

A representation theorem for two-dimensional v*-algebras

by

K. Urbanik (Wrocław)

The results presented here complete paper [5], where a full description of all at least three-dimensional v^* -algebras was given. For the terminology and notation used here, see [2] and [5]. In particular an algebra is said to be a v^* -algebra if it satisfies the following conditions:

1. Each self-dependent element is an algebraic constant.

2. If the elements $a_1, a_2, ..., a_n$ $(n \ge 1)$ are independent and the elements $a_1, a_2, ..., a_n, a_{n+1}$ are dependent, then a_{n+1} is generated by $a_1, a_2, ..., a_n$.

A simple description in terms of groups and semigroups of all onedimensional v^* -algebras is contained in an expository paper [6]. G. Grätzer proved in [1] a representation theorem for two-dimensional v^* -algebras without non-trivial unary algebraic operations, i.e. for universal algebras independently generated by every two elements. His result is an analogue of assertion (ii) in [5], but the field \mathcal{K} is replaced by a weaker algebraic structure, similar to the nearfield defined in terms of multiplication and subtraction.

The aim of the present paper is to prove a representation theorem for two-dimensional v^* -algebras with a non-trivial algebraic unary operation. The result we have obtained is rather unexpected. Namely, except one four-element algebra all two-dimensional v^* -algebras with a nontrivial algebraic unary operation have the same algebraic structure as at least three-dimensional ones.

Consider an algebra $\mathfrak{E} = (E; i, q^*)$, where E is a four-element set, the unary operation i is an involution without fixed points and the ternary symmetrical operation q^* is uniquely determined by the conditions $q^*(x, y, i(x)) = y$, $q^*(x, y, x) = x$. The algebra \mathfrak{E} will be called *exceptional*. It is easy to prove that the involution i is the only nontrivial algebraic unary operation in the algebra \mathfrak{E} . Moreover, there is no binary algebraic operation in \mathfrak{E} depending on every variable. Hence it follows that the elements $a, b \in E$ $(a \neq b)$ are independent if and only if $a \neq i(b)$. Furthermore, since the involution i has no fixed points, the algebra ${\mathfrak E}$ is generated by every pair of independent elements. Consequently, \mathfrak{E} is a two-dimensional v^* -algebra.

It should be noted that the exceptional algebra & can also be defined in terms of Boolean operations. Namely, $\mathfrak{E}=(E;\,i,\,q^*),$ where the set E is a four-element Boolean algebra, i(x) = x',

$$q^{*}(x_{1}, x_{2}, x_{3}) = (x_{1}^{\prime} \cap x_{2}^{\prime} \cap x_{3}^{\prime}) \cup (x_{1}^{\prime} \cap x_{2} \cap x_{3}) \cup (x_{1} \cap x_{2}^{\prime} \cap x_{3}) \cup (x_{1} \cap x_{2} \cap x_{3}^{\prime})$$

if all elements x_1, x_2, x_3 are different and

 $q^{*}(x_{1}, x_{2}, x_{3}) = (x_{1} \cap x_{2} \cap x_{3}) \cup (x_{1}' \cap x_{2} \cap x_{3}) \cup (x_{1} \cap x_{2}' \cap x_{3}) \cup (x_{1} \cap x_{2} \cap x_{3}')$

in the opposite case.

We remind that two algebras defined on the same set are treated here as identical if they have the same classes of algebraic operations.

THEOREM. Let $\mathfrak{A} = (A; F)$ be a two-dimensional v*-algebra with a nontrivial algebraic unary operation. Then one of the following four cases holds:

(i) A is the exceptional algebra E.

(ii) There is a field K such that A is a linear space over K and there exists a linear subspace A_0 of A such that the class of algebraic operations is the class of all operations f defined as

$$f(x_1, x_2, ..., x_n) = \sum_{k=1}^n \lambda_k x_k + a$$
,

where $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathcal{K}$ and $a \in A_0$.

(iii) There is a field K such that A is a linear space over K and there exists a linear subspace A_0 of A such that the class of algebraic operations is the class of all operations f defined as

$$f(x_1, x_2, \ldots, x_n) = \sum_{k=1}^n \lambda_k x_k + a$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{K}, \sum_{k=1}^n \lambda_k = 1$ and $a \in A_0$.

(iv) There are a group S of permutations of the set A and a subset A_0 of A containing all fixed points of permutations that are not the identical and invariant under all permutations from S such that the class of algebraic operations is the class of all operations defined as

$$f(x_1, x_2, ..., x_n) = g(x_j) \quad (1 \le j \le n)$$

$$f(x_1, x_2, \ldots, x_n) = a$$

where $g \in K$ and $a \in A_0$.

Before proving the Theorem we shall prove some lemmas. If A = (A; F) is an algebra, then by $\mathfrak{A}^{(n)}$ we shall denote the algebra $(A^{(n)}; F)$ of all *n*-ary algebraic operations in \mathfrak{A} (see [2], p. 48). It is well known that $\mathfrak{A}^{(n)}$ is a v*-algebra whenever \mathfrak{A} is a v*-algebra of dimension $\ge n$ (see [4]). In all further considerations we shall assume that the algebra \mathfrak{A} is a two-dimensional v^* -algebra with a non-trivial algebraic unary operation.

The following lemma is a simple consequence of Theorem 1 in [4].

LEMMA 1. Each non-constant algebraic unary operation is invertible. Moreover, the inverse operation is also algebraic.

LEMMA 2. If f is a binary algebraic operation depending on every variable and $c \in A^{(0)}$, then the composition f(x, c) is not a constant operation.

Proof. Contrary to this let us suppose that

(1)
$$f(x, c) = c_0 \quad (x \in A),$$

where $c_0 \in A^{(0)}$. Since the operation f depends on both variables, we infer that the operations f and $e_2^{(2)}$ treated as elements of the algebra $\mathfrak{A}^{(2)}$ are independent and, consequently, form a basis of $\mathfrak{A}^{(2)}$. Thus there exists an algebraic binary operation h such that h(f(x, y), y) = x. Setting y = c, we get, by (1), the equation $h(c_0, c) = x$ for all $x \in A$, which contradicts the assumption that the algebra A is two-dimensional.

LEMMA 3. Let $c \in A^{(0)}$ and $f, q \in A^{(2)}$. If

(2)f(x, c) = q(x, c)

and

(3)

for all $x \in A$, then t = q.

Proof. If both operations f and g depend only on one variable, then the equation f = g is a simple consequence of (2) and (3). Suppose now that at least one of the operations f and g depends on every variable. Without loss of generality we may assume that the operation f depends on both variables. If the operations f and g treated as elements of the algebra $\mathfrak{A}^{(2)}$ are dependent, then the operation g is generated by the operation f, i.e.

f(x, x) = q(x, x)

(4) $g(x, y) = h_1(f(x, y))$

for an operation $h_1 \in A^{(1)}$. Setting y = c into (4) and taking into account (2), we get the equation $f(x, c) = h_1(f(x, c))$. By Lemma 2 the operation f(x, c) is not constant. Thus, by Lemma 1, the last equation implies $h_1(x) = x$, which together with (4), gives the equation f = g.

Fundamenta Mathematicae, T. LVII

15

If the operations f and g are independent in the algebra $\mathfrak{A}^{(2)}$ and, consequently, form a basis of $\mathfrak{A}^{(2)}$, then there exist operations h_2 , $h_3 \in \mathcal{A}^{(2)}$ such that

(5)
$$h_2(f(x, y), g(x, y)) = f(x, c)$$

and (6)

 $h_3(f(x, y), g(x, y)) = f(y, y)$.

Setting y = c into (5), we get, in view of (2), the equation

$$h_2(f(x, c), f(x, c)) = f(x, c).$$

By Lemma 2, the operation f(x, c) is not constant. Consequently, by Lemma 1, the last equation implies $h_2(x, x) = x$. Hence and from (3) and (5) we get the equation

$$f(x, x) = h_2(f(x, x), g(x, x)) = f(x, c)$$

which, shows in particular, that the operation f(x, x) is not constant. Further, setting y = x into (6), we obtain, by (3), the equation

$$h_3(f(x, x), f(x, x)) = f(x, x).$$

Since f(x, x) is not constant, the last equation implies $h_3(x, x) = x$. Hence and from (2) and (6) the equation

$$f(x, c) = h_3(f(x, c), f(x, c)) = h_3(f(x, c), g(x, c)) = f(c, c)$$

follows. Thus the operation f(x, c) is constant. But this contradicts Lemma 2. The Lemma is thus proved.

