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A compactness result concerning direct products of models

by
M. Makkai (Budapest)

Introduction. The results of the present paper are motivated
by the following theorem of R. Vaught (see [10], Theorem 2b)

TeEOREM OF VAUGHT. If K is a class of similar relational systems
and K e PCy4, then SP(X) ¢ UC, (4).

The following theorem was proved in [6] and r97.

TEROREM OF £08 AND TArsKI. If K € PC,, then S(K)e«UC,.

This theorem can be derived from the Compactness Theorem of the
first order predicate calculus by the standard method of diagrams (2).
Our main result (Theorem 1 in § 2) is a “compactness’® result concerning
classes P (K) from which the theorem of Vaught can be derived in a quite
similar way by the method of diagrams. To formulate our theorem, let
us call a class X of gimilar relational systems compact if the following
holds: for any set X of sentences appropriate for the systems of K, if
every finite subset of X is satisfiable by a system of K, then X is itself
satisfiable by a system of K. Then our assertion is that if X is compact,
then the class P(K) of all direct products of systems in K is also compact.

Let Dp(K) denote the clags of all direct powers of systems of K
We infer that K ePC, implies. SDp(K) e UC, (Corollary 3). This will
be derived by the method of diagrams from a more general compactness
result (Theorem 2). Another special case of Theorem 2 that if X is compact,
then Dp(K) is also compact.

We give some remarks concerning direct products and cardinal
sums related to these results, and finally we state a compactness result
coneerning countably weak direct products.

Our main tools in the proofs ave a criterion of [4] (stated in § 1 of
the present paper) for a sentence holding in a given direct product, and
the Compaetness Theorem.’ ‘ ' )

" § 1. Preliminaries. We sum up the notions and notations to be -
used in the paper. For more details, see [9] and [7].

() For definition of the notions, see § 1.
(%) See e.g. [6], § 4.
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314 Result concerning direct products of models

A language is a set of which certain elements are specified as predicate
symbols and others as function symbols. We denote predicate symbols
by P,Q,R,S; function symbols by f, languages by L, possibly with
several indices. P eL and f eL will always mean that P is a predicate
symbol, f is a function symbol of the language L. With each P or f
(P, f L) there is associated a natural number »(P) and »(f) = 0 and P,
are called a v(P)-ary predicate symbol and a»(f)-ary function symbol,
respectively. (3)

A is a relational system, or briefly a system of L (notation: 9 « §(L))
if 90 is an ordered pair of a non-empty set A (denoted by [U|) and a function
with domain L such that, the value of this function for arguments P
and f (P, f € L) being denoted by Py and fu respectively, Pyis a »(P)-ary
relation on A and fy is a »(f)-ary operation on A. (%)

If L, L' are languages, L' DL and ¢ S(L') then A|L denotes the
L-reduct of 9, i.e. the system B of L such that [B| = || and, for any P,
fel, Py =Py and fp =Jfy. I KCGS(L'), then K|L ={A|L: AcK}.
Let K C S(L). Then K[L'] will denote the class of all systems B, B « S(L')
such that BlLeK.

We suppose that the notions of the first order predicate caleulus
are known. We use the following notations for the logical operations:
~1(negation), A (and), v (or), - (implies), < (equivalent), (%) (for all »...),
(Hz) (there exists an « such that...). ‘/\ F; and _\/E¢ stand for the con-

i,

junction and the disjunction, respeetivéfy, of the formulas F; such that i
satisfies the condition “4...”". The (first order) formulas of L are built up
in the well-known way from the symbols of L, the identity symbol =,
of the fixed infinite sequence v,, , ... of (individual) variables and the
logical operations. The set of all formulas of L and the set of all sentences
(formulas having no free variable) of L are denoted by F(L) and F(L),
respectively. If the sentence F has the form (v,)...(v,)®, @ containing no
quantifiers, then F' is called a universal sentence of L. If F e F(L) and F
dontains no free variable except the distinct variables @, ..., @n; A ¢ S(L)
and a,, ..., ap € |A|, then 1 oo n

. : A ui, s Oy F

will mean that a,, ..., a, satisfy F' in W under the correspondence @ ~>a, ...
woy Bn—>an. In particular, if ¥ e Fy(L), A I~ F means that F' holds (is true)

(*) More precisely, a language should be considered an ordered pair of two fune-
tions, one of them being the function » restricted to the set of predicate symbols, ete.
But our simplified conventions will not cause any confusion.

