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A representation theorem for two-dimensional
v*-algebras

by
K. Urbanik (Wroclaw)

The results presented here complete paper [5], where a full de-
seription of all at least three-dimensional v*-algebras was given. For
the terminology and notation used here, see [2] and [5]. In particular
an algebra is said to be a v*-algebra if it satisfies the following conditions:

1. Bach self-dependent element is an algebraic constant.

2. If the elements ay, @y, ..., @y (n>=1) are independent and the ele-
MENLS @y, Ay s vy Ony Bt a¥6 dependent, then a, .y is generated by ay, ay, ..., ay.

A simple description in terms of groups and semigroups of all one-
dimensional v*-algebras is contained in an expository paper [6]. G. Gritzer
proved in [1] a representation theorem for two-dimensional v*-algebras
without non-trivial unary algebraic operations, i.e. for universal algebras
independently generated by every two elements. His result is an analogue
of assertion (ii) in [5], but the field X is replaced by a weaker algebraic
structure, similar to the nearfield defined in terms of multiplication
and subtraction.

The aim of the present paper is to prove a representation theorem
for two-dimensional v*-algebras with a non-trivial algebraic unary oper-
ation. The result we have obtained is rather unexpected. Namely, except
one four-element algebra all two-dimensional v*-algebras with a non-
trivial algebraic unary operation have the same algebraic structure as
at least three-dimensional ones.

Consider an algebra € == (; 4, ¢*), where B is a four-element set,
the unary operation ¢ iy an involution without fixed points and the
ternary symmetrical operation ¢* is uniquely determined by the condi-
tions q*(x,y,i(m)) =19, ¢Xx,y,x) = The algebra € will be called
exceptional. It is easy to prove that the involution ¢ is the only non-
trivial algebraic unary operation in the algebra €. Moreover, there is
no binary algebraic operation in € depending on every variable. Hence
it follows that the elements a,b ¢ B (a # b) are independent if and only
if @ # i(b). Furthermore, since the involution ¢ has no fixed points, the
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algebra € is generated by every pair of independent elements. Conse-
quently, € is a two-dimensional v*-algebra.

1t should be noted that the exceptional algebra € can also be de-
fined in terms of Boolean operations. Namely, € = (B; ¢, ¢*), where the
set F is a four-element Boolean algebra, i(2) = o,

q*{(yy 22 Tg) = (w1 A2z~ @) (1 N @y Tg) v (2 25 A T) 0 (By A By B3)
it all elements @y, &, T3 are different and

gy, Toy Ta) = (28 ~ @y  g) (B~ Ty Xy) (@, ~ @3~ B) O (B By @3)

in the opposite case.
We remind that two algebras defined on the same set are treated

here as identical if they have the same clagses of algebraic operations.
TarorEM. Let A = (4; F) be o two-dimensional v* - algebra with & non-
trivial algebraic unary operation. Then one of the following four cases holds:
(i) U is the eceptional algebra €.
(ii) There is o field J such that A is o linear space over ¥ and there
exists a linear subspace A, of A such that the class of algebraic operations
is the class of all operations f defined as

n
F gy Bay ooy Tn) = ) Tt @,
=1
Where Ay, Agy voey bne o and aedq.
(ifl) There is a field 3 such that A is a linear space over 3 and there
exists a linear subspace Ay of A such that the class of algebraic operations
is the class of all operations | defined as

n
F(@1y @y vy Tn) = 2 AT+ @

k=1

n .
where Ay, Ayy ey Inedo, 2 M =1 and ac 4.
foue

(iv) There are a group 8 of permutations of the set A and o subset A,
of A containing all fized points of permutations that are mot the identical
and invariant under all permutations from S such that the class of algebraic
operations is the class of all operations defined as

F(ry @y ey Ba) = gl@y) (L <J <)
or
f(@1y @ay ooy Tn) = @,
where geX and aed,.
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Beforfa proving the Theorem we shall prove some lemmas. If 9
= (4; F) is an algebra, then by %™ we shall denote the algebra (4™; F)
of all % a.ry algebraic operations in U (see [2], p. 48). It is well kno,wn
that A™ is a v*-algebra whenever 9 is a v*-algebra of dimension >u
;(;ee [4]). In all further considerations we shall assume that the algeb/ra
is a two-dimensional *-algebra with a non-trivi i
e tion on-trivial algebraic unary
The following lemma is a simple consequence of Theorem 1 in [4].

LEMMA 1.AEach non-constant algebraic unary operation is invertible
Moreover, the inverse operation is also algebraic. ‘

‘LEMMA 2. If(u)f s a binary algebraic operation depending on every
variable and ¢ e A™, then the composition f(zx, c) is not a constant operation.

Proof. Contrary to this let us suppose that
o) flB,0)=c, (med),

where ¢, e A”. Since the operation f depends on both variables, we infer

_that; the operations 7 and &’ treated as elements of the algebr,a AP are

independent and, consequently, form a basis of A®. Thug there exis;ts

an algebraic binary operation » such that h(f(x,y) y) = z. Seftin

y = ¢, we get, by (1), the equation h(c,e¢) =z for ,3411 melt whic%

confradicts the assumption that the algebra oA is two-dimension’al '
Levma 3. Let ce A” and f, g A®. If

(2) ;f(ar,c)=g(m,c)
and
(3) fz, @) = g(z, )

for all xeA, then | =g.

Proof. If both operations f and g depend only on one variable
then the equation f = ¢ is a simple consequence of (2) and (3). Supposé
no?v that at least one of the operations f and ¢ depends on every variable
Without loss of generality we may assume that the operation f depends.s
on both variables. If the operations f and g treated as elements of the

g ¢
algebra Q] are daeper den 16). the operation g 8 generate by the
) P 8 g d

(4) g(2,9) =y (f(=z, 9))

for an operation &, € A, Sefting y = ¢ into (4) and taking into account (2),
;Ve get the equation f(z,¢) = hy(f(#, ¢)). By Lemma 2 the operation
(z,0) i3 not constant. Thus, by Lemma 1, the last equation implies

_ M) = », which together with (4), gives the equation f=g.

