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Cartesian products and dyadic spaces
by
R. Engelking (Warszawa)

The present paper is devoted to the investigation of some properties
related to separability in Cartesian products, their subspaces and con-
tinuous images. In particular the minimal power of sets dense in products
and in some of their subsets, and the maximal power of some families
of pairwise disjoint non-empty subsets of products are investigated.

Some theorems are obtained which generalize the well-known Hewitt-
Marczewski-Pondiczery Theorem (which asserts that the Cartesian product
of 2™ topological spaces each of which contains a dense subset of power nt,
contains o dense subset of power m) and Marczewski’s classical theorem
(which claimg that in the product of spaces with countable bases every
family of pairwise disjoint non-empty open subsets is countable). The
first of the two general theorems concerning continuous images of Cartesian
products of compact spaces gives an evaluation of the weight (see foot-
note (%), p.288) of such an image by means of the weight at the points
of its dense subset and of the weight of the factors of the Cartesian product.
The second one asserts that if the weight at a point of the image is equal
to w > &, then (under the assumption that the weight of the factors
of the Cartesian product does not exceed n < m) the image contains the
one-point compactification of the discrete space of power m. It is therefore
a theorem on the structure of continuous images of Cartesian produets
of compact spaces.

The last paragraph of the paper concerns dyadic spaces, i.e. con-
tinuous images of a Cartesian product of a certain number of copies of
the two-point discrete space. A few theorems about this class of spaces
follow from the theorems on Cartesian products obtained earlier. It seems
that the most important iz the theorem which claims that if the weight
at the point « of the dyadic space X is equal to m > 8,, then X containg
the discrete space of power m which can be compactified by adjoining w,.
From this theorem a number of known theorems on dyadic spaces follow.
At the end of the paper an example of a dyadic space is given which
solves a qguestion, raised, by P. R. Halmos, concermng -a clags of
Boolean Algebras.
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The Cartesian product of the family {Xelseg of sets is denoted
by P Xs. By the cube in the product 1; X, we mean its subset of the
8eS g€

form K = P K, where K;C X, for s e S. The set K, will be called the
38

s-th face of the cube K and the set D(E) = {se8: K, X5} will be

called the set of its distinguished indices. If D(K) < m, then we shall
say that K is an m-oube. If {X,}ses is the family of topological spaces,
then the symbol P X denotes the Cartesian product of this family with
geS
the Tychonoff topology. In this case the projection ps,: 1; X5~ Is, X,
s€ 8€8p
is a continuous mapping for every 8, C 8.

A subset of a topological space X which is the intersection of m > &,
open sets is called a G3'-sef, and the union of an arbitrary number of
G- sets is called a G- sef. Instead of G5° and Gs% we shall write G and Gy
Every G5 -set in the Cartesian product 1,:' X; of topological spaces is

8€

the union of m-cubes, and even of cubes of a special kind, namely of
cubes whose faces are G -sets in the corresponding spaces (see Lemma 3
of [8]). Under the additional assumption that the points of the space
X, are Gy-sets for every se S (for example, if X’s are T,-spaces with
bases of power < m) the class of Gaz-sets coincides with the class of
unions of m-cubes. This follows from the fact that an arbitrary m-cube is
a union of m-cubes whose distinguished faces are one-point sets.

By I we denote the closed interval [0, 1], and by D the two-point
discrete space. The Cartesian product of m copies of I, i.e. the Tychonoff
cube of weight m, is denoted by I™. The symbol D™ denotes the Cantor
cube of weight m, i.e. the Cartesian product of m copies of .D. The Cantor
cube D™ is the well'known Cantor perfect set in the real line.

1. Density character of Cartesian products and of some
of their subsets. The well-known Hewitt-Marczewski-Pondiczery The-
orem (see [14], [17) and [18]) asserts that the density character () of
a Cartesian product ‘,P; X,, where d(X;) <m>x, for s ¢ 8 and § <27,

8€

does not exceed 1. It is easy to see that the density character of subsets

of P X, can be greater than m, even under the assumption that w (X;) < m

s€8
for s € §. For example, the Tychonoff cube I** contains a discrete space
of power 2%. Theorem 1 below shows that under this stronger assumption

(1) By the density character of a topological space X we mean the least cardinal

number which is the power of some dense subset of X. By the weight of the topological
space X we mean the least cardinal number which is the power of some base of X. The
density character of the space X'is denoted by d(X) and its weight by w (X). If d(X} = %0
then we say that X is a separable space. . :

icm®
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the evaluation of density character remains true for g fairly large class
s of i b for i i icala

of subspaces o “}; Xy, in fact for all unions of m-cubesg and, in particular,

m 3 .
for all Gaz-sets lns£ Xs. Let us note that this theorem is not true under

the assumption that d(X;) <m for sef8. To notice this it suffices to
remark that the Tychonotf cube I*, which satisties the condition &(7**%)
< %, contains a subspace (which is obviously a.%,-cube in the Cartesian
product of the only factor I**) whose density character is equal to 2%

In the proof of the theorem we shall use a lemma whose conten’l;
we shall now explain in a few words. Let us suppose that to every s in
a set § a topological space X; is assigned which has a base B; of power
less than or equal to m > n,. For an arbitrary set X of power m and for
every s € 8 there exists a map f; from X onto B,. To every finite sequence
Tyy Ty, .-vy Tn OF elements of X and every sequence §;, §,, <.y 8y of pairwise
disjoint and non-empty subsets of § corresponds a family of open sets

| ofs elg X, namely the family R of all sets of the form i(JI p;;‘(fﬁ(wi)), where

s;eS; for i =1,2,..,n It turns out that every set WC P X, which
seS

is the union of m-cubes contains a subset @, of power not greater than m,
which meets every member of R which has a non-empty intersection
with W. Ehlzs in n=0t quite obvious, since the power of the family R is
equal t0 8;-8;... S8y, and there are no assumptions regarding the power
of the sets S;. The following lemma contains a set-theoretical formulation
of this fact.