LEMMA 4. Let $A^{(0)} = \emptyset$ and let h be a non-trivial algebraic unary operation. If $f, g \in A^{(2)}$,

(7) f(x, h(x)) = g(x, h(x))

and

(8) f(x, x) = g(x, x),

then f = g.

Proof. If the operations f and g are independent in the algebra $\mathfrak{A}^{(2)}$ and, consequently, form a basis of $\mathfrak{A}^{(2)}$, then there exist operations $h_1, h_2 \in A^{(2)}$ such that

(9)
$$h_1(f(x, y), g(x, y)) = f(x, x)$$

and

(10) $h_2(f(x, y), g(x, y)) = f(y, y).$

Setting y = x into (9) and (10), we have, by (8), the equation

$$h_1(f(x, x), f(x, x)) = h_2(f(x, x), f(x, x)) = f(x, x).$$

Since the operation f(x, x) is not constant, the last equation, by Lemma 1, implies $h_1(x, x) = h_2(x, x) = x$. Hence and from (7), (9) and (10) it follows that

11)
$$f(h(x), h(x)) = h_2(f(x, h(x)), f(x, h(x))) = f(x, h(x))$$
$$= h_1(f(x, h(x)), f(x, h(x))) = f(x, x).$$

By Lemma 1 the operation f(x, x) is invertible. Consequently, equation (11) implies h(x) = x, which contradicts the assumption. Thus the operations f and g are dependent in the algebra $\mathfrak{A}^{(2)}$.

If f and g are dependent in the algebra $\mathfrak{A}^{(2)}$, then there exists an algebraic unary operation h_0 such that

(12)
$$g(x, y) = h_0(f(x, y))$$
.

Setting y = x into this equation and taking into account (8) we get the equation $f(x, x) = h_0(f(x, x))$. Since f(x, x) is not constant, we have the formula $h_0(x) = x$, which, by (12), implies the equation f = g. The Lemma is thus proved.

LEMMA 5. Let $c \in A^{(0)}$ and $f, g \in A^{(3)}$. If

(13)
$$f(x, y, c) = g(x, y, c)$$

and

(14) f(x, x, x) = g(x, x, x)

for all $x, y \in A$, then f = g.

Proof. Set

$$\begin{split} f_1(x, y) &= f(x, x, y), \quad g_1(x, y) = g(x, x, y), \\ f_2(x, y) &= f(y, x, y), \quad g_2(x, y) = g(y, x, y), \\ f_3(x, y) &= f(x, y, y), \quad g_3(x, y) = g(x, y, y). \end{split}$$

From (13) and (14) we get the equations $f_j(x, c) = g_j(x, c)$, $f_j(x, x) = g_j(x, x)$ (j = 1, 2, 3). Hence, by Lemma 3, we obtain the equations $f_j = g_j$ (j = 1, 2, 3). In other words, f(x, y, z) = g(x, y, z) whenever at least two variables among x, y and z are equal.

Given a binary algebraic operation h we put

$$\begin{split} f_4(x, y) &= f(h(x, y), x, y), \quad g_4(x, y) = g(h(x, y), x, y), \\ f_5(x, y) &= f(x, h(x, y), y), \quad g_5(x, y) = g(x, h(x, y), y). \end{split}$$

Since $f_4(x, x) = f_3(h(x, x), x)$, $g_4(x, x) = g_3(h(x, x), x)$, $f_5(x, x) = f_2(h(x, x), x)$ and $g_5(x, x) = g_2(h(x, x), x)$, we have the formula $f_j(x, x) = g_j(x, x)$ (j = 4, 5). Moreover, by (13), $f_j(x, c) = g_j(x, c)$ (j = 4, 5), which, by 15^*

Lemma 3, implies the equations $f_j = g_j$ (j = 4, 5). Consequently, for each operation $h \in A^{(2)}$ the equations

(15)
$$f(h(x, y), x, y) = g(h(x, y), x, y)$$

and

(16)
$$f(x, h(x, y), y) = g(x, h(x, y), y)$$

hold. In particular, taking a constant operation h we have, by (16),

(17) $f(x, c, y) = g(x, c, y) \quad (c \in A^{(0)}).$

Further, given $h \in A^{(2)}$ we put

$$f_{6}(x, y) = f(x, y, h(x, y)), \quad g_{6}(x, y) = g(x, y, h(x, y)).$$

By (17) we have the equation

$$f_{6}(x, c) = f(x, c, h(x, c)) = g(x, c, h(x, c)) = g_{6}(x, c).$$

Moreover, $f_6(x, x) = f_1(x, h(x, x)) = g_1(x, h(x, x)) = g_6(x, x)$. Thus, by Lemma 3, $f_6 = g_6$ and, consequently,

(18)
$$f(x, y, h(x, y)) = g(x, y, h(x, y)).$$

Let a_1, a_2, a_3 be an arbitrary triplet of elements of A. Since each triplet of elements is dependent, one of the elements a_1, a_2, a_3 can be obtained by a binary algebraic operation from the remaining ones. Hence and from (15), (16) and (18) we get the equation $f(a_1, a_2, a_3) = g(a_1, a_2, a_3)$, which completes the proof.

LEMMA 6. Suppose that either $A^{(0)} \neq \emptyset$ or $A^{(0)} = \emptyset$ and $A^{(1)}$ contains at least two non-trivial operations. If $f, g \in A^{(4)}$ and $f(x_1, x_2, x_3, x_4)$ $= g(x_1, x_2, x_3, x_4)$ whenever $x_1 = x_2$ or $x_1 = x_3$, then f = g.

Proof. First consider the case $A^{(0)} \neq \emptyset$. Let *c* be an arbitrary element of $A^{(0)}$ and

$$f_1(x, y, z) = f(z, x, c, y), \quad g_1(x, y, z) = g(z, x, c, y).$$

Since

$$f_1(x, y, c) = f(c, x, c, y) = g(c, x, c, y) = g_1(x, y, c)$$

and

$$f_1(x, x, x) = f(x, x, c, x) = g(x, x, c, x) = g_1(x, x, x),$$

we infer, by Lemma 5, that $f_1 = g_1$ and, consequently,

(19) f(z, x, c, y) = g(z, x, c, y)

for all $x, y, z \in A$ and $c \in A^{(0)}$.

For any operation $h \in A^{(3)}$ we put

$$egin{aligned} &f_2(x,\,y,\,z)=fig(x,\,y,\,z,\,h(x,\,y,\,z)ig)\,, &g_2(x,\,y,\,z)=gig(x,\,y,\,z,\,h(x,\,y,\,z)ig)\,,\ &f_3(x,\,y,\,z)=fig(x,\,h(x,\,y,\,z),\,z,\,yig)\,, &g_3(x,\,y,\,z)=gig(x,\,h(x,\,y,\,z),\,z,\,yig)\,. \end{aligned}$$

From (19) we get the equations

$$\begin{split} f_2(x, y, c) &= f(x, y, c, h(x, y, c)) = g(x, y, c, h(x, y, c)) = g_2(x, y, c) \,, \\ f_3(x, y, c) &= f(x, h(x, y, c), c, y) = g(x, h(x, y, c), c, y) = g_3(x, y, c) \,. \end{split}$$

Moreover, by the assumption,

$$f_2(x, x, x) = f(x, x, x, h(x, x, x)) = g(x, x, x, h(x, x, x)) = g_2(x, x, x)$$

and

$$f_3(x, x, x) = f(x, h(x, x, x), x, x) = g(x, h(x, x, x), x, x) = g_3(x, x, x)$$

Hence, by Lemma 5, we obtain the equations $f_2 = g_2$ and $f_3 = g_3$.

Consequently, for any operation $h \in A^{(3)}$ the equations

(20)
$$f(x, y, z, h(x, y, z)) = g(x, y, z, h(x, y, z))$$

and

(21) f(x, h(x, y, z), z, y) = g(x, h(x, y, z), z, y)

hold.

Given a system a_1, a_2, a_3, a_4 of elements of A. If $a_3 \,\epsilon \, A^{(0)}$, then the equation $f(a_1, a_2, a_3, a_4) = g(a_1, a_2, a_3, a_4)$ is a consequence of (19). Suppose that $a_3 \,\epsilon \, A^{(0)}$. If a_4 is generated by a_1, a_2 and a_3 , i.e. $a_4 = h(a_1, a_2, a_3)$, where $h \,\epsilon \, A^{(3)}$, then the equation $f(a_1, a_2, a_3, a_4) = g(a_1, a_2, a_3, a_4)$ is a consequence of (20). Finally, if a_4 is not generated by a_1, a_2 and a_3 , then a_3 and a_4 are independent and, consequently, form a basis of the algebra in question. Thus $a_2 = h(a_1, a_3, a_4)$, where $h \,\epsilon \, A^{(3)}$, and the equation $f(a_1, a_2, a_3, a_4) = g(a_1, a_2, a_3, a_4)$ is a consequence of (21), which completes the proof in the case $A^{(0)} \neq \emptyset$.