Fundamenta Mathematicae, T. LVII 15
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If the operations f and g are independent in the algebra. A® and,
consequently, form a basis of A, then there exist operations hy, hy e A%
such that

(5) hz(f(w,y),g(w,y))=f(w,c)
and
(6) T, ), 9(@, 9)) = 1Y, ¥) -

Setting y = ¢ into (B), we get, in view of (2), the equation
ha(f(“h ), f(wy 0)) = f(m; ).

By Lemma 2, the operation f(w,¢) is not constant. Consequently, by
Lemma 1, the last equation implies fyz, z) = @- Hence and from (3)
and (5) we get the eguation

flz, z) = hz(f(m: %), g(m7 w)) = f(m; ),

which, shows in particular, that the operation f(x, ) is not constant.
Further, setting ¥ = « into (6), we obtain, by (3), the equation
hs(f(m’ z), f(wa {L‘)) =;f(.€6, ) .

Since (2, #) is not constant, the last equation implies hy(x, z) = 2. Hence
and from (2) and (6) the equation

fe, &) = he{f(w, ), (2, 0)) = h[f (@, ©), g(@, 0)) =fle, 0)

follows. Thus the operation f(z,e¢) is constant. But this contradiets
Lemma 2. The Lemma is thus proved.

TEvMA 4. Let A® =0 and let h be a non-trivial algebraic unary
operation. If f,geA(g),

(M f(w7h(m)) =g(mah(w))
and - :

(8) S He, @) = ¢(@, 2),
then f=¢.

Proof. If the operations f and g are independent in the algebra
9® and, consequently, form a basis of %®, then there exist operations
Ry, hye AP such that P

(9) (e, ¥), g(@, 9)) = f(z, )
and
(10) o ho{f (=, 9), g2, ) = F(w, %) -

Setting ¥ = « into (9) and (10), we have, by (8), the equation
(e, @), f(z, @) = holf(z, @), (=, @) = (2, ) .

icm®

Representation theorem for v*-algebras 219
2

Since the operation f(z, #) is not constant

L . nt, the Ia .
implies hy(x, &) = hyz, @) ) st equation,
lows that

(1) F(h(@), b)) = hyff (2, B(w)), i@, b)) = i (@, h(w))
= 77'1(7(90, h(x)), f(x, h(w))) = fle, ).

]')jy Lem@a 1.the operation f(m,m) is invertible. Consequently, equa-
tion (1.1) implies h(z) = #, which contradicts the assumption T}’ms th
operations f and g are dependent in the algebra, A® ) °
If f and ¢ are dependent in the al ® th
] gebra A, th i
algebraic unary operation h, such that > then fhere exists an

- by Lemma 1
= . Henee and from (7), (9) and (10) it ]”:01j

(12) 9(@, 9) = hoff (, ).

Settin'g 4 = 2 into this equation and taking into account (8) we get the

:c()luazllonhf((w), ) = hi(lﬂ;:, w)). Since f(z, z) is not constant, we have the
rmula hy(x) = , which, by (12), implies th i =

P , , imp e equation f = g. The Lemma

Lemma 5. Let ceA” and f,geA®. It

(13) j(w; Y 0) = g($7 Y, c)
and
(14) f(z, 2, 2) = g(x, 2, »)

for all ©,yeA, then f=g.
Proof. Set
fl($ay)=f(m:a7$f‘/)yl gl(w’y)=g(w7w7y)a
hiz,y) =fly,»,¥), %z, y) =gy, 2, 9),
fa($:y>=f(m7?/1f'/); (@, Yy =g(x, 9, 9).
]irom (13) .a,nd (14) we get the equations fy(w,c) = gi(=, ¢), filz, x)
= giz,2) (j =1,2,3). Hence, by Lemma 3, we obtain the equations

fi=g5 (=1,2,3). In other words, f(
’ . x,Y,7) = g(x
least two variables among z, y and ’z are’ e’qlial. 9(0:9,2) whenever a6

Given a binary algebraic operation h we put
fal®, y) = f(h(wy Y), =, f‘/)’ gz, y) = g(h(m; Y), w:,@/) ’
flz,9) = f(w7 hiz,y), ?/), g5z, y) = g(w) h(z,y), 1’/) .
Since fy(z,x) = fﬂ(h(m7m) ) m): Oul, ) = ga(h(w: ), -'”): folz, @) = fz(h(wyw)yw)
?}lﬁ 4g,;(ac, @) = gy(h(w, ), ), we have the formula fia;a)= gy, )
§=4,5). Moreover, by (13), f=w,0) = gs(@,0) (j =4,5), which, * by
15%
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Temma 3, implies the equations fi=g; (j = 4,5). Oonsequently, for
each operation heA® the equations

(15) f(h(xyy)ymyy):g(h(myy)’wyy)
and
(16) f(m,h(%y%y) =g(wah(w?y),?/)

hold. In particular, taking & constant operation h we have, by (16),
(7 f@,0,9) = gl@, 0,) (04
Further, given hed® we put
fo@, 9) = e, v hl@, ), 96w, 9) = g(@, 9; h(@, ) -
By (17) we have the equation
fiw, ¢) = flw, ¢, hiz, 0)) = g(w, ¢, bz, ¢)) = ge(#, ©) -

Moreover, fi@,7) = fie, h(z, ©) = (e, bz, ) = go(w, ). Thus, by
Lemma 3, fo = ¢s and, consequently,

(18) i@, y, bz, ) =g(@,y, bz, 9)) -

Let ay, as,a, be an arbitrary triplet of elements of A. Since each
triplet of elements is dependent, one of the elements a,, a,, a; can be
obtained by a binary algebraic operation from the remaining ones. Hence
and from (15), (16) and (18) we get the equation Flay, Gy, @) = §(a1; Goy B),
which- completes the proof.

LEMMA 6. Suppose that either A” #@ or A% =0 and A® contains
at least two mon-trivial operations. If f,g e 4D and  F(my, Toy By, T)
= (@1, Ty, Tay Ty) Whenever @, =, 0F & = Ty, then f=g.

