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Zero-dimensional sets blocking connectivity functions *

by
J. H. Roberts (Durham, N. C)

In [2], p. 262, Stallings described a compact 0-dimensional set
K CI? (closed 2-cell) such that the graph of every continuous function f:
I-1I intersected K. He asked this question: If f is a connectivity funec-
tion on I into I (definition below), then is it necessarily true that such
a set K must intersect the graph of f4 This question is answered in the
present paper. Example 1 is a compact 0-dimensional set K, CI? which
blocks (i.e., intersects the graph of) every countinuous funetion but does
not block every connectivity function. The compact 0-dimensional set K,
of Example 2 blocks every connectivity function. A theorem is abstracted
from the argument needed to prove that Example 1 has the desired prop-
erties.

DEFINITION. A function f: A-B (topological spaces) is a connectivity
function if and only if for every connected set O C A the graph of f|C
is connected.

ExampLe 1. Description. First, define the Cantor set ¢ on
I=710,1] as M Cn, as follows. We get C; from [0, 1] by taking out
n=1

the open interval of length 1/4 with center at 1/2. In general, 0, is the
union of 2" closed intervals, and ., is obtained from O, by ta.kjngq ouqt
of each of these 2" intervals a concentric open interval of length 1/2+%,

Thus the sum of the lengths of the intervals taken out is ! ; onpint =

=1/2, so we also have m(C) = 1/2, where m denotes Lebesgue linear
measure. Now define F: I—-IxI as follows:

Ft) = (z(t), y(v)) ,
(%) #(t) = 2m(C ~ [0,1]),
Y(8) = 4m(C ~ [0, £])—t = 2m(t)—1,

* This research was supported in part by the National Science Foundation (U.S.A.),
Grant GF-2065.
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for 0 <t <1. Let M =F(I) and

Figure 1 shows an approximation to M. The set K, is obtained
from M by taking out all open vertical intervals. These oceur when
the abscissa is 1/2,1/4, 3/4,1/8, ... . ' .

Now F is 2 homeomorphism and M is an arc w1th. end-points (0, 0)
and (1,1). The set X, is a topological Cantor set and is a subset of M.

Fi

Fig. 1

The set M—K, is a countable union of disjoint open vertical intervals,
one on each vertical line with abscissa of the form k/2" (k and n positive
integers, k < 2", k odd). To see that M C I x I, first note that, from (%),
2(0) = 0, #(1) = 1, and = does not decrease as ¢ increases. Also y(0) =0,
y(1) = 1. To prove that y(¢) > 0 for all ¢> 0, it iz sufficient to shovjv
that the average metric density of ¢ on [0,%] (ie., m(C ~[0,£])ft) is
greater than 1/4. In fact, a calculation shows that the minimum average
metric density of ¢ on [0, t] occurs for ¢ = 5/8, and is equal to 2/5. Thus
y(t) >0 on 0<?¢<1. That y(¢) <1 follows from symmetry (y(1—1)
=1—y(1)).

Vé'!e( )r)Low prove that K, blocks every continuous f: I-—I. Assume
that @, the graph of a continuous f, does not intersect K. Then f(0) > 0
and f(1) <1, so from formulas (x) we have y(0)<f(a:(0)), but y(1)
> f((1)). Thus there exists a smallest w (0 < w < 1) such that y(w)
> f{z(w)). Then (z(w),y(w)) ¢ M ~ & but is not an element of K, so
weI—C and there exists w; < w such that [w,,w]C I— (. But then
y(wy) > y(w) and @(w,) = z(w), s0 y(w,) > f(2(w,)), a contradiction.
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Finally, we show that K, does not block every connectivity func-
tion f: I—+1. We use the theorem, below, and our immediate objective
is to identify the terms used in the theorem and to show that the hypo-
thesis is satisfied. Obviously K, is a compact 0-dimensional subset of I2.
Let D be the set of all 4 of the form %2°, % and = positive integers,
k< 2", k odd, and for z D let s, be the component of ¥—K, in I,.
(For 0 < <1, I, is the vertical interval from (@, 0) to (z,1).)

Now suppose that N is a continuum in I such that (ii) and (ifi)
are false. Then there exist points pe N, ge N » ®eD such that z, < =
< @, and s 18 not a subset of N. Choose ¥ so that (@, ¥) e s;—XN. For
every > 0 let T, be the arc which is the union of two vertical intervals
and one horizontal interval connecting the following points in the in-
dicated order: (z—e,0), (v—¢,y), (v+e¢,v), (#+e,1). For sufficiently
small &, T, separates p from ¢ in I2, hence intersects N. But for suffi-
ciently small ¢, T, ~ K, =@ and (since N is closed) the interval from
(z—e,y) to (x+¢,y) does not intersect N. Thus N—K, intersects at
least one of the two vertical intervals having abscissas #— ¢ and x4 g,
so (i) is true. We have shown that the hypothesis of the following theo-
rem is satisfied, and thus it follows that K, does not block every con-
nectivity function.

TarorEM. Hypothesis. K is a compact 0-dimensional subset of I2,
D C1is a countable set and for every o < D there is an open vertical interval
82 C Iy such that sz ~ K =@ and such that if N is any continuum in I2,
separating I*, then at least one of the following is true:

(i) N—K intersects the vertical interval I, for every x in some sel
having the cardinality of the continuwm,

(i) N 43 a subset of a single vertical interval, or
(i) N contains s, for some e D.

Conclusion. There exists a conmectivity function f: I—I whose graph
G does not intersect K.