(*) An wn-ary relation on-4 is a function, defined on the set 4™ of the ordered
n-tuples of elements of 4, with possible values true (or 1) and false (or 0). An n-ary
operation on 4 i3 a function defined on A" with possible values in 4. A singular relation R

is identified in the usual way with a set, i.e. we shall write ¢ B equivalently with the
statement that R (z) holds.

©
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in 9. If F e §o(L) then My(F) denotes the class of all systems % such that
Ae S(L) and A-F. If T CFyL), then M (Z) = U ML(Z). The systems 9

. F
and B of the same language L are said to be element;ﬂy equivalent (notation:

U = B) if for any F, F' e §,(L), A~ F if and only it B F. An

A elementa;
equivalence type is a class of the form {B: B = A} for some fixe(d sysing[)
Let EC4 be the family of all classes K of systems such that K — ML(Z;

for some L and 2, ZCF,(L). If in addition X contains only universal
sentences, then K e UC,. PC, denotes the family of the classes X such
that K = K'[L for some K', L, L' with L' DL, K' C §(I) and K’ ¢ EC

We shall repeatedly use the following basic theorem of the th'eog'
of models (see e.g. [8]). )

CompACTNESS THEOREM (CTh). If ZC(L) for a language 1. and
for any finite set X' of X we have My(Z') £ 0, then ML(Z) # 0.

We shall apply the following natural terminology. A eclass K of
systems of L is called compact if for any set X, X C Fo(L), the following
hold: if for every finite subset X' of X we have Mi(Z) ~K + 0, then
Mr(Z) ~nK # 0. CTh implieq_ evidently that a class of EC, or PC, is
compact. Let us denote by K the class of all systems elementarily equiv-
alent to some systems of K. Then it is easily seen that K is compact
if and only if K ¢ EC,. ‘

Let 8, denote the set of all equivalence types of L. As is well known
(ef. [1], pp. B23£f), 8 constitutes a totally disconnected compact topo-
logical space if the basis of 8§y, is defined as the set of all sets

<G> = {31:2 7I€§L, nCML(G)}
for any @ eFo(L). CTh is equivalent with the compactness of Sp.
It
) A9 ieI>
is a non-empty indexed family of systems %® of L with the index set I,
then the direct product of the systems UA? is the system B of L defined
by the following stipulations: || is the cartesian product (5) [] |u®!
iel
of the sets |A”[; it PeL, feL g, .., pne|B| and »(P) =n, »(f) =n
then Pg(gy, ..., ga) is equivalent to the statement that for every i, i eI,
Pay(@i(8) ..., pu(4)) holds and fu(gy, ..., pa) is the funetion @ €|B| such
that for any 4,4¢el, (i) = fyu (q)n(z'), ...,(pn(’i)) (cf. [4]). I, for each 4,
% is the same system 9, then [] A is called a direct power of %A and
i€l
denoted by A% )
Let us denote (1) briefly by %, and let @ eF,(L). We write K5 for
the set {é: i e I, AP |- ©). The following criterion of [4] (pp. 83-84, espe-

(") Le. the set of all functions ¢ such that the domain of ¢ is I and (5) € U]
for every 4 e I. : .
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cially (4) on p. 84) is the basis of our results. It gives a necessary and
sufficient condition for a sentence F' to hold in a given direct product;
roughly speaking, in terms of stipulations on the number of those factors
of the product which satisfy certain sentences, the latter depending only
of F (see @f below). The use of the superscripts F in the formulation
seems perhaps unnecessarily complicating; however, it will be useful
later when we apply (F'V) simultaneously for several F’s,

(FV) With every sentence F (L) we can associate the natwral
numbers m, MT; the sequence

X P MF-)F, . b
AP <y, @ <mTy, T <"
of MF sequences of nalural mumbers; subsets 5, ..., sur_, O M¥ (°); the
sequence OF, ..., OF . of m¥ sentences of L such that for any mon-emply
¥

indexed family (1) :
) - [A-F
i€l
if and only if there ewisis a k, k < M, such that for any §, j < mF, Kg;r_ has

eaactly ¢ elements if je sy, and at least q(jk)'F dlements if j ¢ sx .

