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Embedding of graphs in the projective plane
by
J. Ch. Boland (Amsterdam)

1. Introduction. In this paper we give necessary and sufficient
conditions for a graph to be embeddable in the real projective plane.

It is well known that Kuratowski [1] solved the corresponding prob-
lem for the Euclidean plane. However his characterization by excluded
figures does nobt seem appropriate in the case of the projective plane,
the number of excluded figures becoming rather large.

Another characterization of plane graphs has been given by Mac
Lane [2]. He proved that a graph & with nullity >1 is plane, if and
only if there iy a number of circuits in @ forming a base of the cycles
modulo 2, with the property that every edge of @ is on at most two of
these circuits.

Our characterization of graphs embeddable in the projective plane
is an analogon of the theorem of Mac Lane. However we do not work
with cycles modulo 2, but with integral cycles.

By Z we denote the (additive) group of integers, and by Z, the
group of integers modulo 2. The first homology group H.(&, Z), respec-
tively Hy(G, Z,) of a graph @ is isomorphic with the group of integral
cycles, respectively cycles modulo 2, the dimension of & being one. If the
group H,(G@, Z,) has a base of Mac Lane type, the graph & can be em-
bedded in the Buclidean plane B. It is well known that in this case the
set of integral circuits contained in the boundaries of the bounded com-
ponents of E\G is a base in the group Hy (@, Z). Let

& Hy(G, Z)~H\(G, Z,)

be the homomorphism derived from the natural map Z-»Z, (the map
&, can be obtained by choosing a base for H,(@, Z), and replacing the
integral coefficients of the base by their cosets modulo 2), As G does
not contain torsion in dimension zero and one, the homomorphism &, is
an epimorphism (cf. [3], p. 219). Hence if {, ..., 2.} is a base for Hy(&, Z),
the set {5(2), ..., &(2n)} contains a base of Mac Lane type in the group
H,(@, Z,). It follows that in the theorem of Mac Lane the cycles mod-
ulo 2 can be replaced by integral cycles. As we do not consider in this
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paper coefficients groups different from Z, we write H,(@) instead of
H\(@G, Z).

The main theorem of this paper reads as follows:

THEOREM. A graph G of nullity >1 can be embedded in the projective

plane if and only if there exists a set of cirouits 2y, ..., 2 i G with the fol-
lowing properties: :
a) the set {#, .., #n} 45 a generating set in H(G);

b) the set (&1, ..., #n1} 1§ @ mawimally independent set in H,(G);

¢) every edge of @ is on at most two of the circuits {2, ..., 2n_1}.

This theorem will be proved in section 3. In section 2 some defini-
tions and theorems needed in section 3 are given.

I wish to express my thanks to Professor J. de Groot, Professor
N. H. Kuiper and Dr F. Oort for their interest in my work and for
the stimulating discussions we have had.

2. By a graph we mean a set A, together with a binary symmetric
relation R defined on A. A graph G = [A4, R] is called finite if the set 4
is finite. In this paper we consider only finite graphs. Hence the word
itgraph” will stand for a finite graph. We obtain a geometric represen-
tation of a graph @ =[4, R] by representing the set A by a pointset
in the Euclidian three dimensional space R;. This pointset we denote
also by A. We join the points # and y of 4 by an arc L[z, y] of R, with
endpoints # and y if and only if the pair (z,y) satisties the relation R,
such that for (wy, ) # (4., ¥s) the ares Llz,,y,] and L[z, ¥.] bave at
most an endpoint of both in common. The points of A will be called
the vertices of @, and the arcs L[z, y] the edges of G. The graph G is
completely determined by the set A of its vertices and the set B of its
edges. We say that a graph @ can be embedded in a topological space X
if and only if the geometric representation of G can be mapped homeo-
morphically into X.

A subgraph of @ is a graph whose set of vertices and set of edges
are contained in the vertexset of @, respectively in the set of edges of G.

The loeal degree of a graph G at a vertex x of @ is the number of
edges that are incident with x. The notion of connectedness of a graph
will be taken in the usual sense. A vertex ae A of a graph @ = [4, R]
is called a cutpoint of @ if the set A\a can be seperated into two sets
A, and A, such that no point of A4, is in the relation B with a point
of 4. It is clear that a cubpoint of @ is also a cutpoint in the topological
sense of the geometric representation of @. As the homology groups
of G are free with respect fo Z we define the nullity of a graph to be
the rank of its first homology group H,(@).