Suppose now that $A^{(0)} = \emptyset$ and the class $A^{(1)}$ contains at least two non-trivial operations. Given a non-trivial operation $h_0 \in A^{(1)}$ and an operation $d \in A^{(2)}$ we put

 $f_1(x, y) = f(y, h_0(x), x, d(x, y)), \quad g_1(x, y) = g(y, h_0(x), x, d(x, y)).$

By the assumption of the Lemma we have the equations

 $f_1(x, x) = f(x, h_0(x), x, d(x, x)) = g(x, h_0(x), x, d(x, x)) = g_1(x, x)$ and

$$\begin{split} f_1\!\!\left(x,\,h_0(x)\right) &= f\!\left(h_0\!\!\left(x)\,,\,h_0\!\!\left(x\right),\,x,\,d\left(x,\,h_0(x)\right)\right) = g\!\left(h_0\!\!\left(x)\,,\,h_0\!\!\left(x\right),\,x,\,d\left(x,\,h_0\!\!\left(x\right)\right)\right) \\ &= g_1\!\left(x,\,h_0\!\!\left(x\right)\right)\,. \end{split}$$

Since the operation h_0 is non-trivial, we infer, in view of Lemma 4, that $f_1 = g_1$ and, consequently,

(22)
$$f(y, h_0(x), x, d(x, y)) = g(y, h_0(x), x, d(x, y))$$

for all non-trivial operations $h_0 \epsilon A^{(1)}$ and all operations $d \epsilon A^{(2)}$. Further, for arbitrary operations $h \epsilon A^{(1)}$ and $d \epsilon A^{(2)}$ we put

$$f_{0}(x, y) = f(y, h(y), x, d(x, y)), \quad g_{2}(x, y) = g(y, h(y), x, d(x, y)).$$

By the assumption of the Lemma we have the equation

(23)
$$f_2(x, x) = f(x, h(x), x, d(x, x)) = g(x, h(x), x, d(x, x)) = g_2(x, x).$$

Since the class $A^{(1)}$ contains at least two non-trivial operations, we can find a non-trivial operation $h_1 \in A^{(1)}$ such that the composition $h(h_1(x))$ is also non-trivial. Setting $y = h_1(x)$ and $h_0(x) = h(h_1(x))$ into (22) we obtain the equation

$$egin{aligned} f_2ig(x,h_1(x)ig) &= fig(h_1(x)\,,\,hig(h_1(x)ig)\,,\,x,\,dig(x,\,h_1(x)ig)ig) \ &= gig(h_1(x)\,,\,hig(h_1(x)ig)\,,\,x,\,dig(x,\,h_1(x)ig)ig) = g_2ig(x,\,h_1(x)ig)\,. \end{aligned}$$

Hence and from (23), in virtue of Lemma 4, we get the equation $f_2 = g_2$. Consequently,

(24)
$$f(y, h(y), x, d(x, y)) = g(y, h(y), x, d(x, y))$$

whenever $h \in A^{(1)}$ and $d \in A^{(2)}$.

Let h_1, h_2, h_3 and h_4 be operations from $A^{(1)}$. By Lemma 1 all these operations are invertible. Replacing in (24) h(y) by $h_2(h_1^{-1}(y))$, d(x, y) by $h_4(h_1^{-1}(y))$, x by $h_3(x)$ and setting $y = h_1(x)$ we get the equation

(25)
$$f(h_1(x), h_2(x), h_3(x), h_4(x)) = g(h_1(x), h_2(x), h_3(x), h_4(x)).$$

Given operations $d_1, d_2, d_3, d_4 \in A^{(2)}$ we put

$$\begin{split} f_3(x,y) &= f \left(d_1(x,y), \, d_2(x,y), \, d_3(x,y), \, d_4(x,y) \right), \\ g_3(x,y) &= g \left(d_1(x,y), \, d_2(x,y), \, d_3(x,y), \, d_4(x,y) \right). \end{split}$$

From (25) it follows that $f_3(x, h(x)) = g_3(x, h(x))$ for operations $h \in A^{(1)}$. Thus, by Lemma 4, $f_3 = g_3$ and, consequently,

$$f(d_1(x, y), d_2(x, y), d_3(x, y), d_4(x, y)) = g(d_1(x, y), d_2(x, y), d_3(x, y), d_4(x, y))$$

for all binary algebraic operations d_1 , d_2 , d_3 and d_4 . Since the algebra in question is two-dimensional, the last equation implies f = g. The Lemma is thus proved.

LEMMA 7. If $A^{(0)} = \emptyset$ and $A^{(1)}$ contains exactly one non-trivial operation *i*, then there is no binary algebraic operation depending on every variable, the operation *i* is an involution without fixed points and *A* is a four-element set. Moreover, if *a* and *b* are independent elements of *A*, then $A = \{a, b, i(a), i(b)\}$.

Proof. Since there is no self-dependent element in A, we have the inequality $i(x) \neq x$ for all $x \in A$. Moreover, i(i(x)) = x and, consequently, the operation i is an involution without fixed points.

Further, for any operation $f \in A^{(2)}$ one of the following four cases holds:

(26) $f(x, x) = x, \qquad f(x, i(x)) = x,$

(27)
$$f(x, x) = x, \qquad f(x, i(x)) = i(x),$$

- (28) $f(x, x) = i(x), \quad f(x, i(x)) = i(x),$
- (29) $f(x, x) = i(x), \quad f(x, i(x)) = x = i(i(x)).$

By Lemma 4 we have the equations f(x, y) = x in case (26), f(x, y) = y in case (27), f(x, y) = i(x) in case (28) and f(x, y) = i(y) in case (29). Thus there is no binary algebraic operation depending on both variables.

Let a and b be independent elements of A. Since the algebra in question is two-dimensional, the elements a and b generate the whole set A. Consequently, $A = \{a, b, i(a), i(b)\}$. From the independence of a and b it follows that $i(a) \neq b$ and $i(b) \neq a$. Thus the set A has four elements, which completes the proof.

LEMMA 8. Suppose that $A^{(0)} = \emptyset$ and $A^{(1)}$ contains exactly one nontrivial operation. If $f, g \in A^{(4)}$ and $f(u_1, u_2, u_3, u_4) = g(u_1, u_2, u_3, u_4)$ whenever $u_f = x$ or y $(j = 1, 2, 3, 4; x, y \in A)$, then f = g.

Proof. Let f and g satisfy the assumption of Lemma 8 and let i be the only non-trivial algebraic unary operation. Put

$$egin{aligned} &f_1(x,\,y) = fig(x,\,x,\,y,\,i(x)ig), &g_1(x,\,y) = gig(x,\,x,\,y,\,i(x)ig), \ &f_2(x,\,y) = fig(x,\,x,\,y,\,i(y)ig), &g_2(x,\,y) = gig(x,\,x,\,y,\,i(y)ig), \ &f_3(x,\,y) = fig(x,\,y,\,i(x),\,i(y)ig), &g_3(x,\,y) = gig(x,\,y,\,i(x),\,i(y)ig). \end{aligned}$$

From the assumption of the Lemma and the relation i(i(x)) = x it follows that $f_j(x, x) = g_j(x, x)$ and $f_j(x, i(x)) = g_j(x, i(x))$ (j = 1, 2, 3). Thus, by Lemma 4, $f_j = g_j$ (j = 1, 2, 3) and, consequently,

$$\begin{split} f\big(x,\,x,\,y,\,i(x)\big) &= g\big(x,\,x,\,y,\,i(x)\big)\,,\\ f\big(x,\,x,\,y,\,i(y)\big) &= g\big(x,\,x,\,y,\,i(y)\big)\,,\\ f\big(x,\,y,\,i(x),\,i(y)\big) &= g\big(x,\,y,\,i(x),\,i(y)\big)\,. \end{split}$$

Since the assumption of the Lemma is invariant under the permutation of variables in the operations f and g, the last equations imply the equation

 $(30) f(a_1, a_2, a_3, a_4) = g(a_1, a_2, a_3, a_4)$

whenever $\langle a_1, a_2, a_3, a_4 \rangle$ is a permutation of one of the systems $\langle x, x, y, i(x) \rangle$, $\langle x, x, y, i(y) \rangle$ and $\langle x, y, i(x), i(y) \rangle$ $(x, y \in A)$. Hence, by Lemma 7, it follows that equation (30) holds whenever the system $\langle a_1, a_2, a_3, a_4 \rangle$ contains at least three different elements. Since equation (30) is assumed in the opposite case, we have the equation f = g. The Lemma is thus proved.

