
for all elements #,, &, ..., @, € 4. On the other hand, equation (4.1) holds
for ® =w, .and, consequently, @, = h(z,, @, oy @) for all elements

@ © ’
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‘

Xy, gy vy Bn € A. But this contradicts (4.2),
in the case k& =1.

~ Suppose thzxt- k> 1. By the assumption equation (4.1) holds whenever
w; =2 for zyll 9 7& k. Consequently, ay = hw,a,..,z) for arbitrary
@, @ € A, which gives a contradiction. The lemma is thus proved.
jg,mmA 4.2. If A9 % A(B’l), then there exists exactly one operation
s € A satisfying the condition s(w,y,y) =s(y, z,9) = .
Proof. Let feANA® . we may assume that the operation
f(@1, @y, ;) depends on the variables #, and z,. Consequently, the equation

which completes the proof

(4.3) F(@y, @, @3) = f (3, 24, @)

depends on the variables @y, @, 4, and ;. Thus there exist an index %
(1<% < 5) and an operation g ¢ ¥ such that equation (4.3) is equivalent
to the equation : :

B = Gy By ooy Bty Bhpay ooy L)

By the symmetry properties of (4.3) we may assume that 1 <k < 3.
Indeed, the cases & =4 and % =5 can be reduced, by the substitutions
@y =@y, By =%, and Ty =@y, ¥ =5, t0 the cases kL =2 and % = 3, re-
spectively. Moreover, the case k =3 can be reduced, by the substitution
foltoy, @y 25) = f(2q, %3, @), to the cage %k =2. Consequently, we may
assume that 1 <k << 2.

In the case k=1 equation (4.3) is equivalent to the equation
By = (&, Ty, 4y, Ts). Since equation (4.3) holds for =z =g, = @5
and for all @,, we infer that @ = g(,, 2;, @5, 2;) for all @,, @, ¢ 4, which
is impossible. Thus % = 2 and equation (4.3) is equivalent to the equation
@y = g (&1, B3, %y, 5). Since equation (4.3) holds for m, =@, @, = z;, we
have the formula

(4.4) By = (&1, &3, T, @)

for all @y, ®,, #, ¢ A. Hence it follows that the operation g(m,, z,, 2, #,)
depends on the variables @, and #,. Indeed, in the opposite case for all
By, @y, By, 8y € A formula (4.4) would imply the equation @, = g(m;, 2y, 4, 3,),
which is equivalent to the equation f(m, s, @) = F(@, %, #,). Thus
F(®y, 2, #5) would not depend on the variable a,, which contradicts the
assumption. Consequently, g(#, @, %;, %,) depends on both z, and =,.
Hence it follows that the eguation

(4.5) §(®y, Byy By, B) = §(@y, By Ty )

depends on the variables @,, 2,, z; and #,. Thus there exist an index j
(1< j< 6) and an operation ke A® guch that equation (4.5) is equiv-
alent to the equation :

By = " (@1, By, oy Bj—1y Bjg1y ooy To) «
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By the symmetry properties of (4.5) we may assume that 1<j<4.
Indeed, the cases k =5 and k =6 can be reduced, by the substitutions
By =y, @y = @5 and @ = @y, T, = &g, t0 the cases k =2 and k =4 re-
spectively. Moreover, by the substitution Golty, Ty, Tyy Bg) = (B3, By, 25, 2,),
which does not change condition (4.4), we can reduce the case §j =4 to
the case j = 2. Consequently, we may assume that 1<j <3 and the
operation g in (4.5) fulfils (4.4).

First consider the case § = 1. Then (4.5) is equivalent to the equation
@ = h{®y, B, By, s, ). From (4.4) it follows that equation (4.5) holds
whenever @, = o, and @; = ,. Thus for all @, #,, @3, ¥5¢ A we have
the equation @; = h(@,, %5, %y, %, 5), Which gives a contradiction. Con-
sequently, 2 <j < 3.