LuvMA. Lot {Xs}ses be o family of sets and {fs}ses a family of functions,
where f» maps o fized set X onto some family of non-empty subsets of X,,
and let 'W be a subset of P X, which is the union of m-cubes. For every

ses
sequence (®1s Bay ooy Bn; B1y Spy ey Bn), where me X, 05£8,C8 for
i=1,2,..,n and St ~ 8; =0 for i #j, there exists a subset Q of W such
that Q < m and for every sequence ;,8,, ..., 5n, where sie i fori=1,2,...,m,

if W () pfad@) # 0, then Q () pir*(fu(on) = 0.

Proof. We shall apply. induction with respect to the number of
members of the sequence 8y, 8, ..., S, which contain more than one
point; if this number is equal to zero, then the lemma is obvious.

Suppose that the lemma is true if the number of members of the
sequence Sy, S,, ..., S which contain more than one point is less than %
and consider the sequence (@, &y, ..., @n; 8y, sy ..., Sn) Whose ¥ members
contain at least two points. We can assume that the sets 8 for i>%
contain only one point, ie. that 8¢ = {s5} for ¢ =k+1,k+2,.., % It
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n
is enough to consider the case where W ~, (kl ) p;}l(f,‘(mi)) # 0 (3), Le. the

case where there exists a point ¢ = {gs} ¢ W such that ps(q) = g, € fa(ws)
C X, for ¢ =%-+1,%k+2, ..., n. The point ¢ is contained in an m-cube
lying in W. Thus there exists a set 8'CS of power less than or equal
to m such that every point {ws} . Pjs X, with #; = ¢ for s € 8’ is contained

k
in W. In particular the point ¢’ = {gs}, where ¢; = ¢ for s e S\[ L{ (8\S")
i

and ¢; is an arbitrary point of the (non-empty) set fs(a:) for seS\J,

4=1,2,..,%, is contained in W. For every sequence 8y, 3, ..., $x, Where
s5e S\S' for i =1,2, ...,k we have

n
&) ¢ €[} pac (fulw) -

=

Let X denote the set of all sequences (81, Sz, ..., 8%) such that for
some j <k we have S;=8; for ¢ #4 and §; is a one-point subset of
85~ 8'. The power of X is not greater than m. For every ¢ = (81, Sz, ..., 8%)
¢ X' the sequence 8i, 83, ..., 8%, Sx+1, ..., S» has only k—1 members whiech
contain more than one point. Thus, by the inductive assumption, there
exists a subset @, of W such that Qs <m and for every sequence
813 83y +ory Sn, Where s;€8; for 1 =1,2,.., k%

@ B WA (19:alad) £ 0, then Qo n () pi o) # 0.

It is easy to verify, on the grounds of (1) and (2), that the set
Q = {g'} v | Qo satisfies the conditions of the lemma.
o€X

THEOREM 1. Every subset W of the Cariesian product P Xs, where
ses

w(Xs) <M= w for se8 and S < 2", which is the union of - cubes con-
taing a dense subset of power less than or equal to m.

_ Proof. For every se 8, let B; be a base of the space X; such that
By <m and 0¢ B;. Choose an arbitrary set X of power m and a function fs
which transforms X onto B, for every se 8. Denote by B an arbitrary
base of the Tychonoff cube I™ which satisfies B = m. Since I™ =™
we can suppose that 8 = I™. Let X be a set of all sequences (21, Doy ovy Tnj
81y 8y oy Bn), Where w1 e X, 0 £ ;e B for i =1,2, .., nand §s ~ §; =0
for 45 j. For every o = (@, @y, ..., &n; 8y, Sy, ..., ) € Z, choose a set @4
which satisfies the conditions of the Lemma and put @ = | J Q,. Since

oeX

T=mand @< mfor ve Z, we have @g m. We shall show that @ is
dense in W.

(*) The intersection of an empty family of subsets of a set, is equal to the set itself;
thus if 4 = » this eondition yields W = 0.
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n
The sets ﬂlpgl(Vi), where Vi e By, and s; e § = I'™ for § = 1,2, ..,n
j= ]

n ‘
form a base of“}; Xs. Let U =1Q 254Vs) be an arbitrary element of this

base which meets W. Since I™ is a Hausdorff Space, there exist sets

81y Bay -y Sn e B such that sie S for i=1,2, vy ®oand Sg Sy =0

for 4= j. FOr o= /(@1 B, e, Bn; Sy, Bay o, 8n) € 5, where efa(Ve)

for i =1,2, ..., n, we have, by the definition of @, and by the inequality

WAU#O, . ‘
0#£QnTCQAT.

Hence the set @ is dense in W.
The following theorem is a special case of Theorem 1 (and is equiv-
alent to it if Xg's are T,-spaces).