Proof. First consider the case 4” #@. Let ¢ be an arbitrary
element of 4° and

f1($7y,z)=f(z7“’,0,y); gl(m,y,z)=g(z,w,c,y).
Since

fulz, v, 0) =fle, 2, ¢,9) =gle,z,¢,9) = (@, Y 0)
and

flz, z, @) = f(z, 2, ¢, ) = g(x, 2, ¢, ») = g:(x, %, @),
we infer, by Lemma 5, that f, = g, and, consequently,
(19) He 2, 0,9) =gz, 2,0, 9)
for all @,y z¢ A and ced”.

icm®
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For any operation % e4® we put
folm,y,2) = ,‘f(-’l?, Yy 2, bz, y, z))y Gl ¥, 2) = g(ma Y, 2, bz, ¥, z)) ’

fal@, Y, 2) = f(w’ iz, y,2), 2, ?/)s gs(%, Y, 2) = g(m) hiz,y,2),
From (19) we get the equations

2, 9).

Ty, 0) = fla, y, e, bz, y, 0) = g(z, , ¢, h(@, y, 0)) = gol@, 9, 0) ,
fol, s ) = f (@, 1z, 9, 0), ¢, 9) = gle, h(z, ¥, ¢), ¢, y) = gsl@, 7, ) .
Moreover, by the assumption,
fl@, @, @) =f(2, 2, @, hiz, z,2) = g(v, =, z, h(z, =, z)) = gz, 2, 2)
and
Tz, 2, @) = fle, ble, v, 2), ©, 5) = gz, bz, 2, @), 2, @) = go(w, B, @) .

Hence, by Lemma 5, we obtain the equations f, =g, and f; = ¢s.
Consequently, for any operation heA4® the equations

(20) f(qu’zsh(ma%z)) :g(m:yazyh(m7 f‘/)z))
and
(21) f(mah(wyy’ z)’za'y))=g(m7h(m:yvz)7zy?/)
hold.

Given a system a,, a,, as, ¢, of elements of A. If a; e A”, then the
equation f(ay, as, @, @) = g{ay, a,, a5, a,) is & consequence of (19). Sup-
pose that a, ¢ A%. If a, is generated by ay, a, and a,, i.e. 0, = h(ay, a,, a5),
where h e A®, then the equation flay, ay, as, a;) = glay, ay, a3, @,) is
a consequence of (20). Finally, if a, is not generated by a;, a, and a,,
then e, and a, are independent and, consequently, form a basis of the
algebra in question. Thus a, = h(a,, a5, a,), where h €A®, and the
equation f(a;, as, ay, @) = g(ay, &, a3, a;) is a consequence of (21), which
completes the proof in the case A® #*@.

Suppose now that 4® = @ and the class A” contains at least two

non-trivial operations. Given a mnon-trivial operation hye A® and an
operation deA? we put

e, y) =y, (@), o, d(@, 1)), el@, y) = 9y, h(x), %, d(z,y)) .
By the assumption of the Lemma we have the equations

hlz, 2) = f(ma h(z), ®, d(z, m)) = g(my hy(@), z, d(=, w)) = g(=, @)
and

hi@, b(@) = F{hal2), hol2), 2, d{, (@) = g(ho() , ho(a), @, d(w, ho(a)))
= 91(“'07 ho(m)) . '
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Since the operation h, is non-trivial, we infer, in view of Lemma 4, that
f, = ¢, and, consequently,

(22) 1y, hol@), @, &z, ) = 9(y; ul), @, A2, )

; @
for all non-trivial operations hy ¢ A% and 92]1_)1 operamonﬁ(;z)d e A®.
Furfher, for arbitrary operations h e A and deA” we put

i@, ) = H, h(@), @, (@, ), 0@ 9) = 9l by); @, d(@, ¥)) -
By the assumption of the Lemma we have the equa?:ion
(23)  falz, @) =f(wa h{z), z, d(z, w)) = g(w, h(x), @, d(@, w)) = golz, x) .

Since the class A® contains at least two non-trivial operat.i(?ns, we can
find a non-trivial operation A, e A" such that the composition h(hl(w))

is also non-trivial. Setting y = hy(x) and ho(a) = h(hy(w)) into (22) we
obtain the equation
falr ) = F{u(@), B{u(a) 2, d(@, @)
— g{ml@), Blu(), 2, @[, Wia)) = pl@, (@)

Hence and from (23), in virtue of Lemma 4, we get the equation f, = g,.
Consequently,

(24) f( 7h(y)7w7d(myy))=g(yyh(y)5m:d(w7")>

whenever hed® and ded®. y

Let By, hy, hy and by, be operations from AY. By Lemn_l‘:m 1 all these
operations are invertible. Replacing in (24) h(y) by hz(hl (y)), d(xz, y)
by hl(hfl(y)), @ by hy(x) and setting y = hy(z) we geb the equation
(25) Flhl@), hef®) , Bo(), Ba(@)) = g (Pal2), Bu8) ; Bn(0), Ful(@)) «

Given operations d;, dy, ds, dy eA® we put

fal, ) = Fldu(z, 9), dol@, 9), do(@, ¥) 5 du(, 9)) 5
gs(z, y) = g(dl(m; y), o2, Y), (@, Y) , Aol ?/)) .

From (25) it follows that fyz, k(z)) = gs(z, h(x)) for operations % e A%,
Thus, by Lemma 4, fy = ¢, and, consequently,
f(dl(wj 1), &(@, Y), dal®, 9), dul, ?/)) = g(ds.(m7 ¥)s Gz, ), do(w, ), Aoz, y))

for all binary algebraic operations d,, dy, dy and d,. Since the algebra
in question is two-dimensional, the last equation implies f = g. The Lemma
is thus proved.
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LEvMA 7. If A% =0 and AP contains ezactly one non-trivial oper-
ation %, then there is mo binary algebraic operation depending on every
variable, the operation ¢ is an involution without fized poinis and A is
a four-clement set. Moreover, if a and b are independent elements of A,
then A ={a,b, ?:(“)1 7'(b)} -

Proof. Since there is no self-dependent element in 4, we have the
inequality 4(x) # « for all x « A. Moreover, 'i(i(m)) = z and, consequently,
the operation ¢ is an involution without fixed points.