A cireuib is a connected graph with local degree two at every vertex.
If a circuit ¢ is & subgraph of a graph @ the natural inclusion i: 0@
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induces a homomorphism i Hy(0)->Hy(G) of the integral homology
groups. Clearly Hy(C) is isomorphic with the infinite cyclic group Z;
let ¢ be a generating element of H,(C) and let 2 = 4,(Z). Then we call z
a cycle corresponding to the circwit C. It is clear that —z is also a cycle
corresponding to the circuit €. We choose this terminology to make
a clear distinction between the circuit ¢ as a geometrie object and the
corresponding cyele z as an algebraic object, which is an element of
H(&). .

An edge ¢ of G is called a circuit edge if and only if e is on some
circuit of @. Let B be the set of all edges of G and B, the set of all
circuitedges of @. We define an equivalence relation T on the set B; as
follows: for every two elements ¢, and ¢, of B, the relation e,Te, holds
if and only if G contains a circuit ¢ with the property that e, and e,
are both on C. It is easy to prove that 7T is an equivalence relation.
A subgraph H of G is called a leaf of @ if the set of edges of H is an
equivalence class of T and if the set of vertices of H consists of precisely
those vertices of G that are incident with at least one edge in that
equivalence class. It is clear that a leaf of @G does not contain a cut-
point. In fact a leaf of @ is a maximal subgraph without cutpoints
(ct. [4], p. 82).

Consider a graph G that can be embedded into the projective
plane P. Let f: G—-P be a homeomorphism of & into P and let
fx: Hy(@)—H,(P) be the induced homomorphism of the first homology
groups.

PROPOSITION (2.1). The graph G is plane if and only if there exisis
an embedding f: G—P such that f(Hy(@) = 0.

Proof. The proof of this proposition is nearly a direct consequence
of some well known facts. At first it is well known that f induces a homo-
morphism f,: 7y(@)->m(P) of the first homotopy groups of @ and P
such that the following diagram is commutative

A
71y(F) ———> m(P)
G .\ WP)

Hy(G) —— Hy(P)

(where h(G) and h(P) are the canonical homomorphisms); k(P) is an
isomorphism (m,(P) oz Hy(P) =2 Z,). From fi(Hy()) =0 it follows that
f;(nx(G)) =0,

Asg the two-dimensional sphere 8% is an universal covering space of
the projective plane P, we conclude by theorem 17.3 in [5], p. 96, that
the map f: @—P can be lifted over S2. If j: 8>—P is the natural map
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of §* onto P, we know that there exists a continuous map ¢: G—ge
such that the following diagram is ecommutative

S2
o/ |,
5y
G—— P.
As f is a homeomorphism and f = jp we conclude that ¢ is a continuous
1-1 map of G into 82, hence a homeomorphism. This means that @ i
a plane graph.

If on the other hand @ is a plane graph, one can find an embedding
of & into P which factors through the plane E. In that case f, (Hl(G)) =0
follows directly from H,(H) = 0, and the proposition is proved.

PROPOSITION (2.2). If @ is a non-plane graph, f an embedding of G
in the projective plane P, and U a component of P\f(@), then the closure
U of U with respect to P is a plane set. ) )

Proof. Let i: U—~P be the natural embedding of U into P, and
let 4yt m(U)—m(P) be the induced homomorphism of the first homo-
topy groups. If 4, (m(T)) = 0 the map 4 can be lifted over §2; hence in
that case it follows that U is a plane set. So let us.assume i, (m(D)) 0.
We choose a € 7 (U) with 44(a) # 0. Let I denote the unit interval [0,1]
of the set of real numbers, and choose a continuous map ¢g: I-U with
g € a. We shall prove that ¢ can be chosen in such a way that g(I) is
a cirﬁuit, having at most one point in common with the boundary
B = U\U of U. Assume that B ~ g(I) @ and take a point p, € B g(I).
We shall choose a map hea so that 2(0) = k(1) = py. As BC (@), we
know that B is locally connected. Every point 2 ¢ h(I) is contained in
an Euclidean neighborhood V'(z), so that V{x) ~ U is connected. The
family {V'(x)} with x e h(I) is a covering of the set h(I). As V(z) ~ h(I)
is_lan open set in h(I), it follows that the components of the sets
h (V(w) ~ h(I)), @ e h(I) are elements of an open covering of I. From
this it follows that we can find a finite sequence of real numbers
Yo=0,%,..,9Yn =1 80 that:

DO0=g<p1 <. <Yna<¥Ya=1;

2) h(ys) and R(y41) (0 <j <m—1) are contained in one of the sets
V(x), say V(@jsa).