TuroREM 2. Every Ghz-sel in the Cortesian product P X, where
£

w(Xs) <m for s e8 and 8 < 2™, contains a dense subset of power less than
or equal to m.

CorOLLARY. The Cartesian product P Xs, where &(Xs) < m > s, for
_ ses
seS and § < 2™ coniains a dense subset of power less than or equal to .
Proof. The product P X, contains a dense subset which is a con-
ges

tinuous image of the product of 2™ copies of the discrete space of power m,
in fact a cube whose faces have power not greater than m and are denge
in the respective spaces. Since, on the ground of Theorem 1, the Cartesian
product of 2™ copies of the digcrete space of power m containg a dense
subset of power m, the theorem follows from the fact that the density
character of a continuous image of a space is not greater than the density
character of the space.

The last corollary is the Hewitt-Marczewski-Pondiczery Theorem
mentioned at the beginning of this paragraph.

We have noted that Theorem 2 is not valid under the weaker
assumption that d(Xs) << m for sef. It appears that under this assump-
tion the theorem is not valid even for G3-sets. Indeed, it is well known
(see e.g. [11], problem 6Q.2, p. 97) that in the space BN\N, where SN
denotes the Cech-Stone compactification of the set N of positive integers,
there exists o family R of pairwise disjoint non-empty open sets which has
the power 2*°. The set SN\N is therefore a G4-set in the Cartesian product
of separable spaces (which has only one factor SN) and does not eontain
any countable dense subset.

2. Families of pairwise disjoint subsets of Cartesian prod-
uets. Marczewski’s clagsical theorem proved in [16] claims that in
the Oartesian product of spaces with countable bases every family
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of pairwise disjoint non-empty open sets i countable. In a later paper [17],
B. Marczewski has proved a stronger theorem, which implies that the
same is true in the Cartesian product of separable spaces. We shall now
prove arother theorem of this type.
TErRoREM 3. Hvery family R of pairwise disjoint m-cubes in the
Cartesian product I.’s X, where w(Xs) <m =y, for sel, non-empty and
SE .

open in the union of the family R, has power less than or equal to m.
Proof. Suppose, on the contrary, that in P X, there exists a family

{E;}ier of non-empty m-cubes such thab Ktr‘\ Ky =0 for t=£1, any
set K; is open in U K; and T > m. We have therefore K; = P K9, Whele

E9Cx,, and _D(Kt) m. Denote by n the least cardinal number greatar
" than m and choose a subset 7, C T of power 1. Since To < 2™, we conclude
that the power of the set §) = U D(K;) does not exceed 2"‘ The family

{K{}ter,, where Ki= P Kff), conmsts of pairwise disjoint (cf. Lemma 1

s€8y
in [8]) non-empty m-cubes in P X,.
8€So
By the assumption of the theorem, for every f;e 7, there exists an

open set G, C P X, such that Gy ~ tU K, = Ky, It is easy to see that
8€S €T
DGy ~ | Ki = Ki. Hence the family {Ki}er, consists of n>m
teTy

pairwise disjoint, non-empty m-cubes every one of which is closed-and-

open in the union {J Ki. Since this contradicts Theorem 1, we conclude
€Ty

that our theorem is true.
CorOLLARY. If a subset W of the Cartesian product _P Xs, where

w(Xs) <m= w8, for se8, is the union of m-cubes, then every family -of

pairwise dtsymnt non-empty open sets in W has power less than or equal
fo m.

The following theorem easily follows from Theorem 3.

THEOREM 4. Hvery family R of pairwise disjoint G5 -sets in the
Cartesian product }; X, where w(Xg) <m>=w, for seS, non-empty and
- . 8€, Py
open in the union of the family R, has power less than or equal to m.

CorOXLARY 1. Every family of pairwise disjoint, mon- empty open
sets in a Ggz-set in the Cartesian product P X, where w(X,) < m for s €8,

has power less than or equal to m.
QOBDLLABY 2. Bvery family of pairwise disjoint, nom-empty open
sets in the Cartesian product of spaces with countable bases is countabla.

_Tl}e last corollary iy the theorem of Marczewski mentioned at the
beginning of this paragraph.

e ©
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THEOREM 5. For every subset W of the Cartesian product P X, where

w(Xs) < m = 8 for s €8, which is the union of m-cubes, there emts a set
§,C8 07‘ power not greater than m, such that W = (W)X P X..
; . seSNSp
Proof. We shall consider the class of families of pairs of sets
{(Ee, G)ler where Ko C W~ @G, K 15 o non- empty m-cube and Gy an
open set in P X; such that

(3) KimGy=0 for t1.

Since property (3) is of finite character, there exists a family
{(K:y Gi)}ter maximal in the class in question; we shall show that for
this family

@ g7

The inclusion IUTIQ CW is obvious; suppose that there exists a point
S :
z e W\U K;. Hence there exists an open set GC P X, such that
tel P 8ses
@A W£0and Gn LL% H; = 0. The intersection @ ~ W, as a non-empty
€

intersection of sets which are unions of m-cubes, contains a non-empty
m-cube K. Putting
Ifto =K and th =@

for some %, ¢ T' and adjoining the pair (K;,, Gy,) to the family {(K:, G¢)}er,
we obtain a family in our class. This contradicts the maximality of the
family {(X:, G4)}ter. Thus (4) has been proved.
We shall prove that the theorem is satisfied by S, = U D(Ki).
teT

Since, by Theorem 3, we have T <m, AS='0<'ITI. The inclusion

(W)X P X CW
seS\Sp
follows from (4) and from the fact that D(K;) C S, for every t e 7. From
this inclusion we conclude that pg(W)x P X,CW, which with the

8€8\8o
obvious converse inclusion completes the proof.
The following theorem is a special case of Theorem 5 (and is equiv-
alent to it if X,'s are T,-spaces).