Further, for any operation feA® one of the following four cases
holds:

(26) fo, ) ==, fla, i(@) ==,

(27 flo, o) =a, flo, i(@) = i(x),

(28) fl@, x) =i(x), [lo,i(n) =12,

(29) fle,s) =), flo,i(®) =2 =1i(i(®)

By Lemma 4 we have the equations f(z, y) = « in case (26), f(z,y) = v
in case (27), f(z,y) = i(2) in case (28) and f(z, y) = i(y) in case (29).
Thus there is no binary algebraic operation depending on both variables.

Let a and b be independent elements of A. Since the algebra in
question is two-dimensional, the elements ¢ and b generate the whole
set 4. Consequently, 4 = {a,b, i(a), 4(b)}. From the independence of
a and b it follows that <(a) ¢ b and 4(b) # a. Thus the set 4 has four
elements, which completes the proof.

Lemwva 8. Suppose that AV =0 and AP contains exactly one non-
trivial operation. If f, g e A® and F(tyy oy Ugy Uy) = G(Uy, Uy, Ug, W) When-
ever uy=x ory (j=1,2,3,4; x,ycAd), then f=yg. .

Proof. Let f and g satisfy the assumption of Lemma 8 and let ¢ be
the only non-trivial algebraic unary operation. Put :

fle, y) = f(z, ©, y, i(x)), g, y) = g(w, @, y, (),
folw, ¥) = fle, @, 9, (3)), gal@, y) = g (@, @, 9, 4(y)) 5
fol@, y) = flz, 9, 0(@), i(y),  gslz, ¥) = g(w, 9, i(2), i(y)) -
From the assumption of the Lemma and the relation i(ai(w)) =g it

follows that fi(z, x) = gylz, x) and filz, i(®) = gz, i(®) (G=1,2,3).
Thus, by Lemma 4, f; =g; (j =1, 2, 3) and, consequently,

f(w7 Ly Y, m(”)) = g(m’ Z,Y, "(m)) ’
f(wy 2, Y, z(y)) = g(wv z,Y, "(.7/)) ’
f(m: Y, 4(®), 2(?/)) = g(wy ¥, #(®), 7}((’/)) .
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Since the assumption of the Lemma is invariant under the permutation
of variables in the operations f and ¢, the last equations imply the
equation

(30) Flayy oy gy ag) = g(01; gy By Oy)

whenever <{a, Gz, ds, 6> i a permutation of one of the systems
(@, @, Y, ), 2,2, Y, i(y)> and <=, Y, i(2),4(y)> (B, 9 € A). Hence, by
Lemma 7, it follows that equation (30) holds whenever the system
Oy, Gz, Gy, 4g> coODtains at least three different elements. Since equation
(30) is assumed in the opposite cage, we have the equation f = g. The
Lemma is thus proved.

It 1 <k<mn, then 4™ will denote the subeclass of the class A™
consisting of all operations depending on at most k& variables. Further,
we shall denote by A™ and A™® respectively the subclasses of A™
and A™" consisting of all idempotent operations, i.e. operations f satis-
tying the condition f(z, @, ..., %) =&.

Lovua 9. If A® = A%V, then A® = 47,

Proof. First let us suppose that A® = A®Y. Let fe ANA®
Since the operation f depends on both variables, the operations f and &
treated as elements of the algebra AP are independent and, consequently,
form a basis of %®. Thus there exists an operation ¢e A® guch that

(31) z=glfz,9),9).

Hence we get the equation f(m,y):i(g(f(m,y),y),y‘). Taking into
account the independence of f and eff’, we have the equation

(32) z=1(g(z,9), ).

Put k{w,y,2) = flg{=, y), ). From (31) we obtain the equation

h(f(w,y), Y, z) =f(9(f(937y); y)7z) =f(‘va z);

which shows that the operation h(w,y,2) depends on the variables
and z Moreover, by (32), h(m,z,x)=o Thus heANA®", which
completes the proof in the case A? 7 A®Y.

Now suppose that there exists an operation fe ANA®Y for which
the operation ¢(x) =f(x,®,%) is not constant. Then, by Lemma 1,
g ' eA® and, consequently, the operation k(w,y,2) = ¢ (f(x, ¥, ?))
belongs to APNA®.

Finally, suppose that A® = A®" and j(z, %, ¢) is a constant oper-
ation for all operations feA®™\A®". Since there is no binary algebraic
operation depending on every variable, we have the equations f(x,®, ¥)
=fyz) or fi(y) and f(z,y,) = fy(z) or fyy), Where f,,f, AV, Setting
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y = x into these equations, we obtain the formula f,(z) = fy(#) = ¢, where
¢ceA®. Thus, f(@,%,9) =f(x,y,®) =¢, which, by Lemma 6, proves
that the operation f is constant. But this contradicts the assumption
fe ANA®Y. Consequently, the last case never holds, which completes
the proof.

LEMMA 10. Suppose that A” =@, A® = A®Y and the class A©
contains exactly one non-trivial operation. Then either U is the exceptional
algebra € or the class A® contains exactly one non-trivial operation s and
s{x, x, y) :8(937 Y, x) = 8(:’/5 Z, z) = Y.

Proof. By Lemma 9 the inequality 4® = A®" holds. Let us sup-
pose that the class A® contains a non-trivial operation j satisfying the
equation
(33) flayz,y) =x.

Now we shall prove that there exists a ternary algebraic operation ¢*
satisfying the condition

(34) (@, 2, y) = ¢*@, y, x) = q*y, », 2) = .