The formulas @) may be chosen so that for any different f,j,
(2, ja<m”) we have Mu(OL) ~ ML(Of) = 0; but we shall not use this
because it does not simplify the proof. (FV) was stated in [4] only for
the case of L containing only predicate symbols, but we can strengthen
the original form to the general case by a trivial argument, using the
“representing predicates” of the functions.
For a class K, KC G(L), we denote by P(K) the clags of all direct
. products of non-empty indexed families of systems in K. (?) Dp(K) denotes
the class of all (non-empty) direct powers of systems of K.

§ 2. TEEOREM 1. For any language L, and class K, K e S(L), if K
is- compact then P(K) is also compact.

Proof. We associate a unary predicate symbol R® with every sen-
tence. @ of L, for different @5 the R®'s being different. To explain in
broad terms our purpose in doing so, let T be an “index’® get and let Uy
be a system of L for any e I. The intended interpretation of R® will be
the set; of indices i in I such that 9, satisties ©. Using the symbols R®

(*) An ordinal number (in particular a natural number) is considered as the set
-of all smaller ordinal numbers.

(") See [8]. In [10] Vaught uses this notation in a slightly different sense: he allows
‘the empty direct product (thus ineluding in every clags P(K) the one-element system 9,
in which each Py, is identically true for each P ¢ L) and he includes in his P(K) all

systems isomorphie to some system of P(K) in our sense. Our results hold for either
definition of P(K).

©
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with this interpretation, we can “express” (for g Cas

a part of the fact that the conditi%n of £E(‘)§7)F]:g0d(sl‘ by sentence o
More precisely, we do the following. Let L, be the language con-

gisting of all R for @ eTo(L). Let Re Ly, # be a natural number We

denote by (@@)R(2), (ATa)R(a), (n>1), and (@e)R(z), (WbayRLe)

the following formulas, respectively: ’ )

(Twg)... (Avs)( A 00 # 05 A
ik

i,k<n

A R('Ui)) ’

(H’Uo)-“(H'7’n~1)(7)n)(ii7{é}:’t ¥ 'ukvié\n.R('m)v(R(vn) ~>i>/'n Vp = p{)) ,
(v0) (00 = o) ,

(TR (wy)) .

Then, if Rel’ and B eGS(L') for some L', then B (T"z)R(x)
and B (B!"z)R(z) (n > 0) are equivalent, respectively, to the statement
that there exist at least or exactly n different elements  in |B| such
that B [2R(v,). :

In all that follows we write RZ instead of RY. Now we define &
for any F ¢ §(L) as the following sentence of Ly: ’
. P o (),F
V (A @5 2)Bi@)a A (B89 2)RE(a))
k<MF iesi IEMF/9£
(for the notations, see (F'V) in § 1).
Now we can formulate (FV) equivalently as follows. (2) holds if
and only if there exists a system B, B e S(L,), such that

(*) Bl =1, (Bfjw=Ktorj<m’, and B0

Let us assume that K is compact, KC G(L) and X is a set of sen-
tences of L such that Mu(Z') A P(K) # 0 for any X' ¢8,(Z). ()

Then for any X’ e8,(Z) there exist an indexed family Uy = AB:
i eIy of gystems in K and a system By in S(L,) such that

(%) () holds for each F e X', with Bz and Ug instead of B and A,
respectively.

We define Xy ag the set: of sentences ¥ satisfying the following two
conditions: ‘

(®) 85(X) denotes the set of all (non-empty) finite subsets of the set X.
Fundamenta Mathematicae, T, LVIL . 22
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(i) ¥ hasg the form
(3) - (&) A s(F, )R] (0)
Fex!
i<m¥
where &(F,4§) is 1 or —1. (%) )
(if) For every X" such that X' ¢ So(Z) and 2 2 2" we have Bz ¥,
We define the set I' of sentences, of L, as follows:
(4) =@ FeZtv {J X».
Z7e8,(%)
We assert that I'is consistent, i.e. every finite subset of I'is satisfi-

able. Indeed, every finite subset of I' is contained in a set I obtained
as follows: Let 2" e8,(5) and I" = {@¥: FeZ") uz'cuz” Xs. We can

eagily see by the definition of X5 and (x*) that Bz~ € MLO(I’7), which proves
our assertion.
By CTh we have a system B such that

(5) B e Mo (I) -
Let 18| =1, i e I. We define the set 4¢ of sentences of L by

A = {0 FeZ,j<mr, iec(B)s}v
' U {T0]: FeZ, j<mF, i¢ (B}

We assert that there exists a system AP such that
(6) A e Me(ds) ~K .