If $1 \le k \le n$, then $A^{(n,k)}$ will denote the subclass of the class $A^{(n)}$ consisting of all operations depending on at most k variables. Further, we shall denote by $\widetilde{A}^{(n)}$ and $\widetilde{A}^{(n,k)}$ respectively the subclasses of $A^{(n)}$ and $A^{(n,k)}$ consisting of all idempotent operations, i.e. operations f satisfying the condition f(x, x, ..., x) = x.

LEMMA 9. If $A^{(3)} \neq A^{(3,1)}$, then $\widetilde{A}^{(3)} \neq \widetilde{A}^{(3,1)}$.

Proof. First let us suppose that $A^{(2)} \neq A^{(2,1)}$. Let $f \in A^{(2)} \setminus A^{(2,1)}$. Since the operation f depends on both variables, the operations f and $e_2^{(2)}$ treated as elements of the algebra $\mathfrak{A}^{(2)}$ are independent and, consequently, form a basis of $\mathfrak{A}^{(2)}$. Thus there exists an operation $g \in A^{(2)}$ such that

$$(31) x = g(f(x, y), y)$$

Hence we get the equation f(x, y) = f(g(f(x, y), y), y). Taking into account the independence of f and $e_2^{(2)}$, we have the equation

$$(32) x = f(g(x, y), y).$$

Put h(x, y, z) = f(g(x, y), z). From (31) we obtain the equation

$$h(f(x, y), y, z) = f(g(f(x, y), y), z) = f(x, z),$$

which shows that the operation h(x, y, z) depends on the variables x and z. Moreover, by (32), h(x, x, x) = x. Thus $h \in \widetilde{A}^{(3)} \setminus \widetilde{A}^{(3,1)}$, which completes the proof in the case $A^{(2)} \neq A^{(2,1)}$.

Now suppose that there exists an operation $f \in A^{(3)} \setminus A^{(3,1)}$ for which the operation g(x) = f(x, x, x) is not constant. Then, by Lemma 1, $g^{-1} \in A^{(1)}$ and, consequently, the operation $h(x, y, z) = g^{-1}(f(x, y, z))$ belongs to $\widetilde{A}^{(3,1)}$.

Finally, suppose that $\widetilde{\mathcal{A}}^{(2)} = \widetilde{\mathcal{A}}^{(2,1)}$ and f(x, x, x) is a constant operation for all operations $f \in \mathcal{A}^{(3)} \setminus \mathcal{A}^{(3,1)}$. Since there is no binary algebraic operation depending on every variable, we have the equations f(x, x, y) $= f_1(x)$ or $f_1(y)$ and $f(x, y, x) = f_2(x)$ or $f_2(y)$, where $f_1, f_2 \in \mathcal{A}^{(1)}$. Setting y = x into these equations, we obtain the formula $f_1(x) = f_2(x) = c$, where $c \in \mathcal{A}^{(0)}$. Thus, f(x, x, y) = f(x, y, x) = c, which, by Lemma 6, proves that the operation f is constant. But this contradicts the assumption $f \in \mathcal{A}^{(3)} \setminus \mathcal{A}^{(3,1)}$. Consequently, the last case never holds, which completes the proof.

LEMMA 10. Suppose that $A^{(0)} = \emptyset$, $A^{(3)} \neq A^{(3,1)}$ and the class $A^{(1)}$ contains exactly one non-trivial operation. Then either \mathfrak{A} is the exceptional algebra \mathfrak{E} or the class $A^{(3)}$ contains exactly one non-trivial operation s and s(x, x, y) = s(x, y, x) = s(y, x, x) = y.

Proof. By Lemma 9 the inequality $\widetilde{A}^{(8)} \neq \widetilde{A}^{(3,1)}$ holds. Let us suppose that the class $\widetilde{A}^{(8)}$ contains a non-trivial operation f satisfying the equation

$$f(x, x, y) = x.$$

Now we shall prove that there exists a ternary algebraic operation q^* satisfying the condition

(34)
$$q^{*}(x, x, y) = q^{*}(x, y, x) = q^{*}(y, x, x) = x.$$

Since, by Lemma 7, the class $\widetilde{A}^{(2)}$ consists of trivial operations, we have the equations f(x, y, x) = x or y and f(y, x, x) = x or y. If either f(x, y, x) = x and f(y, x, x) = y or f(x, y, x) = y and f(y, x, x) = x, then, according to (33), either f(x, y, z) = x or f(x, y, z) = y whenever at least two variables among x, y, z are equal. Hence and from Lemma 8 it follows that either $f = e_1^{(3)}$ or $f = e_2^{(3)}$, which contradicts the assumption $f \in \widetilde{A}^{(3)} \widetilde{A}^{(3,1)}$. Thus, we have either

35)
$$f(x, y, x) = x, \quad f(y, x, x) = x$$

 \mathbf{or}

(36) $f(x, y, x) = y, \quad f(y, x, x) = y.$

In case (35) we put $q^* = f$. Further, in case (36) setting $q^*(x, y, z) = f(x, y, f(x, y, z))$, we have, by (33) and (36), the equations

$$\begin{aligned} q^*(x, x, y) &= f(x, x, f(x, x, y)) = f(x, x, x) = x, \\ q^*(x, y, x) &= f(x, y, f(x, y, x)) = f(x, y, y) = x, \\ q^*(y, x, x) &= f(y, x, f(y, x, x)) = f(y, x, y) = x, \end{aligned}$$

which completes the proof of existence of the operation q^* satisfying condition (34). We note that, by Lemma 8, the operation q^* is uniquely determined by condition (34). Moreover, since condition (34) is invariant under permutations of variables, the operation q^* is symmetrical.

Let *i* be the only non-trivial unary algebraic operation. Since, by (34), $q^*(x, x, i(x)) = x$, we have either $q^*(x, y, i(x)) = x$ or $q^*(x, y, i(x)) = y$.

In the first case the equation i(i(x)) = x and the symmetry of q^* would imply the equation

$$i(x) = q^*(i(x), y, i(i(x))) = q^*(i(x), y, x) = q^*(x, y, i(x)) = x,$$

which is impossible. Thus the equation

$$(37) q^*(x, y, i(x)) =$$

holds.

For each algebraic operation $g \in A^{(n)}$ we have either g(x, x, ..., x) = xor g(x, x, ..., x) = i(x). In the first case $g \in \widetilde{\mathcal{A}}^{(n)}$. Setting $g_0(x_1, x_2, ..., x_n)$ $=i(g(x_1, x_2, ..., x_n)),$ we have $g_0 \in \widetilde{\mathcal{A}}^{(n)}$ in the second case. Moreover, $g(x_1, x_2, \ldots, x_n) = i(g_0(x_1, x_2, \ldots, x_n)).$ Consequently, denoting by F the class of all algebraic operations g satisfying the condition g(x, x, ..., x)= x, we have the equation $A = (E; \{i\} \cup F)$. By Lemma 7 E is a fourelement set and all binary operations from F are trivial. Denote by 0 and 1 a pair of elements of E and put $\mathfrak{A}_0 = (0, 1; F)$. By Lemma 8 for any pair $f, g \in F$ the equation f = g holds in the algebra \mathfrak{A} if and only if it holds in the algebra \mathfrak{A}_0 . Consequently,

(38)Setting

(39)
$$q(x, y, z) = q^*(x, y, i(z)),$$

we have, by (37), $q \in F$ and, by (34) and (37),

$$q(x, x, y) = x, \quad q(x, y, x) = q(y, x, x) = y,$$

 $\mathfrak{A} = (E; \{i\} \cup F_0)$ if $F_0 \subset F$ and $\mathfrak{A}_0 = (0, 1; F_0)$.

which shows that the operation q coincides with the Post operation pin the algebra \mathfrak{A}_0 (see [3], p. 200, formula (6)). Consequently, (0, 1; p)is a subsystem of the algebra $\mathfrak{A}_{\mathfrak{o}}$. Since all binary operations from F are trivial, the elements 0 and 1 are independent in the algebra \mathfrak{A}_0 . Thus, by the representation theorem for two-element algebras in which all elements are independent ([3], p. 203), we have the equation \mathfrak{A}_0 =(0, 1; p) = (0, 1; q). Hence and from (38) the equation $\mathfrak{A} = (E; i, q)$ follows. Since, by formula (39), the operation q is a composition of the operations i and q^* , the equation $\mathfrak{A} = (E; i, q^*)$ is true. Hence and from (34) and (37) it follows that the algebra A is exceptional, which completes the proof in the case of the existence of an operation f satisfying condition (33).