Now consider the case j = 3. Then (4.5) is equivalent to the equatlon
%y = h{®y, Ty, Ty, s, ). Since, by (4.4), the equation (4.5) holds whenever
2, = 4, and x; = 25, we have the equation x; = h (@1, s, 45, %5, ;) for all
@y, &%y, Ty, ¥5 € A. But this is impossible. Consequently, j =2 and equa-
tion (4.5) is equivalent to the equation ®, = h(®,, @, 4, 5, ¥)-

Since, by (4.4), equation (4.5) holds for @, = #,and x5 = xs, we have
the formula )
(4.6)

for all @y, @y, 5, 25 € 4. Moreover, equation (4.5) holds whenever @, = :rs
and 2, = . Thus for all @, @,, %5, 4, ¢ 4 the equation
(4.7)
holds. Put s(z,y,2) = hiz, z,x,y,2). Of course, s<A® and, by (4.6)
and (4.7), the equations s(z, ¥, y) = $(¥, #, y) = # hold. From Lemma 4.1
it follows that these conditions determine the operation s uniquely. The
lemma is thus proved.

By A™ (n >1) we shall denote the subclass of 4™ consisting of
all operations f satisfying the condition f(z, z,...,2) = 2.

LevmA 4.3. Let s be the ternary algebraic operation satisfying the
condition
(4.8) s(z,y,y) =s(y,x,
Then the following equations are true:
(4.9) 8 (@1, @ay @) = 8 (wn, By, @) ,
(4.10) S(S(wu Doy ma):‘ gy Bg) = 3(‘”17 8(@ay @4, T3), -Ws) 3
(4.11) f(s (@) X2y T3), Ws) ='5'(f (15 @3) 5 T (s, ) wa) for any fez(;z) 3
(412) (o1, 2, .., o)

=3(f(w1: Byy Dyy Byy ooy

Ty = h(@y, T3, By, %5y Do)

Ty = h(@y, T3, @y, Tay T,)

y) =w.

y “’n)}
(n>3).

Jm'ﬂ)) f@yy @y, @y 2y, e
for- any | e A™

Tn) s [ (@1, Tay @1y By, .o
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Proof. From (4.8) it follows that equation (£.9) holds whenever
%y = &, OF ¥y = @y. Thus, in view of Lemma 4.1, it holds for all x,, Ty, 3 € A
Further, from (4.8) we get the equations

5‘(5’(-7/'17 Dy La)y Ty, 902) = 8(&y, &y, @) ,

'5‘("‘”1, §(2ay %y, 03), wz) = 8(wy, @, -'Uz) y

8(3(‘”1, Dy By), By, -’1/'4) = 8(®1s @y T) ,
(

S(mlv 8(iyy @a, @), a"4) = 8(&1, ¥y, @) ,

~ which imply that (4.10) holds whenever @, =, or @, = u,. Hence, in

virtue of Lemma 4.1, we get formula (4.10) for all @, @, 5, 7, € 4.
From the equations

f(8(a71, @y 1), -”01) = (@, 1) ,

8(f (@1, @), (@0, 1), 31) = s{my, (@0, @), 33) = F(ma, 23),
fls (@1, @ay @), @) = flay, @) 5

${f (@, @), 1 (s, ), @) = 8(f (@1, @), 0, 7) = F (a1, 05),

where feA®, it follows that equation (4.11) holds whenever @ = @y
or @ = &,. Thus it holds for all s, wy, 23 e 4.

Finally, taking into account formula (4.8), we have for every operation
7 ¢ A™ the equations

3()‘(‘”27 Dyy Byy Tay ==y W)y f(@ay Boy Bay Tyy oovy wﬂ))f(”zy Lyy Loy Byy 2eey ‘”ﬂr))
= [ (@ay Bay Tgy Lyy +eey Tn)
S(f(ws, By gy Byy vey Bn)y § (@ay By Bay Bgy vy Tn)y [Ty By B3y Bay orvy wﬁ))

= f(wsa Wy Lyy Byy oeey (I/";) .