" To prove this it suffices, by the compactness of K, to show that for any
finite subset A of A4; we have a system U with W e Mpr(4) v K.

It is sufficient to consider sets A obtained as follows. Let 2’ e 8,(2)
and let A be defined as Ay was, with 2’ instead of X. We define the
function & such that &(F,§) =1 if i e (RY)g and &(F, §) = —1 if i ¢ (Bf Ju-
Let ¢ = A s(F, 1) BY(9,). Thus obviously 23!'%’6‘. Hence, if we take
¥ = 7)(Ho,) ¢, then B ¥; consequently by (4) and (5) ¥é Xy

By the definition of Xy, this means that there exists a 2", 2’/ € 8.(Z),
with 2'C 2" and such that Bz« "1P. By the definition of ¥ and ()
this is equivalent to the existence of an i’, ' € Iz, such that

VelB)oy, =BG i o(F,j) =1
i

() 1.6 and (—1).6 mean & and TG, respectii'ely.
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and ,
V¢ (B wp = K% e(F,) =—1.
i

But by the definition of K§ this implies that

which. was to be shown.
Thus' we have an indexed family 9 = (.
definition of 4; and (6) we have obviously K%
i

U e M(4) ~ K,

i€y with (6). By the
Food b » = (By)y for any Fe z,
j<m” and by (4) and (5) B-0" for every ¥ e X, (o

assertion given before (x) and (6) nsequently by the

T MuD) APK), fe. MUDaPE) 20 qod. o

CoRROLLARY 1. (Theorem of Vaught). If K « PC, then SP(K)e UC

This can be derived from Theorem 1 by the standard method 21;
diagrams or descriptions of models (see [6], §4). For the sake of comple-
teness we give this proof here. Let K C G(L) and let X be the set of all
universal sentences of L holding in every system of P(K). It suffices to
show that for an arbitrary system W sueh that e M(Z) we have
A e SP(K). Let [A| = 4 and let us associate a new (individual) constant e,
with every element & of 4 such that e, ¢ L and Cayy Ca, ave different for
different a, @,. By adjoining ¢, for every a e 4 to L we obtain the lan-
guage L. Now we define the diagram of % as the set Ay of the following
gentences of L.

Ca; 7 Cay TOr any @y, a5 € A such that a, a5
P(Cayy ooy Caypy) TOr any ay, ..., ayp ¢ A such that Py(ay, ..., ayp) holds;

VP (0nyy ovy Cayp) fOr any ay, .., aup ed such that Py(ay,
does not hold;

ey aar(r))

Heass -y Can) = Caunsr for any ay, ..., 4y, Gypea such  that
fal@y wovy sy = Buggya-

It is well known (and. trivial) that for any system B, the fact that A
is isomorphic to a subsystem of B is equivalent to the existence of a 8ys-
tem B’ such that B' e M (dy) and B'|L = B. Consequently, to show
A e SP(K) it sutfices to prove that there exists a system 9B’ such that
B' ¢ Mri(4du) ~ P(K)[L,]. Evidently if KePC, then also K[L,]ePCy
and, furthermore, for any K, P(K[L4]) = P(K)[L.J. Hence, by applying
Theorem 1 to K[L 4], it is sufficient to show that there exists a system B’

.(“‘) If P(K) is understood in ths‘moditied meaning of footnote (7) then Theorem 1
remains true. That follows by the trivial facts that for any K’, K’ is-compact if and

“only if K’ ~ {2} is compact, and K’ is compact if and: only if the closure of K’ under

isomorphism is compact.

22*
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for an arbitrary finite subset 4’ of Ay such that B’ € Mp.(4') ~ P(K)[L4]
Let @ be an open formula (containing no quantifiers) of I, such that the
conjunction of the formulas of A’ arises from @ by substituting some
constants ¢ for the variables 2, ..., o in @. If no such system B’ existed,
then for an arbitrary B, B eP(K), we should have Bl (v))...(2:)(719),
whence, by our supposition, - (y)... (va) (T1P), which is obviously false.
So we have eompleted the proof of Corollary 1. (%)

Theorem 2 below was suggested by Corollary 2, which is a straight-
forward analogue of Vaught’s theorem (Corollary 1).