Since, by Lemma 7, the class A® consists of trivial operations, we have
the equations f(z,y,®) =2 or y and f(y,x,x) = or y. If either
f(#,y, ®) = = and f(y, %, ) = yor fl@, y, ®) = y and f(y, ©, ) = x, then,
according to (33), either f(x,y,2) = or f(x, ¥, 2) =y whenever at least
two variables among x, ¥, 2 ave equal. Hence and from Lemma 8 it fol-
lows that either f= ¢ or f= ¢, which contradiets the assumption
feANA®Y. Thus, we have either

(35) f(m,y,w):m, f(y7m9m):$
or
(36) f(m7y1m)=.7/) _f(?/;m,w):?/-

In case (35) we put g¢* =jf Further, in case (36) setting g¢*(x,y,?)
=f(z, ¥, f(2, 4, 2)), we have, by (33) and (36), the equations

Q*($; &z, "/) ::f("va &, f(w) &z, .l/)) =f(93, Z, (17) =X,

q*(m7 Y, x) = f(m7 Y, f(ma Y, w)) = ﬂ'na Yy Y) =&,

q*(i’/, Z, x) = f(?/) Z, f('l/v &L, J))) zf(?h xr,y) =,
which completes the proof of existence of the operation g¢* satisfying
condition (34). We note that, by Lemma 8, the operation ¢* is uniquely
determined by condition (34). Moreover, since condition (34) is invariant
under permutations of variables, the operation g* is symmetrical.

Let ¢ be the only non-trivial unary algebraic operation. Since, by (34),
¢*(z, z,i(2)) = @, we have either ¢*x,y,4(z)) = or ¢*(z, y, 1 (@) = y-
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In the first case the equation i(i(#)) = » and the symmefry of ¢* would
imply the equation

iw) = (i@, v, i(i@)) = @), v, 9) = (2, 9, i(z)) ==,
which is impossible. Thus the equation

(37) g*(w5y"i’(w)) =Y
holds.

Tor each algebraic operation g € A™ we have either ¢(z, %, ..., %) =&
or g(w, ©, ..., ®) = i(@). In the first case g e A™. Setting go(@y, Tay vy Tn)
= i(g(@y, Bay s Tn)), We have go e A™ in the second case. Moreover,
G, Bay orey Tn) = ${Gol@1y Tas oors @s)). Consequently, denoting by F the
class of all algebraic operations g satisfying the condition g(=,, ..., %)
— z, we have the equation A = (B; {i}w F). By Lemma 7 E is a four-
element set and all binary operations from F are trivial. Denote by 0
and 1 a pair of elements of B and put A, = (0,1; F). By Lemma 8 for
any pair f, ¢ ¢ F the equation f =g holds in the algebra A if and only
if it holds in the algebra %,. Consequently,

(38) 9= (B; iyuFy) it F,CFand % =(0,1;F).
Setting
(39) Q($7 Y, z) = q*(my Y @(z)) 3

we have, by (37), g <F and, by (34) and (37),
q(m,m,y)=w, 9(%%90):!1(%50799):?/,

which shows that the operation ¢ coincides with the Post operation
in the algebra %, (see [3], p. 200, formula (6)). Consequently, (0,1; p)
is a subsystem of the algebra . Since all binary operations from F
are trivial, the elements 0 and 1 are independent in the algebra %Up.
Thus, by the representation theorem for two-element algebras in which
all elements are independent ([3], p.203), we have the equation %,
=(0,1; p) = (0,1; ¢). Hence and from (38) the equation U = (E; i, q)
follows. Since, by formula (39), the operation ¢ is a composition of the
operations ¢ and ¢*, the equation A = (&; 4, g*) is true. Hence and from
(34) and (37) it follows that the algebra A is exceptional, which com-
pletes the proof in the case of the existence of an operation i satistying
condition (33).

In the opposite case, by Lemma 7, the operation f(z, #, y), being
trivial, is equal to ¥ whenever f e ANA®". Let s be a non-trivial oper-
ation from A®. Then

s(x, z,y) =slw,y,0) =s(y, ®,%) =y,

° ©
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Which.ilgnplies, by Lemma 8, that the class A® contains exactly one
non-trivial operation s. The Lemma is thus proved.

Tmvma 11 ' © ), 46,

E%E)M 11. Suppose that A® #0, A® 2 A A% & and the
class contains exactly one non-trivial operation. If f,geA® and
Fl@ys Tay By Ba) = §(B1, Loy X3, ) whenever v, =z, or Ty =By, then f=g

Proof. Since either j(z,w,%,2) =g, 2,2, 2) =2 or flz,z,2 x)
= ¢(», @, ®, x) = i(x), where, by Lemma 7, the operation 4 is zin ’]‘_n—
volution without fixed points, to prove the Lemma it éuﬁices to con-
sider the case of operations f and ¢ from 4%. Put

Wy, 2) =fx,9,2,2), glz,y,2) = 9z, y,2, 2),
fz(m7% z)=f(m:yyz7z)1 gg(m,g/,z)=g(m,g/,z,z).

By the assumption we have the equations
(40)  fil=z, 2, y) =gilz, @, ),  filx,y, o) =gz, y,2) (j=1,2).

Moreover, fi,g;eA” (=1,2). Suppose that at least one of the oper-
ations f;, g; is non-trivial. Without loss of generality we may assume
that f; = s, WhEI;e, by Lemma 10, the operation s is the only non-trivial
operation from A®. Moreover, by Lemma 10, fi(x, #,y) = fiz, y, ) = y.
Consequently, by (40), gi(w, 2,y) = gi(z, ¥, x) = y. Hence it follows that
the operation gy is non-trivial, and consequently, equal to s. Thus f; = g;
whenever at least one of these operations os non-trivial.

Supposg now that both operations f; and g; are trivial, i.e. f; = ¢f
and g¢; = eﬁ), where 1 <k <3 and 1 <r<3. From (40) we get the
equations

(41) o, 2,y) = &z, v, y)
and.
(42) 6, y, ) = eMlw, y, 7).

Equation (41) holds if and only if either k =7 =3 or 1 <k <2 and
1 <r < 2. BEquation (42) holds if and only if either k=7 =2 or k # 2
and r # 2. Consequently, equations (41) and (42) hold if and omnly if

k =r. Hence we get the equation f; = g; whenever both operations f;
and g; are trivial. Thus

f(m:%z,m)=ﬂ(wﬂ,z,w) and f(m:y;z’ z)=g(m,y,z,z).
Hence and from the assumption of the Lemma it follows that f(uy, %y, %y, %s)

= ¢g{uy, Uy U,y u,) whenever ;= or y (j=1,2,3,4; z,yeA). The
Lemma is now a consequence of the Lemma 8.
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Lmwuma 12. Suppose that either A® 0 or A“’; =@ and the dass
AD contains at least two non-trivial operations. If A® = A(s’l), then there
exists an operation s e A® such that

s(y, z, @) = s(x, ¥, z) =Y.