Hence it follows that equation (4.12) holds whenever ; = @, or @ = %,
which implies, in virtue of Lemma 4.1, that equation (4.12) holds for all
@y gy ooey Bn € A. The lemma is thus proved. N

In the sequel we shall denote by R the class A®. Elements of &
will be denoted by small Greek letters.

Luva 4.4, If A® 5= 4™ then R is an associative ring with respect
to the operations

(4.13)
(4.14)

(a+B) (@, y) = s(“(”; ), B(2,9), ?/) y
(0f)(w,y) = “(ﬂ(xf ), ?]) y
where s s « ternary algebraio operation satisfying the condition

(4.15) s(@,y,9) =s(y,2,y) =2
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Moreover, the ring R has the unit element and has no divisors of zero. The
element —a s given by the formula

(4.16) (=a)(@,9) =3(y,9, a@,9)) -

Prooif. First of all we note that the existence of the operatién s
satistying condition (4.15) follows from Lemma 4.2.
We define the zero-element and the unit element by the' formulas

0x,y) =9, 1(»,y) =». Obviously, 0% 1. From (4.13) and (4.15) it

follows that
(a+0)(z,y) = s(a(m, Y)Y, y) =a(®,y),

(@)@, y) =a(®,9), (1a)(@,9) =a(,y).

Consequently, a-+0 =a, al = la = a for every a e K.

The associative law for multiplication is a direct consequence of
definition (4.14). Taking into account assertions (4.9), (4.10) and (4.11)
of Lemma 4.3, we have the equations

(atB)(@, ) =s(a(@,9), B(®, ), 9) =3(B(@, 1), a(z, ¥), )
s =(f+a)(2,y),
(@B +7) (@, y) =s(s(a(@, v), B(=,9), 9), 7(z, 9), ¥)

=s(a(@,9), 3(B(2,9),7(@,9),9),9) = (a+(B+) (=, 9),
(a(B+2) @, y) = als (8=, 9), (@, 9), %), 9) ,
= s(a(B(@,9),9), a(y (@, ), 9),9) = (af+ ) (w, ),

which imply that the addition is commutative, associative and the left-
distributive law holds. Further, the following equations are a direct
consequence of definitions (4.13) and (4.14):

e

((B+7)a) (@, 9) = 5(B(a(@, 9),4), ¥ (a(2, 9), 9), 4) = (Batra)(@, 9) .

Thus the right-distriburive law is -true.

Setting f = s into (4.12) and taking into account (4.9) and (4.15),
we get the formula )

8wy, @y, ) = 3(3(%: By, Ty) ) Ty 971) =’3 (mu 8 (@, @y, Ta), ml) .
Hence and from (4.16) the equation
(a—[—(—a))(m, y) = 3(“(“’7 ), '5'(?/7 Y, a(z, y))’ ?/)
= 3(?/y a(z, ¥}, a(z, @/))= Y =0(z,y)

follows. Thus, a-+(—a) =0 for every a e X and, consequently, R is an
asgociative ring with the unit elemént. -
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Suppose that af =0, i.e.
(4.17) a(f(@,9),9) =y

for all #,y ¢ A. We shall prove that at least one of the elements a, B is
equal to 0. From (4.17) and from the equation alp(z, »), Y) = alz, y) it
follows that the equation

(4.18) a(B(@, ), 2) = aly, 2)

holds whenever ¥ =& or y =z. Consequently, by Lemma 4.1, it holds
for all ,y, 2 €« A. Suppose that « 5= 0, i.e. the operation a(z, y) depends
on the variable z. Then the equation

(4.19)

a(wly wz) = a(wm w3) ‘
depends on the variables #; and @,. Consequently, there exist an index k
(1<% <3) and an operation h e 4% such that equation (4.19) is equiv-
alent to the equation }

@ = h(@i, 27)

where 1 <4 <j <3, 1%k and § # k.