To formulate the theorem we introduce a new notion. If K C (L)
for a language L and L’ is a subset of L, then Pr/(K) will denote the
clags of (non-empty) direct products Il A? such that AP ¢ K for any

13
iel, and AL’ is the same system U of L' for every 4, iel.

TemorEM 2. If L'CL, KCS(L) and KePCy4, then Pp(K) is
compact.

First we prove the following elementary consequence of (FV):

LEvMA 1. If F e§o(L), then we can give a finite set § of finite sets of
sentences of L. such that for any K, KC &(L),

(7 P(K) ~ ML(F) # 0

is equivalent fo the existence of a set I', I' ¢ $, so that for every H; Hel,
we have a system A in K with A H.

Proof. We use.the notations introduced in the proof of Theorem 1
and at the end of § 1. Put m = m¥. Let E be the get of all functions defined
on the set m with possible values 1 and —1. Let X be the set of the fune-
tions # defined on E with possible values 0 and 1 such that there exists
a system B, B e Mi,(®7), snch that for every e e B

(8) N e)(Rs =0(2) if and only if 7(s) =0.

i<m

Let I'(y) be the set of sentences defined by

T() = { )\ 2G)67: n(e) = 1,0 e 1}

and put 9 = {I'(n): ne X}.

We may easily see that this § satisfies the requirements of the lemma.
Suppose first (7). Then, as we saw in the prodf of Theorem 1, we have
a system B, B e M (P"), and an indexed family A = (A¥: ¢ eI such
that (x) holds. Let n be defined by (8) for this given B and suppose

() Bee (7). It is easy to see that S(K) ¢ UC4 if and only if S(K v {2}) ¢ UC4,
whence Vaught's theorem is really equivalent to Corollary 1.
(2) If 4 is a set, 1.4 and (—1)4 mean A4 and the complement of 4, respectively.

© by (+) this obviously implies %P A 5(
i<m

° ©
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n(e) = 1. Then by definition there exists an i with ; j
' SQME(?)(Rf ) and
§)0F. Consequently I" = I'n)eH
satisfies the requirements, proving the first parg
of th
Secondly let us assume that for I' = Iy P o na.

) € § there exist "
¥ ¢ K, for every H, H ¢TI, such that Xists a system 907,

(9) W H.

Since I'(n) e$H we have a B, B GMLD(CDF) satistyi

(7) : ying (8). Let I —
A= A% i e I> such that AV = AT it i € () o(j) (R])p and H — /I\gi(ii)h@nd
(H is uniquely determined). f<m im0

It is easily seen by (9) that now («) holds, i.e. %)
whence (7) holds, g.e.d. ’ 192 <pm MuF),

Levua 2. Lot K C G(L), L' CL, and let K be compact. Let F eFo(L)
and denote the set of all points m of the space Sz such that P(=[L] ~ Ko) P

A MLF) #0 by Xp. Then Xy is a closed subset of 8.

Proof. Suppose that = is a limit point of Xz, ie.

G eFo(L'), such that me<@p we ha,veP<G>ynX:’¢ OP: stz (ﬁz g(;
show = € Xp.

Assume on the contrary that P(z[L] A K)~ My(F) =0. Then by
Lemma 1 for each I'e $ we have a sentence Hy, HpeT, such that
afL] n K~ My(Hr) = 0. If we use the compactness of K, ;:his imp]ies
the existence of a sentence Gr, Gr €F(L'), such that me<(Grdr and
ML(Gr) ~K ~ M(Hr) = 0. Take G = A Gp. Now we have me (s,

IeH
and Mu(@) ~ K ~ M(H) = 0 for every I ¢ §. But this implies by Lemma, 1
tha_t P(ML(@) ~ K) ~ ML(¥F') =0, which contradicts the fact that x is
a limit point of Xp. Q.e.d.

Proof of Theorem 2. Let us assume that the hypotheses of
Theorem 2 hold and let X' be a set: of sentences of L such that for any 2,
2" e 8,(2) we have

(10) Pe(K) A Mi(Z') £ 0.