In the opposite case, by Lemma 7, the operation f(x, x, y), being trivial, is equal to y whenever $f \in \widetilde{A}^{(3)} \setminus \widetilde{A}^{(3,1)}$. Let s be a non-trivial operation from $\widetilde{A}^{(8)}$. Then

$$s(x, x, y) = s(x, y, x) = s(y, x, x) = y$$

which implies, by Lemma 8, that the class $\widetilde{A}^{(3)}$ contains exactly one non-trivial operation s. The Lemma is thus proved.

LEMMA 11. Suppose that $A^{(0)} \neq \emptyset$, $A^{(3)} \neq A^{(3,1)}$, $\mathfrak{A} \neq \mathfrak{E}$ and the class $A^{(1)}$ contains exactly one non-trivial operation. If $f, g \in A^{(4)}$ and $f(x_1, x_2, x_3, x_4) = g(x_1, x_2, x_3, x_4)$ whenever $x_1 = x_2$ or $x_1 = x_3$, then f = q.

Proof. Since either f(x, x, x, x) = g(x, x, x, x) = x or f(x, x, x, x)= q(x, x, x, x) = i(x), where, by Lemma 7, the operation i is an involution without fixed points, to prove the Lemma it suffices to consider the case of operations f and q from $\widetilde{A}^{(4)}$. Put

$$\begin{split} f_1(x,\,y,\,z) &= f(x,\,y,\,z,\,x)\,, \quad g_1(x,\,y,\,z) = g(x,\,y,\,z,\,x)\,, \\ f_2(x,\,y,\,z) &= f(x,\,y,\,z,\,z)\,, \quad g_2(x,\,y,\,z) = g(x,\,y,\,z,\,z)\,. \end{split}$$

By the assumption we have the equations

(40)
$$f_j(x, x, y) = g_j(x, x, y), \quad f_j(x, y, x) = g_j(x, y, x) \quad (j = 1, 2).$$

Moreover, $f_j, g_j \in \widetilde{A}^{(3)}$ (j = 1, 2). Suppose that at least one of the operations f_i , g_j is non-trivial. Without loss of generality we may assume that $f_i = s$, where, by Lemma 10, the operation s is the only non-trivial operation from $\widetilde{A}^{(3)}$. Moreover, by Lemma 10, $f_j(x, x, y) = f_j(x, y, x) = y$. Consequently, by (40), $g_j(x, x, y) = g_j(x, y, x) = y$. Hence it follows that the operation g_i is non-trivial, and consequently, equal to s. Thus $f_i = q_i$ whenever at least one of these operations os non-trivial.

Suppose now that both operations f_i and g_i are trivial, i.e. $f_i = e_k^{(3)}$ and $g_i = e_r^{(3)}$, where $1 \le k \le 3$ and $1 \le r \le 3$. From (40) we get the equations

(41)
$$e_k^{(3)}(x, x, y) = e_r^{(3)}(x, x, y)$$

and

(42)
$$e_k^{(3)}(x, y, x) = e_r^{(3)}(x, y, x)$$

Equation (41) holds if and only if either k = r = 3 or $1 \le k \le 2$ and $1 \leq r \leq 2$. Equation (42) holds if and only if either k = r = 2 or $k \neq 2$ and $r \neq 2$. Consequently, equations (41) and (42) hold if and only if k = r. Hence we get the equation $f_i = g_i$ whenever both operations f_i and q_i are trivial. Thus

f(x, y, z, x) = q(x, y, z, x) and f(x, y, z, z) = q(x, y, z, z).

Hence and from the assumption of the Lemma it follows that $f(u_1, u_2, u_3, u_4)$ $= g(u_1, u_2, u_3, u_4)$ whenever $u_i = x$ or y $(i = 1, 2, 3, 4; x, y \in A)$. The Lemma is now a consequence of the Lemma 8.

y

LEMMA 12. Suppose that either $A^{(0)} \neq \emptyset$ or $A^{(0)} = \emptyset$ and the class $A^{(1)}$ contains at least two non-trivial operations. If $A^{(3)} \neq A^{(3,1)}$, then there exists an operation $s \in \widetilde{A}^{(3)}$ such that

$$s(y, x, x) = s(x, y, x) = y.$$

Proof. If $A^{(3)} \neq A^{(3,1)}$, then, by Lemma 9, we have the inequality $\widetilde{A}^{(3)} \neq \widetilde{A}^{(3,1)}$.

First consider the case $\widetilde{A}^{(2)} \neq \widetilde{A}^{(2,1)}$. Let $f \in \widetilde{A}^{(2)} \setminus \widetilde{A}^{(2,1)}$. Of course, the operations f and $e_2^{(2)}$ treated as elements of the algebra $\mathfrak{A}^{(2)}$ are independent and, consequently, form a basis of $\mathfrak{A}^{(2)}$. Thus there exists an operation $g_1 \in A^{(2)}$ such that

(43)
$$x = g_1(y, f(x, y))$$

Hence $f(x, y) = f(g_1(y, f(x, y)), y)$ and, by the independence of f and $e_2^{(2)}$,

(44)
$$x = f(g_1(y, x), y).$$

Moreover, from (43) we obtain the equation

(45)
$$x = g_1(x, f(x, x)) = g_1(x, x).$$

Further, taking into account the independence of the operations f and $e_1^{(2)}$ we can prove in the same way the existence of an operation $q_2 \in A^{(2)}$ such that

(46)
$$y = g_2(x, f(x, y)).$$

Hence $f(x, y) = f(x, g_2(x, f(x, y)))$ and, by the independence of f and $e_1^{(2)}$,

(47)
$$y = f(x, g_2(x, y)).$$

Moreover, by (46),

(48) $x = g_2(x, f(x, x)) = g_2(x, x).$

Setting $s(x, y, z) = f(g_1(z, x), g_2(z, y))$, we have, according to (44), (45), (47) and (48), the equations

$$egin{aligned} &s(y,\,x,\,x)=fig(g_1(x,\,y)\,,\,g_2(x,\,x)ig)=fig(g_1(x,\,y)\,,\,xig)=y\,\,,\ &s(x,\,y,\,x)=fig(g_1(x,\,x)\,,\,g_2(x,\,y)ig)=fig(x,\,g_2(x,\,y)ig)=y\,\,, \end{aligned}$$

which completes the proof in the case $\widetilde{A}^{(2)} \neq \widetilde{A}^{(2,1)}$.

Suppose now that $\widetilde{A}^{(2)} = \widetilde{A}^{(2,1)}$. If for all operations $f \in \widetilde{A}^{(3)} \setminus \widetilde{A}^{(3,1)}$ the equation f(x, x, y) = y holds, then, of course, f(y, x, x) = f(x, y, x) = y and, consequently, each operation from $\widetilde{A}^{(3)} \setminus \widetilde{A}^{(3,1)}$ satisfies the assertion of the Lemma.

Finally, let us assume that there exists an operation $s \in \widetilde{A}^{(3)} \setminus \widetilde{A}^{(3,1)}$ for which $s(x, x, y) \neq y$. Since $\widetilde{A}^{(2)} = \widetilde{A}^{(2,1)}$, we have the equation

(49) s(x, x, y) = x. If either (50) s(y, x, x) = xor (51) s(x, y, x) = x.

then $s(x_1, x_2, x_3) = x_2$ in the case (50) whenever $x_2 = x_1$ or $x_2 = x_3$ and $s(x_1, x_2, x_3) = x_1$ in the case (51) whenever $x_1 = x_2$ or $x_1 = x_3$. Hence and from Lemma 6 it follows that $s = e_2^{(3)}$ in the case (50) and $s = e_1^{(3)}$ in the case (51). But this contradicts the assumption $s \in \widetilde{\mathcal{A}}^{(3)} \setminus \widetilde{\mathcal{A}}^{(3,1)}$. Thus s(y, x, x) = s(x, y, x) = y, which completes the proof.