Proof. Tf A% = A%, then, by Lemma 9, we have the inequality
AO L 6N,

Tirst consider the case A® = A%V, Let fe ANA®Y. Of course,
the operations f and ¢ treated as elements of the algebra A are inde-
pendent and, consequently, form a basis of A, Thus there exists an
operation g, < A® such that

(43) &= gl(% fl@, ?/)} .
Hence f(z,y) = f(gl(y, f(z, y)},y) and, by the independence of f and &,
(44) z = f(gl(% z), y) .

Moreover, from (43) we obtain the equation
(45) T = gl(m) fla, w)) =gz, 2) .

Further, taking into account the independence of the operations
f and &2 we can prove in the same way the existence of an operation
gp A such that

(46) y= gz(m: =, ?/)) .

Hence f{z, y) = ]‘lx, gz(m, flz, g/))) and, by the independence of f and &,

(47) y =1z, gz, ) -
Moreover, by (46),
(48) = gg(ﬂ’/‘, f(ﬁ, m)) = (@, Z) -

Setting s(z, ¥, 2) = f(u(2, @), gal2, y)), we have, according to (44), (45),
(47) and (48), the equations .

s(y, @, ) = f(gl(my ), gal, m)) = f(gl(wj Y), -'»U) =Y,
s(@, 3, 2) = flgu(, 2), g, 9)) =Flo, (2, 9)) =9,
which completes the proof in the case A® = A%,
Suppose now that A® = Z®Y, Tt for all operations f e ANA®Y

the equation f(z, %, y) =y holds, then, of course, f(y,x, ) = f(z, ¥y, %)

=y and, consequently, each operation from AN\A®Y satisfies the as-
sertion of the Lemma.

* ©
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Tinally, let us assume that there exists an operation se AN\A®"
for which s(x,2,y) #y. Since 4” = 4%, we have the equation

49) s(z,2,9) =2
If either

(50) sy, 2, 0) =
or

(51) s{w,y,x) =2.

then §(@;, %s, #) = ¥, in the case (50) whenever @, = %, or , = u;cs and
s(®y, @y, ¥3) = @, in the case (51) whenever z =z, or @z, = z;. Hence
and from Lemma 6 it follows that s = & in the case (50) and s = &

1
in the cage (51). But this contradicts the assumption s ¢ ANA®. Thus

sy, #, @) = 8(@, ¥, ®) =y, which completes the proof.
LeMMA 13. Sugpose that the algebra A is not ewceptional. Then for
every operation 8 e A® satisfying the condition
(52) sy, x,0) =s(@,y,2) =y
the following equations hold:

(83) §(@yy oy T3) = 8(2, T1, Ta) 5

(64) f(3($1a Dy L3) ma) = S(f(wn @), (22, @), 503) for amy fEAm;
(85)

and

(56) 5‘(3(-7717 Ty D)y Ta, @) = 5'(“1; 8(%py s, Ts), wa) .

f@y, @y Bs) = s(f(xl, @y, 3), f(wlv Ty #1), ml) for any fez“‘)

Proof. From formula (52) it follows that equation (53) holds when-
eVer Ty = @, OT @ = &,. Thus, by Lemmas 6 and 11, it holds for all
2, @y, %3 ¢ A. Further, by (52), for any operation er‘” we have the
equations

f(s (@, @a, #1), @) = fla, @)
8(f (01, 21), (@ay @), @) = F(a5 21)
Fs (@, By ), mz) = (@1, T2)
8(]‘(3}1, @s) s (@ Ba), 932) = f(®1, @)

which show that (54) holds whenever &, = @, or @, = &,. Hence, by Lem-
mas 6 and 11, it holds for all @, ,, 2 € 4. N
Taking into account formula (52) for any operation f € A® we have
the equations
F(@ay @, ) = 'S‘(f(wzy Ty, @a) y F( @y oy %) 5”2) '

I (@, 0, @) = s(f(ms, Ty Bg) y [ (@ss By Ta)s 973) )
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which show that (55) holds whenever #; = &, or ; = ;. Hence, by Lem
mas 6 and 11, it follows that it holds for all oy, @y, @3¢ 4.
Finally, from the equations

3(3(5'717 @y, La)y Tas 032) = §(@1, Tay %) 5
5‘(51717 8(22, Ty, o) mz) = §(y, ¥y, ),
S(S(wu Dy Ba)y Ly -’”4) = (@1, %oy ) ,
-9(97717 (g, By, Ta), %) = $(&y, Bny )

it follows that (56) holds whenever 2; = @, or @ = %,, which, by Lem-
mas 6 and 11, implies equation (56) for all ©,, @,, @, #, ¢ A. The Lemma,
is thus proved.

In the sequel we shall denote 'by X the class A®. Elements of %
will be denoted by small Greek letters: 4, u, v, ...

Lemma 14, Suppose that U is not the ewceptional algebra. If A%
# APV, then X is a field with respect to the operations

(67) (A+p) (2, y) =3(}*(m7?/)1/4(m:?/)1:'/)7
(58) (A p) (2, y) = Aulz, v), 1),

where 8 18 a ternary algebraic operation satisfying the condition s(y, x, x)
=s(z,y,2) =Y.

Proof. First of all we note that the existence of an operation s
follows from Lemmas 10 and 12.

‘We define the zero-element and the unit elemient by the following
formulas: 0(x,y) =¥, 1(z,y) =x. Obviously, 0 =1 and for every le¢X

(A4+0)(z, y) = 8“(”7 Y)Y, f!/) =A=,9),
A1) (z,9) = A2, 9) = (1 ) (=, 9),
which implies 44-0=2 and A1 =1:1= 1.
The formula A-(u-») =
of (58). .
Given 1 fJC, we put (—2)(w,y) = s(y, y, Az, %)). Setting f = s into
(65) and taking into account (53), we get the formula

(A-p)+» (4, p, v eX) is a direct consequence

§(21y @y, Ty) = 3(8(‘”1: By, Bs)y Ty ml) = 3(972: 8 (2, %y, @), wl)
Hence the equation
A+ (=) (@, 9) = s(A(@, ), s(y, 9, (2, 9)), 9)

=8(?/, A, y)y A, ?/)) =y =0(z,y)
follows. Thus A4(—24) = 0. )
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Let A # 0, i.e. let A(z, y) depend on the variable x. Then the oper-
ations A{z,y) and O(z,y) treated as elements of the algebra A are
mdependent and, consequently, form a basis of Y®. Thus there is an
operation A~ eA(Z) such that

(39) o =1" (A2, 9),9).