THEOREM 6. For every Gyp-set W in the Cartesian product _PX,,

where w(Xs) < m = 8 for ¢ € 8, there exists a set 8, C 8 of power not greate'r
than wm, such that W = pg, (W)X P X,.

s€8\So
From the well-known fact that closed subsets of metric spaces are
@;-sets and from Theorem 6 we obtain the following corollary.
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COROLLARY 1. The closure of any Gsx-set in the Cariesian product
of melric separable spaces is o Gj-set.

From Theorem 6 one can obtain also Theorem 5 of [8], proved there
in a completely different manner, which is an improvement of a result
of Bockstein [3]:

CoROLLARY 2. For every open set U and o Giz-set W disjoint with U
in the Cartesian product P Xs, where w(Xs) < m for seS, there emists
3e8

a set 8,C 8 of power not greater than m such that psy(TU) ~ pey(W) = 0.

The proofs of Theorems 4 and 6 given here are modifications of

some reasonings of [19] and are based on Theorem 1. It is worth noticing

- that these theorems can both be deduced from Theorem 5 of [8], for-

mulated above as Corollary 2. We show this for Theorem 4; for Theorem 6
the argument is straightforward.

Indeed, let the family R = {Wilier, where Wy ~ Wy = 0 for ¢ t,

satisfy the assumptions of Theorem 4 and let {U;)er be a family of open

subset of }; X; such that Uspn | We= Wy, for i,eT. Without loss
se€ ieT

of generality we may assume that § ~ T = 0; for every ¢ e T, let X; be
the two-point discrete space D = {0,1}. .
The subsets U; and W; of the product P X,x P X; , Where
8€S tel

Ui=27"0)~(Uix PX) and  Wi=prX1) ~ (Wix P Xy,
teTl ted

are an open set and G5 -set, respectively. Since Uj ~ Wy =0 for 1,1 ¢ T,
the sets U =tl:% U; and W =H' W; are disjoint and it follows from
€

Theorem 5 of [8] that there exists a set 8,C 8w 7' such that Ps(U)

A Ps(W) =0 and 8, <m. For every set ' C8 w T which does not
contain %y e 7' we have )

Ps(Us) ~ ps(Wi) D psr(W},) # 0;
thus 7C 8, and T< m.

The example considered at the end of the first paragraph shows
that Theorems 3 and 4 ave not valid, even for m = No, under the weaker
assumption that d(X,) <m for se S, Starting with the same example
and reasoning as in the deduction of Theorem 4 from Theorem 5 of [8],
one can construct an example which shows that Corollary 2 of Theo-
rem 6 and hence also Theorems 5 and 6 are not true under this weaker
assumption. In this case the set W is even a G- set.

In the last part of this paragraph we shall prove, with the help of

some meth_odﬁ of_ the present paper, an important special case of Theorem 6
of [8], which will be wused in the following paragraph.

iom®
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Leyua: The Cartesian product P X, where w(Xs) <2™ for se§
ses

and § < 22", contains a subset Q of power not greater than 2™ which meets
every non-empty G -set.

Proof. Let’ B;s be a base of X, such that By < 2™ and let Qs be the
set obtained by choosing a point in every non-empty intersection of
not more than m elements of B,. It is easy to see that §: < 2™ and Qs
meets every non-empty G5'-set in X,. The reasoning used in the deduction
of Corollary from Theorem’2 shows that it is enough to establish the
special case of our lemma, where § = 2™ and X, = X is for every se 8
a discrete space of power 2m.

Let § = I*" be the Tychonoft cube of weight 2™ let B be a base
of ™" such that B = 2", and let B,, denote the family of all non-empty
subsets of I which are intersections of not more than m elements of the
base B. Let I' be an arbitrary set of power m and let X denote the set
of all pairs ({Bshier, {@i}ie7), Where Bye B, w1 X for te T, and B; ~ By = 0
for t 5 t'. One can easily verify that & = 2™ Assigning to any ¢ = ({Bi}ier,

{@sher) € 2 the point ¢(o) = {ms} ¢ P X, where

seqm

@ i seB; for some teT,

s = i se 12’“\JUT B

&l

and ¥ is o fixed point of X, we obtain the set @ = p(ZX), which satisfies
the lemma.
TraeoREM 7. Fvery family of pairwise disjoini, non-empty G -sets in
the Cartesian product 1; X, where w(Xs) < 2™ for s €8, has power less
€

than or equal to 2M.

Proof. We proceed as in the proof of Theorem 3. We suppose on
the contrary that there exists in P X a family {K;}er of pairwise disjoint
ses )

non-empty ni-cubes which are G5'-sets such that 7' > 2". Next, we con-

struct in the Cartesian product P Xs, where S, C § and §0 < n the least
s€8y

cardinal number greater than 2", a family of power n consisting of pairwise
disjoint and non-empty G5 -sets. Since ns2?", this is impossible by the
Lemma.
CorOLLARY. Huvery family of pairwise disjoint, non-emply Gy -sels
‘in the Cartesian product 1; Xy, where X; is regular and d(Xs) <m for
S€

8 e8, has power less than or equal to 2™.