Let us denote by X the set Xy of Lemma 2 if ¥ ig the conjunction
pf the sentences of Z'. Then (10) and the definition of Pi(K) obviously
imply that Xy is non-empty for every X', X' ¢ 8,(Z). Using Lemma 2

and the compactness of Sy we get Q Xy 5= 0. This means that there
B Z'e8a(Z) )

ezldsts 7, 7 € S1r, such that P(z[L] ~ K) A Mu(Z') # 0 for every X’ e 8,(Z).
Since K ¢ PC4 and so K is compact, .we have =[L] ~K is obviously
also compact. Applying Theorem 1 for z[L] ~ K instead of K we obtain
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P((L] ~K) ~ ML(Z) # 0, ie. we have an indexed family SAP: ieDy
such that AP e K, AV’ e x for every ¢ and
(11) ];1[ A0 e ML(Z) .

1€
We. show that there exists a (B%: ieI) with B K (iel), BIL
being always the same system B of L' for each 7 and

(12) RO = 9@

To do this we apply a theorem of Biichi and Craig [2] (see also [3]) a special

case of which is that, for o family <K®: ieI) of PCs-classes K of

systems of a fixed language L, if Dr C(K") is non-empty then ﬂ |’
. €. €.

is also non-empty. Here C(K) means the intersection of all EC,-classes
containing K. To use the theorem, let K be the class {B|L: B <K,
B = AD). Since K € PCy, it is easily seen that K? ¢ PC,. Now C(K?) =x
if §¢J and thus mI CE?) == 0.

Hence we have a system B such that B e ﬂI K9,
€

k]
. ‘The existence of the required systems B89 now follows from the '

definition of K®, and from (11), (12) and the fact that direct product
preserves elementary equivalence (which follows from (FV)) also q B?
i€

€ Mr(X). Hence P(K) ~» Mu(Z) # 0. Q.e.d.

We note that if I\L' contains only individual constants then the
theorem of Biichi and Craig can be replaced by a simple argument in-
volving CTh. This case takes place in Corollary 2.

CorrOLARY 2. If K e PCy then SDp(K) e UC,.

The proof is similar to that of Corollary 1, the identity Dp(K)[L.]
= PL(K[L,]) being now used.

We remark that Corollary 2 can be proved in the same manner as
Corollary 1 was proved in [10]. Indeed, if Shdp(XK) denotes the class
of all subdirect powers of systems of K, then SDp(K)= SSbdp(K)
= SSbdpS(K), (¥) and if KePC, then Shdp(K)e PC,. The last state-
ment can be proved in the same way as Theorem 2 (a)in [10]. If we suppose
that L (KC G(L)) contains no predicate symbol, then the new proof
can be obtained from the one in [10] by adding to (A, F) a five-place
operation ¢(z, y, 2,4, 2) and to (3) the condition that for any fixed
2,9,y,% «q ¢@,y,s,y ,2) produces an isomorphism of W/Fy, onto

W[F . For general L, this proof may be amended in the same way, as -

indicated in the last paragraph of [10], p. 231.

(#) To be precise, Dp(K) ought to be modified as P(K) in (7).

e ©
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CoroLLARY 8. If K ds compact then Dp(K) is also compact.

If K ¢ PC, then the conclusion follows at once fr

. , - om Theorem 2 by
taking I = L. Tf, more generally, K is compact, then we use the rela,tiogl

Dp(K) = Dp(K), which follows trivially from the fact that the direet
powers_preserve elementary equivalence. Now K<EC, , and so D—TK)
= Dp(K) ¢ EC, indeed. _

We remarl_c that Corollary 3 might be proved directly in a simple wa

Now we give a few remarks, supplementing our results, in eonneeﬁ(i;
with direct products and cardinal sums. If ¢ ig a cardinal number, we
denote by PK) the class of all direct products of exactly a sysf’;emé
of K. Then, for a finite cardinal », if K ¢ PC, then P"K) ¢ PC,.

If, more generally, K is compact then PYK) is also compact; this
follows from the last statement in the same (trivial) way a8 the g(’enera.l
case in Corollary 3. Let us suppose that »(L) (the cardinality of L) < a
K CG(L) and K is compact, then PYK) is compact. Thiz can be pr(;fed:
in the same way as Theorem 1, for in this case we clearly can require
the set I = |B| of the proof of Theorem 1 to be of power «. In this case

pLij P’(K) = PYK), as easily follows from Theorem 6.8 of [4] after ex-

tending it to langunages of arbitrary power.