Let pe=h(ye) (0 <i<m—1). As the set V(z)~ U is connected
we can join the points p, and p, by an arc L CV(2) ~{U © pyu py}
Let h{ be a homeomorphism of the interval [0, %] onto the are I, so
that 7i(0) = py and Ai(y;) = p,. Then we define the map h, as follows:

M(y) if
Rly) it

0<y<y,

h1<y>={
Yh1<y<1l.
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It is clear that h, is homotopie with %, so h, ¢ «. Moreover we have
B ~ Iy(I) C Iy([y:, 1]). Suppose that for some i (1 < i< n) we have con-
structed a map hg: I—U so that:

1) hiea;

2) 7i(0) = po; hulye) = Pt and hy(0, y:) C U;

3) B~ B(I)Chi([ys,1])-

As p; and ps41 are contained in V(a;y,), we can choose a point
2y € (i1, Y1) 80 that hy(=) e V(2;41). We join the points hy(2:) and piy, by
an are Ly CV (i) ~ (U v pig1) so that Ly ~ he([0, 25]) = he(2i). We
choose a homeomorphism hi,, of the interval [2q, ¥;11] onto the are L.,
with hi+1(2e) = ho(2:) and hiy1(Yir1) = Pir1- Then we define a map ki I T
as follows:

hi(y) i 0<y 2,
hiya(y) = hialy) i 2 LY <Yitr,
k(y) oy <y <1.

It is clear that the map k. is homotopic with %y hence hiy; e a. More-
over B hisa(I) C Bypa([Yi+1, 1]). From this construction it follows that
the map hn: I—-U is an element of o, and that B ~ hy(I) = p,. Let us
agsume that the map g e a was chosen in such a way that:

1) g(I) is a circuit in T;

2) B~ g(I) contains at most one point.

Now we consider the natural map g,: P—Pfig(I). As ig(I) is a circuit
in P that is not homotopic with 0 in P, it is well known that P/ig(I)
is homeomorphic to 82. Moreover if g1 = ¢|f(@), it is clear that g1f: G—82
is 2 homeomorphism. It follows that @ is a plane graph. This however
contradicts the assumption that @ would be non-plane and hence
is(m(T)) equals to zero, and U is a plane set, which proves the prop-
osition.

From the preceeding proposition we conclude:

COROLLARY (2.3). If the graph G is embeddable in the projective plane,
@ contains at most ome non-plane leaf.

3. In this section we give a proof of:

THEOREM (3.1). A graph with nullity =1 can be embedded in the pro-
jective plame if and only if G contains a set of circuits Cy, ..., Cn 80 that
the following conditions are satisfied:

(1) every edge of @ is on at most two of the circuits Cy with 1 <4 <n—1;

(2) let 24 (1 <i<m) be the cycle corresponding to the circuit Cy; the
set of eycles {2y, ..., %) 18 a generating set of the first homology group
H,(G) of &;

(3) the set {2y, ..., 21} 95 a maximally independent set in Hy(@).
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Proof. Firgt we show these three conditions to be necessary. Let
@ be a graph of nullity >>1 that can be embedded in the projective plane,
If @ is a plane graph we know from the theorem of Mac TLane, that @
contains a set of cireuits 0y, ..., Cu— satisfying condition (1), so that
the corresponding cycles 2y, ...,2,—; form a base in H(@). It is clear that
these cycles z,...,2,~ together with some cycle 2z, satisfy also condi-
tions (2) and (3).

Now let & be a non-plane graph. By (2.3) we know that at most
one leaf of @ is non-plane. Let Gy, Gy, ..., Gn be the leaves of G; then

m+1

G=iL__JlG‘1,

where Gy i the subgraph of & generated by the non-circuit edges of G.
We assume that only @, is non-plane. Let f be the embedding of @, into
the projective plane P. By (2.2) we learn that the components ., E, ) oo
vy Byy of P\f(G) are plane sets. As @, does not contain a cut point,
it follows that the boundary C; of By (1 <4 < n—1) is a circuit. As @, is
compact it is clear that ;= E\E;Cf(G). The 2-cells By, ., By
together with the edges and vertices of f(@;) form a cellular decompo-
sition of P. The embedding f: G;~P induces a homomorphism fx: Hy(Gy)—
—H,(P). Let M be the kernel of f,. If 2; (1 <i<n—1) is a cycle cor-
responding to the circuit €y, it is clear that z; e M. Moreover the cycles
2 form a base in M. To prove this we first consider a linear combination
Attt a1 =0, with L eZ. We assume the 2-cells E; to be