Proof. The corollary follows from the well-known fact that any
regular space X such that d(X) < m has a base of power not greater
‘than 2m. Indeed, it is easy to see that if X, is dense in X and has power
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not greater than m, then for an arbitrary base {Uslses of X, the family
{Vs}ses, where Vs =IntUs ~n X,, is the base of X and has power at
most 2™. .

Finally, let us remark that Theorem 7 is not true for families of
nt-cubes.

3. Continuous images of Cartesian products of compact
spaces, We shall now deduce from the theorems 1 and 7 a theorem which
characterizes the weight of a continuous image of the Cartesian products
of compact spaces. This theorem is a generalization of the results of
A. Esenin-Volpin and B. Efimov (see [10] and [5], [6]).

THEOREM 8. Let {Xs}ses be a family of compact spaces such that
w(Xs) Km =N, for sef, and let f: }; X, —>X be a continuous mapping
8€.

onto a Hausdorff space X. If X contains a dense subset X, such that the
weight at every point (*) of X, does not ewceed my, then the weight of the space X
is less than or equal to m.

~ Proof. For every zeX,, the counter-image f () is a non-empty
G5-set. It follows from Theorem 7 that the power of the family
{f(2))zex, does not exceed 2m, whence X, < 2", For every =z X, let
us choose a point o’ €/ (z) and an m-cube K (z), such that

(8) &' e K(w)Cf ().
The power of the set S, = LgD(K (m)) does not exceed 2™. Since

the theorem is obvious if X, = 0 for some s ¢, we can assume that for
every sed there exists a point a; ¢ X,. Let us consider the product

“I;XQCS,EZ;XS, where X=X, for s ¢ 8, and X; = {a} for s e S\S,, and

the function /' =f |8£ X: }"SX; ->X. Since the product P X, is compaet
€. X
and f (“I; X;) contains the set X, dense in X, the mapping #/ maps 8{:’; X,

onto the space X. The function f* determines a function fo which maps-
the product 21; X, onto X. Hence we can confine our attention, without

& L]
loss of generality, to the special case of the theorem, namely we can assume
that S < 2m
Let us consider agai.n the family {K (2)}sex, of #n-cubes satisfying (5).
By Theorem 1, there exists a set Q dense in \J K(z), such that § < m,
zeXy

() By the weight at a point % of a topological space X we mean the least cardinal
number which is the power of a base for the neighbourhood system of x. It is easy to
see th'at the _weight at a point = of a compact space X is not greater than m > X, if and
only ﬁ. {®} is a G)'-set. If X is a regular space and X, is dense in it, then for zeX,
the weight of # in X and of » in X, are, as can be easily verified, equal.

©
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Hence there exists a set X; C X, of power not greater than m such that
QC \J K(z). The power of the set & = Lé D(K(x)) is at most m.
reXy

zeXy
Let us consider the product ffs X', where Xy = X, for s ¢ §; and X = {a,}
8€

for s € O\S;, and the function j =f| ];X’;: P X{+X. It can easily
s€ ges b

be seen that the function f maps the product P X7 onto the space X.
SeS

The theorem follows now from the faect (see the Appendix in [2]) that
the weight of a continuous image of a compact space is not greater than
the weight of the space itself, becanse w( P Xy) < m.
sesS
CorOLLARY 1. Let {Xs}ses be o family of compact metric spaces and

let f: P Xs—>X be a continuous mapping onto o Hausdorff space X. If X
seS

contains o denss subset X, which satisfies the first amiom of countability,
then, X has o countable base, i.e. X is a compact metrizable space.

We obtain also the following Theorem, proved by B. Efimov in [6],
as a corollary to Theorem 8.

COoROLLARY 2. Let {Xs}ses be a family of compact spaces such thai

w(Xsy <m=x, for sef, and let f: P X,~X be a continuous mapping
8€eS

onto a Housdorff space X. If the weight ot every point of X does mnot
exceed m, then the weight of the space X is less than or equal to m.

The following theorem gives some information on the structure of
continuous images of Cartesian products of compact spaces. We begin
with two preliminary lemmas.

LevmA 1. Let Y be a compact space containing a discrete space R of
power at least m = 8, as o dense subset, and let f: ¥ —Z be a continuous
mapping onto a Hausdorff space Z, such that f(¥Y\R) ~f(R)=0. If the
image f(XY\R) is a one-point set, then Z is the one-point compactification
of the discrete space f(R) of power greater than or equal to m.

Proof. For évery 2 % 2y e f (Y\R) the counter-image j‘iz) is a compact
subset of R, whence it is finite. It follows that f(B) =B and that the
set f(T\f"(2)) = Z\{z} is compact, i.e. that the point z + #, is isolated
in Z.

Let f be a mapping of the Cartesian product }; X, onto the space X,

ae

and let 2, be a point of X and s, an element of 8. If there exist two points
{rs}, {ts} € P Xs such that
8els

) # 0 =f({t}) and  n=t for s

then we gay that the value z, depends on s . .
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LeMMA 2. Let {Xs}ses be a family of compact spaces such that w( X,)
<n<mz=y, for sef, and let f: ];Xa——>X. be a continuous mapping
1

onto & Hausdorff space X. If the power of the set 8, of all those s € 8 on which
a value x, depends is less than m, then the weight at the point m,e X is logs
than m:

Proof. It i3 enough to show that for the set A = f (m,) we have

(6) A =pg(4) X36£SF8 .