If k=3, then (4.19) is equivalent to the equation @, = h{w, z,).
Since (4.19) holds whenever @, =, we infer that @, = h(z,, ) for all
@,y ¢ A, which gives a contradiction. Thus 1 < %k <2. By the sub-
stitution. #; =z, and @, = », into (4.19) the case ¥ =2 can be reduced
to the case k¥ = 1. Therefore we may assume that % = 1. Consequently,
equation (4.19) is equivalent to the equation #; = h(w,, ;). Since (4.19)
holds whenever 2, = x,, we have the equation @ = h(zy,x;) for all
@y, @5 € 4. Thus equation (4.19) holds if and only if #; = @,. Hence and
from (4.18) we get the equation p(»,y) =y. Consequently p = 0, which
shows that the ring R has no divisors of zero. The lemma is thus proved.

Lumva 4.5, If A 2 A®Y) then A is a umital left-module satisfying
the cancellation law over R with respect to the operations

(4.20)
(4.21)

oty =s(z,y, 0)
(aeR,zed),

(@, y € A4),
ur = af{x, O)
where @ is an element of AY if AV - & amd is an arbitrary clement of A
if A% =@. The operation s is defined by Lemma 4.2.

Proof. The element @ is the zero-element of 4. In fact, z+6
= s(x, @, ©) = x. Further, we have, in virtue of Lemma 4.3, the following
equations:

wty = 8w, y, 0) =s(y,®,0) =y+w,
(@+y)+2 = '9(3(50; Y, 0),2, @) = 8(97: 8(y, 2, 0), @) =a+(y+=2),

a(@+y) = a(s(m,y, ), @) =3(a(m7 0), aly, @), 0) = e+ ay
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for any #,y,2e€ A and aeR. Moreover, the equations

a(fr) = a(f(2, ©), O) = (af)r
lz =2,
(a+pBa = s(a(m, 0), B(=z, O), @) = ax+fz
* are true for any ze 4 and a, f € R. Hence, setting —« = (—1)w, we get
the equation #--(—2a) = 0z = 6.

Suppose that # 7 0 and ax = 0. If a # 0, i.e. the operation a(z, y)
depends on the variable &, then the equation a(w, y) = y depends on the
variable #. Consequently, there exists an operation he.d® such that
this equation is equivalent to one of the equations » = h(y) and Y == h(x).
Since a(#,#) =@ for all z¢ A, we have the equation i(z) =& for all
@ € A. Thus the equation a(w,y) =y holds if and only if # = y. In par-
ticular, a(x, ®) = @ implies the equation » = @, which contradicts the
assumption @ = @. Consequently, « =0, which completes the proof.

Levma 4.6. If A% 3£ A%Y, then the dass A™ (n>2) consists of
all operations

n
F@1y @y ooy ) = D gy,
i=1

n
where Ay, Jyy ooy An € R amd DAy = 1.
=1
Proof. Firgt we shall prove the formulas
(4.23) * Ay, ®) = (1—2)(z,¥),
(4.24) Az, y) = te+(1— Ny

for any i e R, i.e. for any operation 1 e A, Setting f(wy, @y, @) = A(2,, 24)
into formula (4.12) of Lemma 4.3, we get the equation

(4.25) )“(wav o) = 8(1({131, %3) l(“"ﬂ; @), xl) .
Replacing in this equation @, and o, by @ and &, by y we obtain the formula
&= 3(1(?/) @), A, Y), ?/) .

.He'nce, according to the definition of the unit element and the addition
in R, we get equation (4.23). Further, setting #, = O into (4.25) and
replacing @, by « and =, by y, we infer that
Az, y) =’3(A(0, ¥), Mz, 0), 9) = 8(}'(‘7"1 6), (1— )y, 6), @)
= Ja+(1-2)y,

which completes the proof of (4.24).

icm®

Olass of universal algebras

343

From formulas (4.13) and (4.16) of Lemma 4.4 it follows that

(4.26) (1+(_1))(w, Y) = S(m: 8(y,y, 37)7"/) =0(zw,y)=y.
Put
(4.27) (@1, Doy Byy T)) = 8(8(0y, @a, @), 5 (24, 24, 05), AR

By formula (4.10) of Lemma 4.3 we have the equation
G (21, By gy ) = s(ml, § (@2, 8wy, 24, 3), 4) m4) .
Hence, by (4.15) and (4.26), we obtain the equations
G (@1, By, @y, By) = s(ml, 8(@ay 8 (@, T4y a), 4) w4] = (0, 14, @)
=&y = $(%y, Ly, Xy) ,
G(@yy @y, Byy @) = s(wl, 8 (@, 8 (24, @1, @), o), m4)
= 8(my, (s, @, 7,), o) = s(@, 25, 7).