1
oriented in such a way that z; = a(Hy) (1 <i<n—1). From > Ae; =0
im1

n—1 n~—1
we conclude leza(E,)=o. It follows that &(3 A4E,) = 0. Hence
= i=1

n—1

2 %8By is a two-dimensional cycle in the projective plane. It follows

=1
f,'hat e = 0= },2‘= woo=lpn—y. Hence the cycles 2; (1 <¢<mn—1) are
linearly independent. If z is an element of M, we have f.(2) = 0. Hence
we can choose A;¢Z so that

n—1 n—1 n—1
=2 D MBi= Y Ao(By)— D ke
i=1 qa=1 =1

It follows that the set {z, ..., Zn—1} I8 @ base in M. Ag G, is not a plane
graph, M == H,(G) by (2.1); hence we can choose a circuit O, in @, with
corresponding cycle 2, ¢ Hy(Gy) so that fe(2n) # 0. Tf 2 is an element of
Hy(Gy) M we have fi(2—2,) = 0. Hence #—2n e M. It follows that the
set {21, ..., 22} IS & generating set in H,(@,). In the same way we have
for z e Hy(GA)\M that 2-f,(2) = f+(22) = 0. Hence we can find A; ¢ Z with
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n—1
92 = > Mzi. It follows that the set {z,,
i=1
in Hy(@). As every edge is on at most two of the circuits C; (1 <i<n—1)
we conclude that the circuits €, Cy, ..., (y satisfy the three conditions
of the theorem with respect to @;. As the leaves G,, -y G are all plane
graphs, we can find in &; (2 <4 < m) a set of circuits Gf), oy 053 forming
a base of Mac Lane in G4. As

Hl(G) = Hl(Gl) @ Hl(Gz) @ - @® H1(Gm)

-+3 #n—1} 18 maximally independent

it is clear that the set {0§~i)}1<i<m,1<,<m with 05-” = (; satisfies the con-
ditions of the theorem, which proves these conditions to be necessary.

Now we shall prove our conditions to be sufficient. Let & be a graph
satisfying the conditions of the theorem; we prove that @ can be em-
bedded in the projective plane. If @ is a plane graph it can embedded
in the projective plane. Thus we assume that @ is a non-plane graph.
Let Gy, G, ..., G be the leaves of G. We remark that the cireuit €, is
contained in only one of the leaves Gy (1 <i < m). Assume that O, is
contained in @. It follows that every element z of H,(G,)® Hy(Gy) @
@®...® Hy(Gn) is independent of z,. Hence the set {2y, %, ..., 2,1} con-
tains a base of the group H(Gh)® Hy(Gy) @ ... Hy(Gnm). According to
the theorem of Mac Lane it follows that the graph G\@ is a plane graph.
Moreover it is clear that every component of G\@ has at most one
vertex in common with @,. Hence @G can be embedded in the projective
plane if and only if G; can be embedded in P. Let {Ci,, (4, ..., Ci,} be

“the set of those circuits C; that are contained in @, (1 <4 < n). Let

B = C) E; be the union of » pairwise disjoint two-dimensional closed
i=1
dises H; (1 <4 <7), and let g be a continuous map which maps the
boundary B; of F; homeomorphically onto the circuit Cy (1 <j<7).
Now consider the adjunction space X of the spaces G; and F with respect
to the map g (ef. [5], p. 9). We remark that X is a two-dimengional
polyhedron with 2-cells Ey,..., B, whose vertices and edges are the
verfices respectively edges of G;. Every one-dimensional cycle z of X
is also a one-dimensional cycle of @G,. According to the conditions (2)
and (3) of (3.1), we know that there are integers 1, ..., 4;,, 4 80 that

{x) 2 = dent o+ it Anon .
Moreover there are integers pi,, fis, -y iy, tin S0 that
®)

From equations («) and (B) we conclude that the first cohomotopy group
of X, #(X) = 0. To prove this we consider a continuous map h: X -8