Let Dp*K) denote, analogously, the class of all direct powers A
of systems A in K such that x(I) = a. It » is finite and K e PC, then,
as is easily seen, Dp"(K)e PC4. From (FV) we can easily infer that
for every I, F eFo(L), a sentence Gy of F,(L) can be given such that if
e S(L) and %(I) > o then A'-F if and only if A Gp. In particular,
W =u" it (I), #(I') > o (independently of x(L)). It follows that the
mapping ¢ of 8t into itself defined by: ¢(n) = {U": Uem, x(I) = w} is
a continuous one. The image of a closed subset of a compact spaces under
a continuous mapping is closed; applying this to @, we infer that Dp"(K)
is compact if K is compact (for arbitrary L).

If <‘lI(°: ieI) is an indexed family of systems of a language L con-
taining only predicate symbols, then any system B, obtained as follows,
is called a cardinal sum of the systems A¥. Let BP (for each'ieI) be
a gystem isomorphic to AP such that the sets IB®] are mutually disjoint.
Then let |B| = HFISB“)I and Py = HPM, for any P e L. If the systems A%

K €

are all equal to a fixed U, then the cardinal sum goes over to a cardinal
multiple of . For a class K of sysiems, let Cs(K) and Cm(K) be the
class of all cardinal sums and multiples, respectively, of systems of K.

As can be read from [4], for the cardinal sum there exists an exactly
analogous ecriterion ag (V). By the help of this ¢riterion we might prove
similar results for cardinal sums to those we proved for direct products.
But all these results can be obtained by the following stronger statement.
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If KePC, then (a) Cs(K)ePCy and (b) Cm(K) € PCy.

The proofs of these sssertions are very gsimple: we only sketch them
in a few words. Let us assume K ¢ PC4. In order to ensure that % ¢ Cs(K)
we require the existence of a binary relation S8(z,y) on U such tha:
S(z, x) holds for every =, @  |U}; any two of the sets Su = {y: S(z,y)
holds} are cqual or disjoint; the subsystem of U with domain S, belongs
to K, for any z ¢ |¥|; and finally, Pu(t;, ..., &s) holds only if a), ..., a,
are elements of the. same set S,. It is easily seen that this requirement is
equivalent, first, to A K’ for a certain K'ePC,, and secondly, to
9 « Cs(K). In the case of (b) we add to our requirement that there should
exist a ternary operation g(@, #s, %) such that for any fixed @, 2, ¢ %]
@(@y, %5, 9) is an isomorphism of S onto 8,.

In order to be able to extend all the results proved for direct products
to eardinal sums, we only have to add the remark that the cardinal sum
preserves elementary equivalence (see Theorem 5.1 in [4]).

Finally we give a compactness result concerning countably weak
direct products. We define this notion as it was given in [4] (p. 71, 4.3,
using 4.2). Let L be an arbitrary language, F(x) a formula of L containing
no free variable except #, <A”: ieIy a (non-empty) indexed family of
systems of L. The countably weak direct product of the systems a
(velative to E(x)) is the subsystem B of ‘]z A guch that B is the set

€

of functions ¢, ¢ e ‘[l @), for which the set of indices ¢ with A? l;’{,—)
T1E(x) is at most countable. A

The countably weak direct power of a system U is defined in the
natural way. Let us denote by Cw(K) and Cwp(K) the classes of all
systems isomorphic to some countably weak direct product and power,
respectively, of systems in K.

THEOREM 3. If the language L is at most countable, K C S(L) and K
is compact, then (a) Cw(K) and (b) Cwp(K) are compact.

Proof. Consider (a). This is how we can modify the proof of Theorem 1
to yield this result. First we can apply an analogue of the criterion (FV).
The new criterion can be given with the help of [4], namely the final
remarks of § 7 at the bottom of p. 89, Theorems 7.1 and 3.2 and the
discussion 4.3 of § 4. Using this criterion we replace @* in the proof of
Theorem 1 by a formula &%, ¢'F playing a similar role in the new proof
to that of & in the old one, such that &7 is a formula of the predicate
caleulus Iy of Fuhrken [5]. L, is obtained by adding the gquantifier “there
exists at most countably many...” to the first order logic based on the
language L,. We then apply a result of Fuhrken {5] which says that if I”
is o set of sentences of L, and every finite subset is satisfiable, then I" is
itself satisfiable. We use this instead of OTh to prove that the analogue I

.

icm®

_itorem 2 can be extended to prove
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of the set I" (see (3)) in the present situation is satisfiable.

We can eagil
see that Lemma 1 holds also in this case and hence th ;

at the proof of

o 2 (b) or a more -general result like
eorem 2.
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