Thus the equation g(, #;, %3, 4,) = 8(@, @y, 25) holds. whenever x; = a,
or @, = #,. Consequently, by Lemma 4.1, it holds for all @, @, ;, @, € A.
In particular, we have the equation

As(w’ Y,2) =g®,y,z2, 0)

for all »,y, 2 e A. Hence and from (4.27) we get, in virtue of the defini-
tions (4.16), (4.20) and (4.21), the formula

(4.28) s(®,y,2) =aty—=z.

Now we shall prove by induction with respect to n that each operation _
of the form (4.22) is algebraic. For n =2 it is a consequence of . for-
mula (4.24). Suppose that for an integer n > 2 this statement is. true.

n+1
Let 2y, Ay ooy Az € R and Y Ay = 1. By-the indwetive assumption the
f=1 . .

operations
n+1

(4.29) Ful@y, By ooy Bnss) = (a Doyt D, Ay,
. - n+1
(4.30) Jol@s, Bay @ ooey Bng) = (A )@y + At g Aoy,
-1
(4.31) Fol@y By vees Tnia) = (ot Tt Ae)mn+ 12 s

are algebraic. Thus the eompositidn

H@yy By oey Drga)
= 8(f1($1, Bay vvey Tnga)s Fol@uy Bay By 'oory Tntr)y Fol(Bry Bas vovy Tat1))
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is also algebraic. By (4.28), (4.29), (4.30) and (4.31) we have the equation

4
n+l

H(@1; @ay ooy Baga) =72 Agmy .
Consequently, all operations of the form (4.22) are algebraic.

Finally, we shall prove by induction with respect to » that each
operation from A™ is of the form (4.22). For n = 2 it is a consequence
of formula (4.24). Suppose that this agsertion i true for A (n = 3).
Given 7 e 4", we have, by the inductive assumption, the equations

n

y &n) =Zafwf,

@, oy, @5, 3, ..

=1

n

Fmyy @y ®1, 4y ooy Ba) *_"Zﬂﬂf s
. J=1
. n

@, @y, 0, @, ey Tn) =27ﬂ"f s
=1

where a
n k(3 n
2a1=2f31= yr=1.

I
-

i

)

-
<.
-

7

Hence and from (4.12) and (4.28) it follows that

T
(@1 @y ooy B0) =2;“fml s
i=

where 4; = a;4B5—y; (i
lemma is thus proved.
Lenwa 4.7. Let A” 2 A°D. If o and B belong to the ring R of binary

operations from Z@, then there exists an element y € R such that a = By
or f = ay. : - :

Proof. If g =0, then g
the operations

n
1,2,..,n) ands consequently, 3 1; = 1. The
= |

= a-0. Suppose that # # 0. By Lemma 4.6

[ @y @ay @3y @y, 5) = a2y — aa+ By + (1 — B)as
and

9 (@, Dy 3, Xy, Tp) = ﬁw,,+(1—ﬂ)m5
belong to A®. Since § 0, the equation

(4.32) F (@1, @y, g, Ty B5) = G (@1, @, @a, @4y )
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depends on the variables z; and z,. Consequently,
(1 <k<38) and an operation % eA®
alent to the equation

(4.33)

there exist an index k
such that equation (4.32) is equiv-

B = h(@y, B3y ooy Bpor,y By, .oy o5)
It is obvious that equation (4.32) does nof depend on the variable

z5. Consequently, 1<k< 4. Moreover, the equation f(e,,,x, a)
=g(z, 2,2, v, ) = & implies the equation hiz,2,2,2) =z Thus heA?