Indeed, if (6) holds then the (compact) set A has in the space P X,
seS
a base for a neighbourhood system of power less than m, and accordingly

the point @, has in the space X a base for a neighbourhood system of
power less than m. To prove (6) it suffices to remark that the set of all

points which are in pg,(4)x P X, and differ from a point of A only
seS\So

in a finite number of coordinates which all correépond to the indices in
S\S, is dense in pg(4)X P X; and contained in A.
8€8S\Sp

THEOREM 9. Let {Xs}ses be a family of compact spaces such that
w(X)<n<m=w, for se8, andlet 1 P Xs—>X be a continuous mapping
seS

onto a Hausdorff space X. If the weight at the point v, ¢ X is equal to m,
then the space X contains a diserete space M of power m, such that M {z,}
is the one-poimt compactification of M.

Proof. Let S, be the set of all s ¢ § on which depends the value 2.
Choose, for every s'e8,, points 7(s'), t(s') ¢ P X, such that
seS :
(M) r(8)ed, ts)ed and  pfr(s")] = pifi(s’)] for ss#¢ ,
where A =f"*(z,), and put
R={r(s): s"e8p}, T =4{t(s): s eBy}.

From Lemma 2 it follows that 8, > m. We shall show that & — S;
since 8§, > &, it suffices to verify that counter-images of the function

7: 8~ are finite. Suppose, on the contrary that there exists an 8’ C 8,
such that § > x, and

r(8')=r, for every s'efg"
and put I"={{(s'): ' e '} CTCA. For an arbit rary neighbourhood
Vv =‘Dl 25 (V) of 7, there exists & e 8 \{81, 82, ..., 8n}. Since r(s’) =7, ¢V,

we infer from (7) that also ¢(s’) e V. It follows that #, € 7'C A, which is
impossible. by the first condition of (7). Thus B = E >m.
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We shall now prove that all accumulation points of B are in A,
Since A is closed, every point {#s}¢ 4 has a neighbourhood V ~ ﬁ Pt (V)
i=1

disjoint with A. From (7) it follows that only the points r(s") with
s' €8y A {81 825 -« Su} can be contained in V. Hence the neighbourhood V
of the point {®s} contains only a finite number of points of the set R
and {@} is not an accumulation point of R.

The spaces ¥ = R and Z = f(R) v {w,} satisfy the assumptions of
Lemma 1. Since the weight at the point = in X, and hence the weight
at the point @, in Z,.arve equal to m, we have f(R) =m and the Theorem
holds with M = f(R).

4. Dyadie spaces. By a dyadic space we mean a Hausdorft space
which is a continuous image of a Cartesian product of a certain number
of copies of the two-point discrete space, i.e. of a Cantor cube. Dyadic
spaces are compact. This class of spaces was defined by P. 8. Aleksan-
drov in [1] and was subsequently investigated by a number of mathe-
maticians. The most important results are to be found in the pa-liers of
B. Marczewski [16], A. Esenin-Volpin [10], N. Sanin [20] and B. Bfi-
mov [4], [5],-In particular, in [16], B. Marczewski, answering a question
raised by P. 8. Aleksandrov, points out the first example of a compact
non-dyadic space. Namely, he remarks that from the fact that every
family of pairwise disjoint open sets in a Cantor cube is countable (see

- Corollary 2 to Theorem 4) it follows that the same is true in any dyadie

space, and hence the one-point compactification of the discrete space of
power 2% iy not dyadic. Simple proofs of all important theorems on
dyadic spaces are given in [7] and [9].

In this paragraph we shall formulate some theorems on dyadic spaces
which follow from the theorems of the preceding paragraphs. We shall
also deseribe an example of a dyadic space which solves a problem from
P. R. Halmos’s paper [12]. :

Theorem 38 of [20] (simple proof in [9]). which asserts that any
dyadic space of weight m is a continnous image of the Cantor cube D™,
and Theorem 2 imply

U

THEOREM 10. Ilvery (yz-set in o dyadic space of weight not greater
than 2™ contains a dense subset of power less tham or egqual o m.

TLet us note that from the above Theorem it follows that the Cech:
Stone compactification AN of the set N of positive integers is not dyadic
(see the remark at the end of the first paragraph), which was proved in
a different manner in [9).

From Theorems 4 and 7 we obtain two theorems on families of-
pairwise disjoint non-empty subsets of dyadic spaces.
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THEOREM 11. Bvery family R of pairwise disjoint, Gy -sets in a dyadic
space, non-empty and open in the union of the family R, has power less than
or equal to .

CoROLLARY 1. Every family of pairwise disjoint non-empty open sets
in a Gis-set in a dyadic space has power less than or equal to .

Theorem 11 implies also Marczewski’s theorem proved in [167:

COROLLARY 2. Bvery family of pairwise disjoint, non-empty open seis
i a dyadic space is countable.

THEOREM 12. Every family of pairwise disjoint, non-empty Gy -sets
in a dyadic space has power less than or equal to 2™

Since every closed subset of the Cantor cube D% is a retract (4) of
it (see [15], p. 169 or [13] p. 183), Theorem 6 implies:

THEOREM 13. Every subspace of a dyadic space, which is the closure
of a Gsp-set, is a dyadic space.