Setting y = » into the last equation we obtain the formula © = 2~ Y, z),
which shows that 27" e X. Moreover, from (59) we get the equation

ﬂ(-’ﬂ,f‘/)'l( l(lw ¥) ,?/),J) which, by the independence of i(z,y)
and 0(w,y) implies
o =2102"=,9),9).

This equation and (39) can be written in the form A™'-A=1-1""=1.
Taking into account assertions (53), (54) and (56) of Lemma 13,
we have the equations

A+, y) =s(A(z, 9), p(®,9),9) = s(ulz,9), A2, 9), y) = (a+D(z,9) .
(2t ) +9) (@, 9) = s(s (M@, 9), w(@, ), 9), 7 (@, 9), 9)
=s(A(@,9), s(ul(@, 9), 9@, 9), 9), ¥) = (I (p+) (2, 9),
(A (u9)) (@, 9) = As(u(@, 9),7(2,9),9), 9)

= 3(2(.“(55'7 Y)y ?/)7 Z("’(W: Y), f’/)ay) =(A-pu+riv)(z,y),
which imply
Adp=p+i,  (A4p)+y=2+(p+v)

AAp+v)=2A-u+iv for every A, u,vek.

and

Finally, the following equation is a direct consequence of the definitions
(57) and (58)

(a+2)- 2) (@, 9) = s(u(2(2,9),9), 7(2(2,9),9),9) = (8- 24> D) (2, 9) -
Thus (u+v)-A= pu-A+»-2 for every A,pu,»e¥, which completes the
proof.

LEMMA 15. If the algebra U is not emoeptwnal cmd A® £ A% then
A s a linear space over 3 with respect to the operations
‘ o+y =s(@,y,0) (z,yecd),
A=Az, 0) (leX, zed),
where O is an elemont of A if AV =@ and is an arbitrary element of A

if A =0 and s is a ternar Y algebraic opemtwn satisfying the condition
sy, z,2) =s(w,y,x) =Y.
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i)
w
(O]

Proof. The element @ is the zero-element of A. In fact, v+ 6

= s(z,0,0) = x for every e A. Further, we have, in virtue of Lemma 13,
the equations

zty =s(,9,0) =s(y,2,0) =y+2,
(@+y)+2=s(s(z, 9, 0),2,0) = s(z,5(9,2,0), 0) = v+ (y+2),
1-(@+y) = 1(s(z, 5, ©), ) = s(A(z, 0), A(y,0),0) =1-a+2y
for any x,y,2¢A and AeX. Moreover, we have the equations
A (p @) = Mp(z, 0),0) = (A-p) @,
l-a=wm,
(O4p)-@=s(iw, 0), pe, 0),0) =L atu o

for any wed and A,peX. Hence, setting —& = (—1) @, we get the
equation #+(—) =0-2=0. The Lemma is thus proved.

LEMMA 16. If the algebra U is not esceptional and A® 7= AP, then
the class A® consists of all operations of the form

G (®y1y By Bg) = M@+ Mot Ay,

where My Ay, Al and b+ 2424 = 1.
Proof. First we shall prove the formulas

(60) Ay, 2) = (1=2)(,9),
(61) Mz, y) =4 o+(1—2)y

for any operation 1 eX. Setting f(w;, ., %) = A(2,, 4;) into formula (55)
of the Lemma 13, we infer that

(62) My, @) = 5(/1(5”1: @)y A%y, ) wl) .
Replacing in this formula @, and 2, by #, #; by ¥ we obtain the equation
z =8(A(ya z), (@, y), y) .
Hence, according to the definition of the umit element and addition
in X, we get equation (60). Further, setting z, = O into (62) and replacing
z, by « and @, by y, we infer that
A@,y) =5(4(0,), M=, ), 6) =s(A(z, 6), (1—)(y, 0), 6)
= a4 (-1,

which eompletes the proof of (61).

icm®
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Given A, Ay, 4 eI with 4+ 24,42, = 1, we put

h(@y, @y @3) = 3(11(5”17 @) 5 Ao(a, @y), 5"‘2) s

hof @y, a5 @) = 3(}*2(972: @)y Ao, 2,), ml) .
Of course,

@y @y @3) = Ao( @y, @) = ho(y, m,
and, by (60), 3y Dy 2Ty By 5 )

(g, Xy ) = S(ll(xas @)y Aa(@3, @5), 372) = (A 4) (s, @)
= (1= o) (s, @) = Aofmy, ),

o3y @5y @) = 8 (ae(wzy Za)y Ag(y, ), -”33) = S(Az(mzy g)y @ay 973)
= Ao(@a, %3) .

cox.lsequenﬂy, hy(@y, @y, @) = Ry, @y, @5) whenever Ty = O @ = 2,
which, by Lemmas 6 and 11, implies the equation by = hy. Thus

(63) '5'(}*1(991, @)y Aa(@g, ), ma) =38 (}*z(mz; @), Aa(s, @), $1) .
Further, put

(64) T2y, 2y @3, B) = s(&l(wl, #3) 5 8 (Al 1), Aa(y, @), @), mA) .
Obviously, the operation & is algebraic. Moreover, by (56),
h(wy, @y, g, @) = s(ml, 8 (Aafats, 1), Aol 1), ) a;l)
= s(s (2015 A(ttqy 1), 1), Agleta, 24), )

=3 (M@, @), (@3, 1), 99'1)
and

h(wy, @y, @5, 7)) = s(ll(wl, @3) , 8(0a, Do, o) EAR mg)
= s(s(ll(wl ) @a), Ty, Bo) y AWy, @a), wz)
= 8 (M@, 05) ; Ma(s, @), )
Hence and from (63) we get the equation
h(@y, @yy By, @) = h(®y, By, Tg,y Ty) -
Thus the equation h(wy, @y, o5, %) = h(2y, @, s, #;) holds whenever