and, consequently, by Lemma 4.6

5
h(@y; @y oony Ty Doy <o %) 22/’*}‘% .
=
Setting @5 = @, &x = ps—p® and @; = O for indices j different from %
and 5—% we gel a system of elements satisfying equation (4.33) and,
consequently, equation (4.32). Hence it follows that aps it = P if k=1
or 2 and fus—xx = if k =3 or 4. Since » is an arbitrary element of A,
we infer, by Lemma 4.5, that one of the elements «, A is left-divisible by
the other one, which completes the proof. ’
Lovma 4.8. If A® =AY, then 4™ = 4™ for all n > 3.
Proof. We shall prove the lemma by induction with respect to .
By the assumption the equation 4™ =A™ holds if n = 3. Suppose
that n > 4 and :

(4.34) AP-Y g1

Let ]‘eA("). Put g(w) =f(@,®,..,4). For each pair i,j (4% 754,]
=1, 2, ...,n) replacing : by @ in f (2, @, ..., 2) We obtain an (n—1)-ary
operation. From the inductive assumption (4.34) it follows that there
exists an index »(i,4) (1< r(4,§) < n) different from ¢ such that

F@y, @y ey Bym1y By Bit1y ey Tn) = §(@riag) -

If g is a constant operation, i.e. §(#) = ¢, where ¢ e 4™ then, by Lemma 41,
the equation f(ay, %, ..., @x) = ¢ holds for all @, #,, ..., xx ¢ 4 and, con-
sequently, f ¢ A™". Therefore we may assume that the operation g is
not constant.’
Firgt consider the case r(1,2) =2 and r(1, 3) = 3. Then we have

the equations )

f(wz; gy Lgy Byy ooey @) = (%),

(y @y By, By ooy Bn) = g (@)

which show that the ecquation j(®y, %, ..., %s) = g(z;) holds WbeneYer
@ =, or @ =a,. Thus, by Lemma 4.1, it holds everywhere, which
implies f e A™Y, . .
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Now consider the case 7(1, 2) = p # 2. Setting »(1, 3) = q we have

equations

(4.35) H(@ay %oy 3y gy oy Tn) = g(%p)

(4.386) Hmgs @gy Ty Bay ooy Bn) = G5) -
Setting @, = w; into equation (4.35) and taking into account the inéqua]ity
» # 2, we get the equation

(4'37) f(m:n Xy, Bgy By oeey Bn) = g(wp) .
Further, setting 4, = @, into equation (4.36), we get the equation
{y(wq) It g2,

glm) i g=2.
Hence and from (4.37) it follows that p = ¢ if ¢ 52 2 and p=3if ¢g=2,
Consequently, if g 2, then, according to (4.35) and (4.36), the equation
(@1, %3y ooy @) = g{mp) holds whenever @ = @, or @, = m,. Thus, by
Lemma 4.1, it holds everywhere, which implies the relation fedmy,

Now we shall prove that the equation ¢ =2 is :impossible. Indeed, if
¢ =2 and, consequently, p = 3, then, by (4.35) and (4.36), the equations

F( @5y @sy 3, &gy ovy Tp) =

(4.38) T oy oy 3y @y, ..y @n) = g(a,)
(4.39) F(@sy @y @9y By, oy @n) = g ()
hold. Setting 7(4, 3) =m, we have the equation
(4.40) F(@y, @y, @y @, @5y ooy Ts) = glay) .
Setting a4, = @, into (4.40) we get the formula

9(@m) if m#*1,
() if m=1.