From the above theorem we obtain the following result of [4].

CorOLLARY. Buvery subspace of a dyadic space which is the closure of
an open set or a closed Gs-set is a dyadic space.

From Theorem 8 we deduce the following theorem, proved in a dif-
ferent manner by B. Efimov in [5], which is an improvement 6f: a theorem
due to A. Hsenin-Volpin [10] and formulated below as Corollary 2.

TEEOREM 14. If the weight ot every point of a dense subset X, of a dyadic,

space X does not exceed m > 8y, then the weight of the space X is less than
or equal to m.

CorOLLARY 1. If the weight at every point of a dense subset X, of

a dyadic space X does mot exceed x, then X is a compact metrizable space..

CoROLLARY 2. If the weight at every point of a dyadic space X does
not exceed m > o, then the weight of the space X is less than or equal to m.

From Theorem 9 we obtain the following theorem, whose special
case for m =y, is proved in [4]; it seems that Theorem 15 cannot be
proved by the method employed by B. Efimov in [4].

TeroRrEM 15. If the weight at the point @, of a dyadic space X is equal
to m 28, then X contains a discrete space M of power m, such that M u {m,}
is the one-point compactification of M.

From the above theorem, the Corollary to Theorem 13, and Corol-
lary 2 to Theorem' 14 we obtain the following result of [4]:

CororLARY 1. A dyadic space X is hereditarily dyadic with respect
to closed sets if amd only if it is metrizable.

(*) A subset 4 of the topological space X is called a retract of X if there exists

& continuous mapping 7: X-»4 such that 7(a)=a for a e A; a mapping r with the
above property is called a refraction of X onto 4.,
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This theorem implies also the following theorem, proved independently
by M. Katétov and B. Efimov (see footnote (%) in [9] and [5]).

CoROLLARY 2. Huery non-isolated point of a dyadic space 18 the limit
of a sequence of distinct points.

As M. Katétov remarked, from Corollary 2 one can obtain the fol-
lowing result of [7].

COROLLARY 3. Buwery dyadic subspace of o basically disconnected
space (%) 48 fimite.

Proof. It is enough to remark that no basically disconnected space
contains a convergent sequence of distinet points. Suppose, on the contrary,
that in a basically disconnected space X there exists g convergent se-
quence 2y, %, ... Hence, there exist in X two sequences Uy, Uy, ... and
V1, Vy, ... of closed-and-open sets such that @y e Uy, 2y € Vifor = 1,2,..
and TinUs=0=VinV; if i#j, UinV;=0 for i,j =1,2,.. It
follows that the closures of disjoint cozero-sets U =1Cj Uiand 7V = 6 vV

° =1 -

T i=l
have 2 non-empty intersection, which is impossible, since X is supposed

to be basically disconnected.

From Corollary 3 we obtain the following result of the theory of
Boolean algebrag (see [13], in particular § 31, where all notions oceurring
in Qorollary 4 are defined) noted also in [7].

COROLLARY 4. FBvery projective Boolean algebra which is a homomorphie
image of a o-complete algebra is finite.
Finally, Theorem 15 implies the following theorem of N. Sanin

([20], Theorem 51):

CoROLLARY 5. If the topology of the dyadic space X is induced by a. linear
order < in the set X, then X is a metrizable space. ) 3

Proof. By Corollary 1 to Theorem 14, it suffices to show that the
weight at every point # e X does not exceed x,. Suppose, on the contrary,
that the weight at point @y e X is equal to m > x,. From Theorem 15
it follows that a discrete space M of power m, such that M u {a,} is
compact, is contained in X. Without loss of generality we can agsume
that o<, for every we M. 1t iy easy to see that there exists an aceu-
mulation point of M smaller (with respect to the order <) than m,,
which is impossible, since M has only one accumulation point.

(®) A Tychonoff space X is called basically disconnected if the closures of every

" pair of disjoint cozero-sets in X are disjoint, where by a cozero-get in X we mean the

counter-image /—1(E\{0}) under a continuous real-valued function f: X - E. It can easily
be seen that the family of cozero-sets is cloged under countable unions. Every basically
disconnected space has a base composed of closed-and-open sets, which are obviously
cozero-gets. Every extremally disconnected space is basically disconnected.
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Tt is well known that every closed subset of the Cantor cube D™ js
a Tetract of it. This is not true for m> &y, because by thfa clasgical Vede-
nissoff theorem of [21] every zero-dimensional space (i.e. a Hausdortf
space which bas a base composed of closed-and-open setsr,z of weight
m > 8, can be topologically embedded in the Cantor eube. D K a,nfi there
exist non-dyadic compact zero-dimensional spaces. Inl(a_thls situation tl}e
problem arises whether every dyadic subspace of D" is a retract of. it.
This problem, formulated in the language of Boolean algebras, was raised
by P. R. Halmos (Problem 1 in [12]). We shall'show' that the answer
is negative, i.e. we ghall construct a dyadic zero-dimensional space which
ig not homeomorphic to any retract of D"

TeEOREM 16. If a subset X of the Camtor cube D™ is u retract of i,
then for every pair U, V of disjoint open subsets of X there ewist open Fo-sels
Uy, V,C X such that