LEMMA 13. Suppose that the algebra \mathfrak{A} is not exceptional. Then for every operation $s \in \widetilde{A}^{(S)}$ satisfying the condition

(52) s(y, x, x) = s(x, y, x) = y

the following equations hold:

 $\begin{array}{ll} (53) & s\left(x_{1},\,x_{2},\,x_{3}\right) = s\left(x_{2},\,x_{1},\,x_{3}\right), \\ (54) & f\left(s\left(x_{1},\,x_{2},\,x_{3}\right),\,x_{3}\right) = s\left(f\left(x_{1},\,x_{3}\right),\,f\left(x_{2},\,x_{3}\right),\,x_{3}\right) & \text{for any} & f \in \mathcal{A}^{(2)}, \\ (55) & f\left(x_{1},\,x_{2},\,x_{3}\right) = s\left(f\left(x_{1},\,x_{1},\,x_{3}\right),\,f\left(x_{1},\,x_{2},\,x_{1}\right),\,x_{1}\right) & \text{for any} & f \in \widetilde{\mathcal{A}}^{(3)} \\ and & \\ and & \end{array}$

(56)
$$s(s(x_1, x_2, x_3), x_4, x_3) = s(x_1, s(x_2, x_4, x_3), x_3)$$

Proof. From formula (52) it follows that equation (53) holds whenever $x_3 = x_1$ or $x_3 = x_2$. Thus, by Lemmas 6 and 11, it holds for all $x_1, x_2, x_3 \in A$. Further, by (52), for any operation $f \in \widetilde{A}^{(2)}$ we have the equations

$$f(s(x_1, x_2, x_1), x_1) = f(x_2, x_1),$$

$$s(f(x_1, x_1), f(x_2, x_1), x_1) = f(x_2, x_1),$$

$$f(s(x_1, x_2, x_2), x_2) = f(x_1, x_2),$$

$$s(f(x_1, x_2), f(x_2, x_2), x_2) = f(x_1, x_2),$$

which show that (54) holds whenever $x_3 = x_1$ or $x_3 = x_2$. Hence, by Lemmas 6 and 11, it holds for all $x_1, x_2, x_3 \in A$.

Taking into account formula (52) for any operation $f \in \widetilde{A}^{(8)}$ we have the equations

$$\begin{split} f(x_2, x_2, x_3) &= s \left(f(x_2, x_2, x_3), f(x_2, x_2, x_2), x_2 \right), \\ f(x_3, x_2, x_3) &= s \left(f(x_3, x_3, x_3), f(x_3, x_2, x_3), x_3 \right), \end{split}$$

Let $\lambda \neq 0$, i.e. let $\lambda(x, y)$ depend on the variable x. Then the operations $\lambda(x, y)$ and 0(x, y) treated as elements of the algebra $\mathfrak{A}^{(2)}$ are independent and, consequently, form a basis of $\mathfrak{A}^{(2)}$. Thus there is an operation $\lambda^{-1} \in \mathcal{A}^{(2)}$ such that

(59)
$$x = \lambda^{-1}(\lambda(x, y), y)$$

Setting y = x into the last equation we obtain the formula $x = \lambda^{-1}(x, x)$, which shows that $\lambda^{-1} \in \mathcal{K}$. Moreover, from (59) we get the equation $\lambda(x, y) = \lambda(\lambda^{-1}(\lambda(x, y), y), y)$, which, by the independence of $\lambda(x, y)$ and 0(x, y) implies

$$x = \lambda(\lambda^{-1}(x, y), y).$$

This equation and (59) can be written in the form $\lambda^{-1} \cdot \lambda = \lambda \cdot \lambda^{-1} = 1$.

Taking into account assertions (53), (54) and (56) of Lemma 13, we have the equations

$$\begin{split} (\lambda + \mu)(x, y) &= s \big(\lambda(x, y), \mu(x, y), y \big) = s \big(\mu(x, y), \lambda(x, y), y \big) = (\mu + \lambda)(x, y) \, . \\ ((\lambda + \mu) + \nu)(x, y) &= s \big(s \big(\lambda(x, y), \mu(x, y), y \big), \nu(x, y), y \big) \\ &= s \big(\lambda(x, y), s \big(\mu(x, y), \nu(x, y), y \big), y \big) = \big(\lambda + (\mu + \nu) \big)(x, y) \, , \end{split}$$

$$\begin{split} \big(\lambda\cdot(\mu+\nu)\big)(x,y) &= \lambda\big(s\big(\mu(x,y),\nu(x,y),y\big),y\big) \\ &= s\big(\lambda\big(\mu(x,y),y\big),\lambda\big(\nu(x,y),y\big),y\big) = (\lambda\cdot\mu+\lambda\cdot\nu)(x,y)\,, \end{split}$$

which imply

and

$$\begin{split} \lambda + \mu &= \mu + \lambda, \quad (\lambda + \mu) + \nu = \lambda + (\mu + \nu) \\ \lambda \cdot (\mu + \nu) &= \lambda \cdot \mu + \lambda \cdot \nu \quad \text{for every} \quad \lambda, \, \mu, \, \nu \in \mathcal{K} \,. \end{split}$$

Finally, the following equation is a direct consequence of the definitions (57) and (58)

$$\left((\mu+\nu)\cdot\lambda\right)(x,y)=s\left(\mu\left(\lambda(x,y),y\right),\nu\left(\lambda(x,y),y\right),y\right)=(\mu\cdot\lambda+\nu\cdot\lambda)(x,y).$$

Thus $(\mu + \nu) \cdot \lambda = \mu \cdot \lambda + \nu \cdot \lambda$ for every $\lambda, \mu, \nu \in \mathcal{K}$, which completes the proof.

LEMMA 15. If the algebra \mathfrak{A} is not exceptional and $A^{(3)} \neq A^{(3,1)}$, then A is a linear space over K with respect to the operations

$$\begin{aligned} x+y &= s(x, y, \Theta) \quad (x, y \in A) ,\\ \lambda \cdot x &= \lambda(x, \Theta) \quad (\lambda \in \mathcal{K}, x \in A) , \end{aligned}$$

where Θ is an element of $A^{(0)}$ if $A^{(0)} \neq \emptyset$ and is an arbitrary element of A if $A^{(0)} = \emptyset$ and s is a ternary algebraic operation satisfying the condition s(y, x, x) = s(x, y, x) = y.

which show that (55) holds whenever
$$x_1 = x_2$$
 or $x_1 = x_3$. Hence, by Lemmas 6 and 11, it follows that it holds for all $x_1, x_2, x_3 \in A$.

Finally, from the equations

$$\begin{split} & s\left(s\left(x_{1},\,x_{2},\,x_{2}\right),\,x_{4},\,x_{2}\right) = s\left(x_{1},\,x_{4},\,x_{2}\right),\\ & s\left(x_{1},\,s\left(x_{2},\,x_{4},\,x_{2}\right),\,x_{2}\right) = s\left(x_{1},\,x_{4},\,x_{2}\right),\\ & s\left(s\left(x_{1},\,x_{2},\,x_{4}\right),\,x_{4},\,x_{4}\right) = s\left(x_{1},\,x_{2},\,x_{4}\right),\\ & s\left(x_{1},\,s\left(x_{2},\,x_{4},\,x_{4}\right),\,x_{4}\right) = s\left(x_{1},\,x_{2},\,x_{4}\right),\\ & s\left(x_{1},\,s\left(x_{2},\,x_{4},\,x_{4}\right),\,x_{4}\right) = s\left(x_{1},\,x_{2},\,x_{4}\right) \end{split}$$

it follows that (56) holds whenever $x_3 = x_2$ or $x_3 = x_4$, which, by Lemmas 6 and 11, implies equation (56) for all $x_1, x_2, x_3, x_4 \in A$. The Lemma is thus proved.

In the sequel we shall denote by \mathcal{K} the class $\widetilde{\mathcal{A}}^{(2)}$. Elements of \mathcal{K} will be denoted by small Greek letters: λ, μ, ν, \dots

LEMMA 14. Suppose that \mathfrak{A} is not the exceptional algebra. If $A^{(3)} \neq A^{(3,1)}$, then \mathfrak{K} is a field with respect to the operations

(57)
$$(\lambda+\mu)(x,y) = s(\lambda(x,y),\mu(x,y),y),$$

(58)
$$(\lambda \cdot \mu)(x, y) = \lambda(\mu(x, y), y),$$

where s is a ternary algebraic operation satisfying the condition s(y, x, x) = s(x, y, x) = y.

Proof. First of all we note that the existence of an operation s follows from Lemmas 10 and 12.

We define the zero-element and the unit element by the following formulas: 0(x, y) = y, 1(x, y) = x. Obviously, $0 \neq 1$ and for every $\lambda \in \mathcal{K}$.

$$\begin{split} &(\lambda+0)(x,y)=s\big(\lambda(x,y),y,y\big)=\lambda(x,y)\,,\\ &(\lambda\cdot\mathbf{1})(x,y)=\lambda(x,y)=(\mathbf{1}\cdot\lambda)(x,y)\,, \end{split}$$

which implies $\lambda + 0 = \lambda$ and $\lambda \cdot 1 = 1 \cdot \lambda = \lambda$.

The formula $\lambda \cdot (\mu \cdot \nu) = (\lambda \cdot \mu) \cdot \nu \ (\lambda, \mu, \nu \in \mathcal{K})$ is a direct consequence of (58).