Fundamenta Mathematicae. T. LVIT 14

MnRp = ,uhz;l+ v /u,zﬁ .
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of X into the one-sphere S, and the induced homomorphism #.: Hy(X)—
S>H(8Y). As 24~0 (1<j<r) in X, we have haley) = 0 (1 <j<r).
From (B) we conciude:

N
b (2n) = Zlf'ijh* (2y)=0.

jui

Hence hy(2n) = 0. From («) it follows:

hy(2) = 22117!*(211)‘}‘2117@*(311) =0.
i=1

So H maps every one-dimensional cycle of X with degree zero onto §.
It follows that f is homotopic with zero (cf. [3], p. 517). Hence #(X) = 0.
Because X is a locally connected continuum, this means that X is uni-
coherent (cf. [3], p: 292). It follows that every edge of @ is on at least
one of the circuits Cy (1 <j <r). Assume % to be an edge of G, that
is on none of the circuits €y (1 <j <r). As G, is non-separable, & is on
at least ome cireuit C. Let 2z be a cycle corresponding to €. Let h be
a map of Gy into the one-sphere S that maps all edges of G, different
from % into the point 0 of 8!, and that winds % one time around the
circuit St Then » maps the cycle z with degree 1 into 8. As every z;
(1 <j <7r) is mapped with degree zero, the map 7 can be extended to
a map h, of X into 8. However h; maps z with degree 1 into S§!, hence
h; is not homotopic with zero. This contradicts the fact that ={X) = 0.
So every edge of G, is on at least one of the cireuits C; (1 <j<r).

In the next step we prove that every edge of G, is on precisely
two of the ecireuits Oy (1 <j<r). We write C; = Cy and 2 = z;.
Two cireuits O; and 0% are said to be conmected by a regular chain if
there exists a sequence O = Cf, O, ..., O, = 0% so that Ci and O,
(0 <j <s—1) have at least one edge in common. It is easily proved
that connectedness by a regular chain is an equivalence relation in the
set consisting of the circuits Cj; let N = {0}, 04, ..., Ci,} be an equiv-
alence class. We define the subset N' of X as follows:

(1) every 2-cell E; having its boundary in N belongs to N';

(2) every edge on ab least one element of N belongs to N';

(3) every vertex on at least one element of N belongs to N'.

It is clear that N’ is a subpolyhedron in X. Let N'’ be the poly-
hedron formed by the edges respectively 2-cells of X that are not in N';
it is elear that dim(N' ~ N’') < 0. If this dimension would be zero, the
set N'~ N"" would be a zero-dimensional separating set of X. Because
X is a two-dimensional unicoherent continuum without cutpoints, no
region of X can be separated by a zero-dimensional set (cf. [6], p. 338).
It follows that N’ ~ N' =@. This means that N’ — X. Hence the set
{01, ..., 0s} is regularly connected. Analogously we show that for every
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vertex p of X the set of eircuits Cf (1 <i<7) containing p, is regularly
connected (i.e. any two elements of that set are connected by a regular
chain). Otherwise p would be a local cutpoint of X. However X cannot
have local cutpoints as Gy is non-separable. It follows that X is a two-
dimensional variety.

Let B =X and suppose that B+ @. Every point of B is oh an
edge of G, that is incident with at most one 2-cell of X.

Let 0 C B be a circuit and consider a closed disc D with boundary ¢
so that D~ X CC. Let # be a cycle corresponding to the cireuit C.
As the set {21, ..., 2.} is a maximally independent set in H,(@,) it follows
that there exist integers 4, 4, ..., 4, so that

2= Aeit..t+he.

As CCoX and as the set {z,...,2/} is regularly connected it follows
that 4] = |4 = ... = |A]. We write

2 = 21+ ...+ a2y with s =4A = +1 (1 <i<r).

It follows that C = 8X, so X v D is an orientable manifold. As X v D
is unicoherent we conclude that X w D is a two-sphere. This however
contradicts the fact that Gy is a non-plane graph.

Hence we have shown that 6X = @. Now X being a unicoherent
variety without boundary, it must be the sphere or the projective plane.
Because @ is a non-plane graph, X is not a sphere. Hence X is the
projective plane. So ; can be embedded in a projective plane. It follows
that the same is trne for G. Hence we have proved theorem (3.1.)

Added in proof. As the proof of theorem (3.1) depends on the unicoherence
of the projective plane, there is no immediate generalization of this theorem using
homology groups. However, a generalization of this theorem for arbitrary orientable

surfaces can be proved, replacing homology groups by homotopy groups; this will be
published soon.
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