®) UCU, VCV, and UynV,=0.
Proof. Let »: D™ = P D;—~X be a retraction of D" onto X. The

s€S

gets 7 U) and (V) are disjoint and open in D™, whence by Corollary 2

to Theorem 6 there exists a countable set S, C 8 such that

Pt ™MU) A psr (V) =0.
The sets P U) and psr(V) are open in . '5*, D;, whenee they are
F,-sets. The sets

= psy = sV D
Uy = psir (VU)XHS.I\’&D« and  V, = pgy ()X“SI\’SO s

are disjoint and open F,-sets in D™; thus the sets
Un=.Xr~.U1 and V0=XI\V1
are digjoint and open Fj-sets in X. Since for BC X we have
BCr7(B)Cpsapsy™(B) = psy '(B)x P Di,
8€8\So
both inclusions in (8) are also true.

Let us now congider, the Cantor cube D™ where m > §, and let Z be
the set of all points of D™ which have at most one coordinate equal to
zero. It is easy to see that Z is the one-point compactification of the
discrete space of power m. Since Z-is not dyadic, we conclude by the
Corollary to Theorem 13 that Z is not a G4-set in D™ It follows that
D™\Z is not an F,-set, i.e. it cannot be represented as a countable union
of compact sets.

Denote- by Y the space obtained from D™ by the identification
of Z to a point; let z be the point of ¥ which is the image of Z. The space Y

©

@
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is obviously dyadic. Let X, ¥, be two disjoint copies of ¥ and 2. 2,
their distinguished points. The required Space X is obtained b;v’ Ntzhe
identification of #; and #, in the discrete union Y v X, of spaces Y, and Y,:
let ¢: ¥y v ¥,—+X denote the quotient map. ! *
The space X is dyadie, as a continuousg image of the dyadic space
Y, v X,. It is also zero-dimensional, i.e. every point of X has a bage
for the neighbourhood system composed of closed-and-open sets. This
is obvious for all points distinct from Ty =@(%) =p(z), and for z, it
follows from the fact that for every open set WCp™ which eonta,in: Z
there exists closed-and-open set ¢ C D™ such that Z C CCW. .
The sets U = X\@(¥,) and V = X\p(¥,) are disjoint and open
in X but there exists no pair of open F,-gets U, V,CX satisfying -(8).
Suppose, on the contrary, that (8) holds for a pair Uy, V,y of open F,-sets
in X. The point &, can be contained in at most one set of this Pair, whence
the set X\@(Y:) is equal to one of the sets Uy, Vofor i=1 or 2 and is
a Fg-set. Thus, X\@(Y:) can be represented as s countable union of
compact sets and the set D™\Z, homeomorphic to X\g(¥y), would have
‘the same property, which is impossible. We now conclude from Theorem 16
that the space X is not homeomorphic to any retract of the Cantor cube.
The above result can be formulated in the language of Boolean
algebras as the following theorem, which gives a solution of Problem 1
from [12].
THEOREM 17. A free Boolean algebra with m > s, generators comtains
a subalgebra which is mot projective.
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Ordnungsfihigkeit zusammenhingender Riume

H. Herrlich (Berlin)

Ziel der Arbeit ist eine topologische Kennzeichnung der zusammen-
hiingenden (Satz 1) und der lokal-zusammenhéingenden (Batz 2, 23) ord-
nungsfihigen Réume.

DEFINITIONEN.

1) Ein topologischer Raum 7' heiSt ordnungsfihig, wenn er einem
geordneten Raum homéomorph ist, d.h. wenn es eine lineare Ordnung R

auf T’ so gibt, daB die offenen Intervalle eine Bagis der Topologie von .T
bilden.

2) Ein Punkt # einer zusammenhéingenden Menge M heiBt Rand-
punkt von M, wenn M— {x} zusammenhingend ist, sonst Schnittpunkt
von M. - :

3) Ein topologischer Raum heiBt randendlich, wenn jede seiner
zusammenhingenden Teilmengen héchstens zwei Randpunkte enthilt.

HILFSRATZE.

1) Sind @, y zwei verschiedene Hlemente des zusammenhingenden,
lokal-zusammenhdngenden T'y-Raumes T, so gibi es eine Komponente K
von I = T— {w, y}, die x und y als Hiufungspunkte besitzt. K, = K w {», ¥}
ist als Unterraum lokal-zusammenhingend. )

Beweis: a) M sel die Menge aller Komponenten von 7”. Jedes K
aus M ist offen-abgeschlossen in I'. Gébe es ein K in M, das weder z
noch y als Haufungspunkt besiBe, so wire dieses K offen-abgeschlossen
in T, im Widerspruch zum Zusammenhang von 7. Jedes K aus I besitzt
also @ oder y aly Hiunfungspunkt. Ist U eine zu y disjunkte, zugammen-

" hingende Umgebung von « und enthilt ein K aus M Elemente vbn U,

so ist & Hiufungspunkt von K; denn sonst wire K ~ U offen-abgeschlossen
in U. Also umfaBt X = | J{K|K<M,seK} o {#} die Menge U, ist
somit Umgebung von @, alsa offen in 7. Analog ist ¥ = |J{K|K <M,
Y€K} U {y} offen in T, Hitte keine Komponente & und y aly Hinfungs-

punkte, so wiren X, Y disjunkt, im Widerspruch zum Zusammenhang
von T.
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