Ty =Ty OF &y = @, which, by Lemmas 6 and 11, implies that the oper-
ations h(w,, @,, 25, %) and h(zy, ., @, @) are identical. Consequently,
the operation h(,, 2., #,, #,) does not depend on the variable z,. Thus,
by (64) and Lemma 15,

By, 205, 24, ,) = 9(11(5”1’ @)73(}-2(932, 0), i3(wy, 0), @)i @) = &+ @+ A,

Fundamenta Mathematicae, T. LVIT e
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which shows that the operation 4,a+ 4@+ Zaa?az is algebraic. Since
dat Ao+ A58 = (L + Ao+ ho) 2 = @, it belongs to A%
Given an operation geA( , we pub

(68) iz, y) =g(®, 9, 9), h® Y= g,z Y, h=l—A—12
and
(66) Go(@yy By B3) = My @1+ Aa@ptAa g .

From the preceding reasoning it follows that the operatlon o is algebraic.
Mozreover, by (61), (65) and (66),

Go{ @1y oy 1) = (1— Lg) @+ Ay = Aola, 1) = g (a1, X, 1)
Gol@1, oy 85) = @y + (1— M) @ = Xy(®y, @) = ¢ (@1, T, D) -
Consequently, the equation g¢(#,, s, @s) = §o(%1, %2, @3) holds whenever

2y = @; OF @y = &,. Hence, by Lemmas 6 and 11, we get the equation
¢ = ¢y, which, in view of (66), completes the proof.

LiemmA 17. Suppose that A is mot the exceptional algebra and
A® £ A% Then there is o linear subspace A, of A such that the class A®
consists of all operations of the form

(67) 9(@yy Tay 3) = @1+ Aa @+ Ly 25+ a

where @ € Ag, M, Ay % are arbitrary elements of 5% if A® # @ and A+ A+
+l=1if AV =0
Proof. Put .
Ay = {f(0): feA™}.
The set A, is a linear subspace of A. In fact, consider an arbitrary pair

fis f. of operations from 4% and an arbitrary pair 4;, 4, of elements
of ¥. By Lemma 16 the operation

hmy, @y, #5) = Ly Doty + (1— L — Ay) 3,
belongs to 49, Consequently, the operation
fal@) = h‘(ﬁ(m)) fal@), -'1')

belongs to A™. Since 7,(@) = fi(0)+ (O
subspace of A.

By Lemma 16 the operation h, defined by the formula

), the set 4, is a linear

(68) hy(zy, Ty, Ty) = By— Dy

belongs to A®. Given feA®, we put
(69) o(f (),

DMy, @) = fl@s), a"'a)‘ =h(@)—

AR T

icm
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Obviously, A(w,«) == and, consequently, 1eX. By the definition of
scalar-multiplication in A we have A(z,®) = A-z. On the other hand,
from (69) we get the equation

T Az, 0) =f(x)—1(0).

Thus f(#) = A-&-+f(@). Consider the case 4% —

@. If 2#1, then, by
Lemma 16, the operation

Tol@sy @) = (1—2)"m— A(1—2) ",

is algebraic. Thus the composition fo(f(w),a:) is an algebraic operation.
But this composition iy equal to (1—A)7'(®), which contradicts the
assumption A = @. Consequently, it 4% = @, then each unary alge-
braic opemmon f satisfies the equation f(z) = z--7(@

Let geA® and h, be defined by formula (68) Setting  f,(z)
= g(», z, ) and
(70)  gu(@y, @, w3) = ho(g(wu Ty @), fo(@1) 1’3) = (&g, T, &

) — () 425,

we infer that the operation ¢, is algebraic. Moreover, g(,, %)=
and, consequently, ¢, e A%, By Lemma 16 there are elements J;, 4,, 4, € X
such that 4+ A-+4 =1 and

(11) 9@ 5 By @) = @y Aoyt Aa ity .

Since fi(w) = A-o+1(@
by virtue of (70) and (7

), where 1e and 1=1 if A“”—Qj we have,
1), the equation

g (@15 @yy T3) = (Mgt A) 21+ Ao @y (A—1) 23+ f1(O)

Moreover, in the case A =@ the sum of coefficients is equal to 1.
Thus each ternary algebraic operation is of the form deseribed by the
agsertion of thé Lemma.

It A” = @, then, by virtue of the relatlon 0 < A”, we have the
equation 4, = A(° Moreover, the addition and the scalar-multiplication
in A are, by definition, algebraic operations. Hence it follows that each
operation (67) is algebraic.

Suppose that A =@. Let fed®, 21+ Jabds =1 (A, da, A € ).
By Lemma 16 the operation

9o (5’717 @yy By) = oy -+ Aoyt Agly
is algebraic. Moreover, f(z) = z-+7(@
F(go(@y, 2, ws)) = Jy @y AT+ Ao s+ (6)

is algebraic. The Lemma is thus proved.

. Thus the composition

16*
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Proof of the Theorem. Suppose that A® =A% Applying
Narkiewicz's theorem ([4], p. 338, Theorem II for n = 2) to the algebra %
we infer that there exist a group § of transformations of the set 4 and
a subset A4,C A containing all fixed points of the transformations that
are not the identical and invariant under all transformations from g
such that A® consists of all operations defined as

flay, 2y @) =g(2) (j=1,2,3),
fl@y, 0y 23) =@,

where geG and aed,.

If A® £ A% and the algebra 9 is not exceptional, then the class
A® is completely deseribed by Lemma 17. Hence it follows that i
9 = G, then the algebra % = (4%, 4%) is a three-dimensional v*-alge-
bra. Since the algebras A and AP have identical ternary algebraic
operations, the algebra A® is also a three-dimensional v*-algebra (see [4],
p. 338). Now our theorem is a direct consequence of the representation
theorem for v*-algebras of dimension >3 (see [5]), because U is iso-
morphic to A and A® is a subalgebra of A,
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