Given $\lambda \in \mathbb{K}$, we put $(-\lambda)(x, y) = s(y, y, \lambda(x, y))$. Setting f = s into (55) and taking into account (53), we get the formula

$$s(x_1, x_2, x_3) = s(s(x_1, x_1, x_3), x_2, x_1) = s(x_2, s(x_1, x_1, x_3), x_1).$$

Hence the equation

$$egin{aligned} & \left(\lambda+(-\lambda)
ight)(x,y)=sig(\lambda(x,y),sig(y,y,\lambda(x,y)ig),yig)\ &=sig(y,\lambda(x,y),\lambda(x,y)ig)=y=0(x,y) \end{aligned}$$

follows. Thus $\lambda + (-\lambda) = 0$.

230

Proof. The element Θ is the zero-element of A. In fact, $x + \Theta^{-} = s(x, \Theta, \Theta) = x$ for every $x \in A$. Further, we have, in virtue of Lemma 13, the equations

$$\begin{aligned} x+y &= s(x, y, \Theta) = s(y, x, \Theta) = y+x, \\ (x+y)+z &= s\bigl(s(x, y, \Theta), z, \Theta\bigr) = s\bigl(x, s(y, z, \Theta), \Theta\bigr) = x+(y+z), \\ \lambda \cdot (x+y) &= \lambda\bigl(s(x, y, \Theta), \Theta\bigr) = s\bigl(\lambda(x, \Theta), \lambda(y, \Theta), \Theta\bigr) = \lambda \cdot x + \lambda \cdot y \end{aligned}$$

for any $x, y, z \in A$ and $\lambda \in \mathcal{K}$. Moreover, we have the equations

$$egin{aligned} \lambda\cdot(\mu\cdot x)&=\lambdaig(\mu(x,\, artheta),\, arthetaig)&=(\lambda\cdot\mu)\cdot x\,,\ &1\cdot x=x\,,\ &(\lambda+\mu)\cdot x=sig(\lambda(x,\, artheta),\, \mu(x,\, artheta),\, arthetaig)&=\lambda\cdot x+\mu\cdot x \end{aligned}$$

for any $x \in A$ and $\lambda, \mu \in K$. Hence, setting $-x = (-1) \cdot x$, we get the equation $x + (-x) = 0 \cdot x = \theta$. The Lemma is thus proved.

LEMMA 16. If the algebra \mathfrak{A} is not exceptional and $A^{(3)} \neq A^{(3,1)}$, then the class $\widetilde{A}^{(3)}$ consists of all operations of the form

$$g(x_1, x_2, x_3) = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3$$

where λ_1 , λ_2 , $\lambda_3 \in \mathcal{K}$ and $\lambda_1 + \lambda_2 + \lambda_3 = 1$.

Proof. First we shall prove the formulas

- (60) $\lambda(y, x) = (1-\lambda)(x, y),$
- (61) $\lambda(x, y) = \lambda \cdot x + (1 \lambda) \cdot y$

for any operation $\lambda \in \mathcal{K}$. Setting $f(x_1, x_2, x_3) = \lambda(x_2, x_3)$ into formula (55) of the Lemma 13, we infer that

(62)
$$\lambda(x_2, x_3) = s(\lambda(x_1, x_3), \lambda(x_2, x_1), x_1).$$

Replacing in this formula x_2 and x_3 by x, x_1 by y we obtain the equation

$$x = s(\lambda(y, x), \lambda(x, y), y)$$
.

Hence, according to the definition of the unit element and addition in \mathcal{K} , we get equation (60). Further, setting $x_1 = \Theta$ into (62) and replacing x_2 by x and x_3 by y, we infer that

$$\begin{split} \lambda(x, y) &= s \big(\lambda(\Theta, y), \lambda(x, \Theta), \Theta \big) = s \big(\lambda(x, \Theta), (1-\lambda)(y, \Theta), \Theta \big) \\ &= \lambda \cdot x + (1-\lambda) \cdot y \,, \end{split}$$

which completes the proof of (61).

$$egin{aligned} &h_1(x_1,\,x_2,\,x_3)=s\left(\lambda_1(x_1,\,x_2),\,\lambda_3(x_3,\,x_2)\,,\,x_2
ight)\,,\ &h_2(x_1,\,x_2,\,x_3)=s\left(\lambda_2(x_2,\,x_1),\,\lambda_3(x_3,\,x_1)\,,\,x_1
ight)\,. \end{aligned}$$

Of course,

 $h_1(x_2,\,x_2,\,x_3)=\lambda_3(x_3,\,x_2)=h_2(x_2,\,x_2,\,x_3)$ and, by (60),

$$\begin{split} h_1(x_3, \, x_2, \, x_3) &= s \left(\lambda_1(x_3, \, x_2), \, \lambda_3(x_3, \, x_2), \, x_2 \right) = (\lambda_1 + \lambda_3) \left(x_3, \, x_2 \right) \\ &= (1 - \lambda_2) \left(x_3, \, x_2 \right) = \lambda_2(x_2, \, x_3) , \\ h_2(x_3, \, x_2, \, x_3) &= s \left(\lambda_2(x_2, \, x_3), \, \lambda_3(x_3, \, x_3), \, x_3 \right) = s \left(\lambda_2(x_2, \, x_3), \, x_3, \, x_3 \right) \\ &= \lambda_2(x_2, \, x_3) . \end{split}$$

Consequently, $h_1(x_1, x_2, x_3) = h_2(x_1, x_2, x_3)$ whenever $x_1 = x_2$ or $x_1 = x_3$, which, by Lemmas 6 and 11, implies the equation $h_1 = h_2$. Thus

$$63) s(\lambda_1(x_1, x_2), \lambda_3(x_3, x_2), x_2) = s(\lambda_2(x_2, x_1), \lambda_3(x_3, x_1), x_1).$$

Further, put

$$64) \qquad h(x_1, x_2, x_3, x_4) = s\big(\lambda_1(x_1, x_4), s\big(\lambda_2(x_2, x_4), \lambda_3(x_3, x_4), x_4\big), x_4\big).$$

Obviously, the operation h is algebraic. Moreover, by (56),

$$egin{aligned} h(x_1,\,x_2,\,x_3,\,x_1) &= sig(x_1,\,sig(\lambda_2(x_2,\,x_1),\,\lambda_3(x_3,\,x_1),\,x_1ig),\,x_1ig) \ &= sig(sig(x_1,\,\lambda_2(x_2,\,x_1),\,x_1ig),\,\lambda_3(x_3,\,x_1),\,x_1ig) \ &= sig(\lambda_2(x_2,\,x_1),\,\lambda_3(x_3,\,x_1),\,x_1ig) \end{aligned}$$

and

$$egin{aligned} h(x_1,\,x_2,\,x_3,\,x_2) &= sig(\lambda_1(x_1,\,x_2)\,,\,sig(x_2,\,\lambda_3(x_3,\,x_2),\,x_2)\,,\,x_2)\ &= sig(sig(\lambda_1(x_1,\,x_2)\,,\,x_2,\,x_2)\,,\,\lambda_3(x_3,\,x_2),\,x_2ig)\ &= sig(\lambda_1(x_1,\,x_2)\,,\,\lambda_3(x_3,\,x_2)\,,\,x_2ig)\,. \end{aligned}$$

Hence and from (63) we get the equation

$$h(x_1, x_2, x_3, x_1) = h(x_1, x_2, x_3, x_2).$$

Thus the equation $h(x_1, x_2, x_3, x_4) = h(x_1, x_2, x_3, x_2)$ holds whenever $x_4 = x_1$ or $x_4 = x_2$, which, by Lemmas 6 and 11, implies that the operations $h(x_1, x_2, x_3, x_4)$ and $h(x_1, x_2, x_3, x_2)$ are identical. Consequently, the operation $h(x_1, x_2, x_3, x_4)$ does not depend on the variable x_4 . Thus, by (64) and Lemma 15.

$$\begin{split} h(x_1, x_2, x_3, x_4) &= s\left(\lambda_1(x_1, \Theta), s\left(\lambda_2(x_2, \Theta), \lambda_3(x_3, \Theta), \Theta\right), \Theta\right) = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3, \end{split}$$
Fundamenta Mathematicae, T. LVII
16

232

which shows that the operation $\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3$ is algebraic. Since $\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = (\lambda_1 + \lambda_2 + \lambda_3) x = x$, it belongs to $\widetilde{\mathcal{A}}^{(3)}$.