.Henee and from (4.38) it follows that m = 3. Further, setting ; = u,
into (4.40) we obtain the equation

f(@sy @, Dyy Byy By oovy Bp) = {

J (s, @a, @5, 5, Ty eey Bn) = g(m3) ,

;v(ﬁ:;: contradicts equation (4.39). Consequently, the case g = 2 never
Fina,lly the case r(1,2) = 2 and 7(1,3) # 3 can be reduced to the
previous one by the transposition of the variables @, and a4 in the operation
f @y, @y, ..., ), which completes the proof.
Proof of Theorem 4.1. Suppose that A® 2 4&D. By virtue
of Lemmas 4.4 and 4.7 there exists an associative ring R with the unit
element, without divisors of zero and such that for each pair a, f e R at
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least one of the elements a, B is left-divisible

by Lemma 4.5, the set A,ii unital left-mogilzheogrgrm‘r‘llOsné,%ishfg%llzozfé
cancellation law. Further, by Lemma 4.6, the operation T2y, 25, @)
= &, +@,—; 18 algebraic. Consequently, for any operation fed™ (n>1)
the operation

(4.41) G(@1y Boy ovy Bon) = [ (@4, Loy veey mn)‘i“mzn—f(wn.(_l, Bty ooy Lon)
is algebraic. Moreover, g(w,®,..,4) =2 and, consequently, geA®.

2n
Thus, by Lemma 4.6, there exist elements 4, 4, ..., doy € R wWith 2 A =1
i=1

for which the formula

2n
(4.42) 91, oy orcy Ton) = D) Mgy
j=1
holds. Setting #n+1 = Bnte = ... = = O into (4.41) and (4.42) we get

the equation
. k3
(4.43) F{@3, @y oy 1) = D syt
. F=1

wheve a =f(0, 0, ..., 0).

Now consider the case A” @ and A® = A®”. Then, by Lemma
4.5, O¢ A®. Put 4, =A". We have proved that each algebraic n-ary
operation is of the form (4.43), where i, 4,, ..., 2n € R and a € 4,. Since
the addition and the scalar-multiplication in 4 are, by the definition,
algebraic operations, we infer that each operation of the form (4.43)
with arbitrary coefficients ,, Ay, ..., 4x from K and « from 4, is algebraic.
Moreover, it is obvious that 4, is a submodule of 4. I ae R, a #0, ae 4
and aa € 4y, i.e. as is an algebraic constant, then the equation ax = aa
depends on the variable # and, consequently, has a unique solution z = a
belonging to A®. Thus a e 4, and, consequently, the submodule 4, is
divisible, which completes the proof of assertion (i).

Now suppose that 4@ =@ and 4® % A®D. We have previously
proved that each algebraic operation is of the form (4.43). Let B be the

n
subset of the product R x A consisting of all pairs < Zl s, 6, where the
P

elements A, Ay, ..., 4y 0f R and the element o of 4 appear in the repre-
sentation formula (4.43) for algebraic operations. We note that for each
{1, @) ¢ B the unary operation Az+a is algebraic.

‘We shall prove that the set B is admissible. Since the trivial opera-
tion f(#) = o is always algebraic, we infer that <1,0)¢B. Further, let
Ay, a) e B. It A is left-divisible by 1—4, ie. 4= (1—1)a, where ae R,
then (1— A)(a+1) =1 and, consequently, the element 1—2 has the right
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Inverse in R. Since the ring R has no divisors of zero, the element 1— 2
is invertible in R. The operations f(#) =  and g(x) = Az--a ave algebraic.
Moreover, f((1—1)"a) = g((1—2)""a) and f + g. Consequently, the equa-
tion f(#) = g(») has a unique solution belonging to 4°, which contradicts
the assumption A =@. Thus 4 is not left-divisible by 1— 2 and, con.
sequently, by the divisibility properties of R, 1— A is left-divisible by 4,
ie. 1—1 =18, where feR. Hence we get the equation A+ =1,
which shows that 2 has a right inverse in R and, congequently, is in-
vertible in R because the ring R has no divisors of zero. Condition (i)
for admissible sets is thus proved.

Let gy, gy ...y pin be a system of elements of R satisfying the con-

13
dition 3 u; =1. Let (A, apeB (j =1,2, ...,n). By Lemma 4.6 the
F=1

n
operation g(a, &, ..., @a) = D, usmy is algebraic. Moreover, the unary
F=1

operations fiz) = Lw+a; (f =1,2,...,n) are algebraic. Thus the com-
position

(@), 1o(@), ooy o) = D witiwt Y ugay
=1

Fm1

7 n
Is algebraic and, consequently, { ) w;, 3 mas)eB, which completes
pe] =1

the proof of condition (iii) for admissible sets. :

Finally suppose that a, AeR, a % 0, ae A and A+ al—a, aad < B.
Then the operation f(x) = (1+ al— a)z+aa is algebraic. Further, by
Lemma 4.6, the operation g(x 14) = (1—e)z+ay is also algebraic. Since
the equation f(@) = g(x, 4) depends on the variable Y, we infer that it
Is equivalent to one of the equations y = iz a, & =)2""— 1" with
algebraic right-hand side. In the first case we have the relation <1, a) ¢ B
and i the second case <2, 17%a) ¢ B. Setting in the lagt case by =—4,
e =142, oy @y = <l_1;—l—1a> and Ly @y = <1,0> we have, by
the previously proved condition (ifi) for admissible sets, the relation
{adat prodgs i+ paa,> € B and, consequently, <4, @y ¢ B, which implies
condition (iv) for admissible sets. Thus the get B is admissible.

To prove assertion (ii) of the theorem it suffices to prove that for
each pair (1, a> ¢ B and each system A;, s, ..., 4 of elements of R with

A+ Jot... 4 In = A the operation 12 A5+ a is algebraic. Since the element
=1 .

is invertible in R, the operation

n
h($1: Ty eony m‘n) =Zl'l/11m,

=1
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is, by Lemma 4.6, algebraic. Moreover, the operation g(z) = iz-ta is
algebraic. Thus the composition

n
a
g(h (@, By eeey fb’n)) =2, Amit-a
=1
is algebraic, which completes the proof of assertion (ii).
Suppose now that 4® = 4®". Then, by Lemma 4.8, the class of
algebraic operations is the class of all operations f defined ag

F@1y @y ooy @) = () I<i<gm),
where ke A®,

Firstlet us assume that all operations from 4® are constant. Since 4
contains the trivial operation, 4 is a one-point set A = {a,} and, con-
sequently, (@, &, ..., #1) = a, for every operation 7. Let 8 be the group
containing the identieal transformation only and A4, = {a,}. Then as-
sertion (iii) of the theorem is obvious.

Now suppose that the set S of non-constant unary algebraic opera-
tions is non-void. For any operation g from 8 the equation ’

(4.44) ' g(@) = g(y)

depends on both z and y. Consequently, there exists an operation e A®
such that (4.44) is equivalent to one of the equations z — h(y)and y = h(z).
Since (4.44) holds whenever @ =y, we infer that h(z) =z for all me A,
ie. (4.44) holds if and only if # =y. Thus each operation from § is one-
to-one. Hence it follows that the set 8 is a semigroup under the compo-
sition (g14,) (@) = g(ga(®)). Of course, the identical operation is the wnit
element of S. Let g,, ¢, ¢ § and 9(A)  go(4) = B@. Then the equation

(4.45) 9:(%) = galy)

depends on both & and y. Thus, there exists an operation ge A” such
that (4.45) is equivalent to one of the equations # = g(y) and y = g(=).
Consequently, one of the equations gy(y) = alg ), gulo) = %:(9 ()) holds.
Hence it follows that g ¢ § and at least one element of the pair gy, ¢, is
left-divisible by the other one. :

Let A4, be the set of all algebraic constants. Obviously, g(4,) C 4,
for all g € 8. Moreover, if the equation 9(2) = x depends on the variable x,
then it has a unique solution belonging to A4,. Hence it follows that each
trangformation that is not the identical transformation has at most one
fixed point in 4 and the set 4, contains all fizxed. points. Further, if ¢ € 4,,
¢ €8 and the equation g(#) = ¢ depends on the variable @, then it has
a unique solution belonging to A,. Consequently, g—1(4,)C 4, for all
g €8. Assertion (iii) of the theorem is thus proved.
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