Given an operation $g \in \widetilde{A}^{(3)}$, we put

(65)
$$\lambda_1(x, y) = g(x, y, y), \quad \lambda_2(x, y) = g(y, x, y), \quad \lambda_3 = 1 - \lambda_1 - \lambda_2$$

and

(66)
$$g_0(x_1, x_2, x_3) = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3.$$

From the preceding reasoning it follows that the operation g_0 is algebraic. Moreover, by (61), (65) and (66),

$$\begin{split} g_0(x_1, \, x_2, \, x_1) &= (1 - \lambda_2) x_1 + \lambda_2 x_2 = \lambda_2(x_2, \, x_1) = g\left(x_1, \, x_2, \, x_1\right) \,, \\ g_0(x_1, \, x_2, \, x_2) &= \lambda_1 x_1 + (1 - \lambda_1) x_2 = \lambda_1(x_1, \, x_2) = g\left(x_1, \, x_2, \, x_2\right) \,. \end{split}$$

Consequently, the equation $g(x_1, x_2, x_3) = g_0(x_1, x_2, x_3)$ holds whenever $x_3 = x_1$ or $x_3 = x_2$. Hence, by Lemmas 6 and 11, we get the equation $g = g_0$, which, in view of (66), completes the proof.

LEMMA 17. Suppose that \mathfrak{A} is not the exceptional algebra and $A^{(3)} \neq A^{(3,1)}$. Then there is a linear subspace A_0 of A such that the class $A^{(3)}$ consists of all operations of the form

(67)
$$g(x_1, x_2, x_3) = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 + a,$$

where $a \in A_0$, λ_1 , λ_2 , λ_3 are arbitrary elements of \mathfrak{K} if $A^{(0)} \neq \emptyset$ and $\lambda_1 + \lambda_2 + \lambda_3 = 1$ if $A^{(0)} = \emptyset$.

Proof. Put

$$A_0 = \{f(\Theta): f \in A^{(1)}\}.$$

The set A_0 is a linear subspace of A. In fact, consider an arbitrary pair f_1, f_2 of operations from $A^{(1)}$ and an arbitrary pair λ_1, λ_2 of elements of K. By Lemma 16 the operation

$$h(x_1, x_2, x_3) = \lambda_1 x_1 + \lambda_2 x_2 + (1 - \lambda_1 - \lambda_2) x_3$$

belongs to $\widetilde{A}^{(3)}$. Consequently, the operation

$$f_3(x) = h(f_1(x), f_2(x), x)$$

belongs to $A^{(1)}$. Since $f_3(\Theta) = \lambda_1 f_1(\Theta) + \lambda_2 f_2(\Theta)$, the set A_0 is a linear subspace of A.

By Lemma 16 the operation h_0 defined by the formula

$$(68) h_0(x_1, x_2, x_3) = x_1 - x_2 + x_3$$

belongs to $\widetilde{A}^{(3)}$. Given $f \in A^{(1)}$, we put

(69)
$$\lambda(x_1, x_2) = h_0(f(x_1), f(x_2), x_2) = f_1(x_1) - f(x_2) + x_2.$$

Obviously, $\lambda(x, x) = x$ and, consequently, $\lambda \in \mathcal{K}$. By the definition of scalar-multiplication in A we have $\lambda(x, \Theta) = \lambda \cdot x$. On the other hand, from (69) we get the equation

$$\lambda(x, \Theta) = f(x) - f(\Theta) \,.$$

Thus $f(x) = \lambda \cdot x + f(\Theta)$. Consider the case $A^{(0)} = \Theta$. If $\lambda \neq 1$, then, by Lemma 16, the operation

$$f_0(x_1, x_2) = (1 - \lambda)^{-1} x_1 - \lambda (1 - \lambda)^{-1} x_2$$

is algebraic. Thus the composition $f_0(f(x), x)$ is an algebraic operation. But this composition is equal to $(1-\lambda)^{-1}f(\Theta)$, which contradicts the assumption $\mathbf{A}^{(0)} = \Theta$. Consequently, if $\mathbf{A}^{(0)} = \Theta$, then each unary algebraic operation f satisfies the equation $f(x) = x + f(\Theta)$.

Let $g \in A^{(3)}$ and h_0 be defined by formula (68). Setting $f_1(x) = g(x, x, x)$ and

(70)
$$g_1(x_1, x_2, x_3) = h_0(g(x_1, x_2, x_3), f_1(x_1), x_3) = g(x_1, x_2, x_3) - f_1(x_1) + x_3,$$

we infer that the operation g_1 is algebraic. Moreover, $g_1(x, x, x) = x$ and, consequently, $g_1 \in \widetilde{\mathcal{A}}^{(3)}$. By Lemma 16 there are elements $\lambda_1, \lambda_2, \lambda_3 \in \mathcal{K}$ such that $\lambda_1 + \lambda_2 + \lambda_3 = 1$ and

(71)
$$g_1(x_1, x_2, x_3) = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3.$$

Since $f_1(x) = \lambda \cdot x + f_1(\Theta)$, where $\lambda \in \mathbb{X}$ and $\lambda = 1$ if $A^{(0)} = \Theta$, we have, by virtue of (70) and (71), the equation

 $g(x_1, x_2, x_3) = (\lambda_1 + \lambda)x_1 + \lambda_2 x_2 + (\lambda_3 - 1)x_3 + f_1(\Theta).$

Moreover, in the case $A^{(0)} = \emptyset$ the sum of coefficients is equal to 1. Thus each ternary algebraic operation is of the form described by the assertion of the Lemma.

If $A^{(0)} \neq \emptyset$, then, by virtue of the relation $\Theta \in A^{(0)}$, we have the equation $A_0 = A^{(0)}$. Moreover, the addition and the scalar-multiplication in A are, by definition, algebraic operations. Hence it follows that each operation (67) is algebraic.

Suppose that $A^{(0)} = \emptyset$. Let $f \in A^{(1)}$, $\lambda_1 + \lambda_2 + \lambda_3 = 1$ $(\lambda_1, \lambda_2, \lambda_3 \in \mathbb{K})$. By Lemma 16 the operation

$$g_0(x_1, x_2, x_3) = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3$$

is algebraic. Moreover, $f(x) = x + f(\Theta)$. Thus the composition

$$f(g_0(x_1, x_2, x_3)) = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 + f(\Theta)$$

is algebraic. The Lemma is thus proved.

16*

Proof of the Theorem. Suppose that $A^{(3)} = A^{(3,1)}$. Applying Narkiewicz's theorem ([4], p. 338, Theorem II for n = 2) to the algebra \mathfrak{A} we infer that there exist a group 9 of transformations of the set A and a subset $A_0 \subset A$ containing all fixed points of the transformations that are not the identical and invariant under all transformations from 9 such that $A^{(3)}$ consists of all operations defined as

$$\begin{split} f(x_1, x_2, x_3) &= g(x_j) \qquad (j = 1, 2, 3) , \\ f(x_1, x_2, x_3) &= a , \end{split}$$

where $g \in \mathcal{G}$ and $a \in A_0$.

If $A^{(3)} \neq A^{(3,1)}$ and the algebra \mathfrak{A} is not exceptional, then the class $A^{(3)}$ is completely described by Lemma 17. Hence it follows that if $\mathfrak{A} \neq \mathfrak{C}$, then the algebra $\mathfrak{A}^{(3)} = (A^{(3)}, A^{(3)})$ is a three-dimensional v^* -algebra. Since the algebras $\mathfrak{A}^{(3)}$ have identical ternary algebraic operations, the algebra $\mathfrak{A}^{(3)}$ is a three-dimensional v^* -algebra (see [4], p. 338). Now our theorem is a direct consequence of the representation theorem for v^* -algebras of dimension ≥ 3 (see [5]), because \mathfrak{A} is isomorphic to $\mathfrak{A}^{(2)}$ and $\mathfrak{A}^{(2)}$ is a subalgebra of $\mathfrak{A}^{(3)}$.

References

[1] G. Grätzer, A theorem on doubly transitive permutation groups with application to universal algebras, Fund. Math. 53 (1963), pp. 25-41.

[2] E. Marczewski, Independence and homomorphisms in abstract algebras, Fund. Math. 50 (1961), pp. 45-61.

[3] — and K. Urbanik, Abstract algebras in which all elements are independent, Coll. Math. 9 (1962), pp. 199-207.

[4] W. Narkiewicz, Independence in a certain class of abstract algebras, Fund. Math. 50 (1962), pp. 333-340.

[5] K. Urbanik, A representation theorem for v*-algebras, Fund. Math. 52 (1963), pp. 291-317.

[6] - Linear independence in abstract algebras, Coll. Math., to be printed.

WROCŁAW UNIVERSITY,

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 7.12.1964