Proof. Let % be the set of all continua N C I? such that N sepa-
rates I* and (i) is true. Since each N e 0 is closed and I® has a countable
base, iti follows that || < |I], where | | denotes cardinality. Obviously
IR > |I] so |N| = |I]. It follows that there exists a smallest ordinal Q
such that |N| = |Q| = |[I]. We define f: T—I as follows:

Step 1. For all z ¢ D define f(x) ¢ I so that (x,f(#)) is the mid-
point of the vertical interval s;. Then (z, f()) ¢ K.

Step 2. We may write ft = {(Nu: a < 02}, and 2 = (0,1, ...; 0,0+
+1,..). From (i) in the hypothesis, and the fact that D is countable,
there exists #, ¢ D such that N,—K intersects the vertical interval with
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abseissa x,, and we define f(z,) s0 that (mo, f(zo)} e No—K. In general,
we want the following:

(a) ge [—D—{y: v <a}, and

(b) (‘Ta: f(xa)) eN,—K.

Assume f< Q and for all a <, % and f(my) have been defined
and (a) and (b) are true. Let 45 = {x: (Ng—E)nIz#0} and let By= Dy
w {&g: a < f}. From cardinality considerations it is clear that Az;—Bs #0
and we choose @, ¢ Ag—Bg and define f(ws) so that (s, F (@) € Npy—E.
Thus we may assume that z, and f{zs) have been defined for all o < Q
and (a) and (b) are true.

Step 3. Set ¢ =I—-D—{z: a< Q). If el define f(x) so that.

(1 (z)) e I>—K. This completes the definition of f: I—1.

ASSERTION 1. (#, f(#)) ¢ K for all el ‘

For the proof of Assertion 2 (below) we need the tollowing

Levua. If A and B are mutually separated sets in I* and w e 4, b e B,
then there ewists a continuwm N CI2—(A o B) such that N separales a
and b in I% o

Proof. By [1], Theorem 73, p. 150, there exists a closed set N such
that (i) N CI*—(4 u B), (i) N separates ¢ and b in I®, and (iii) ¥ is
irreducible with respect to properties (i) and (ii). Let D, be the com-
plementary domain of N (relative to I?) which contains a. Then Dy and
I*—D, are continua whose union is I* and whose intersection is N. Since
I? is unicoherent, it follows that N is connected.

ASSERTION 2. G, the graph of f, is a connected sei.

Proof. Assume that G is not connected. Then by the lemma, there
exists a continuum N such that N C I*—@ and N separates I® Tt follows
that (ii) and (ili) of the hypothesis are false for this &N. Therefore (i) is
true and N e %, so there exists a < £ such that N = N, and (ay fl2q)
eN ~ @, a contradiction. Thus G is connected.

ASSERTION 8. f is a connectivity function.

Proof. Suppose that ¢ is a connected subset of I such that the
graph of f|C is not connected. Then it easily follows that there exists
a closed interval O, =[c,d] with ¢ < d such that C; C ¢ and T, the
graph of f|C, is not connected. Then T' = 4; v By, mutually separated,
with (¢, f(¢)) € 4, (a matter of notation). It (d,(d)) € A, Write

G =[4,v {(a;, f(@): ¢ Oy} v By,
mutually separated sets. If (d,f(d)) e B;, write
G = [Ax w {(w, f(w)) < c1}] - [BLU {(w: f(w)) x> dl}] )
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mutually sepa-rated sets. In either case we have a contradiction to the
fact that G is connected. This completes the proof of our theorem.

EXANZPLE 2. For ea(%h positive integer n, let D, be the set of all
numbers %/2", where %k is an odd positive integer less tham 2. Thus
Dy = {1/2}, D, = {1/4, 3[4}, ete. Set D = | Dy. (This is the same D as
in Example 1.) "

F(.)r each n (n znl, 2, ...) we will define, for each « € Dy, a dizjoint
collection B(x) of 2" vertical intervals all in Iz, and a collection T (n)

Fig. 2

of 4" closed 2-simplexes. Figure 2 shows the 4 elements of T(1), the
16 elements of X (2), the two elements of B(1/2), and the four elements
!eiac.h) of B(1/4) and B(3/4). If » =1 and x ¢ D, then z = 1/2 and (def-
nition) B(1/2) = {[(1/2, 1/5), (1/2, 2/5)1, [(1/2, 3/5), (1/2, 4/5)]}. Each of
the four elements of T (1) has an element of B(1/2) as one side, and the
third vertex is (0, 0) or (1, 1).

) AUXILLIARY DEFINITIONS. Suppose that 7 is a closed 2-simplex
.Wlth vertices a, p, and ¢ such that T C I?, zp = 2y (i.e., [P, ¢] is a vertical
%nterva.l) and yp < y,. Let @ = (25+ 25)/2 and let [, t] denote the vertical
interval I ~ T, with ys < y:. Divide [s, t] into 5 equal subintervals and
let W(T) be the disjoint set consisting of the second and the fourth of
these subintervals. Let S(T) be the collection of 4 closed 2 -simplexes
determined as follows:

Oasg 1. 7z < xp. Bach element of S(7) has an element of W(7T)
as one side, the third vertex being @ or ¢.
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Case 2. 2, > @p. Hach element of S(Z) has an element of W(T)
as one side, the third vertex being a or p. '

Inductive definition. Let T(n+1)= LIJ()G(T). Suppose
TeX(n)

2 eDupn, TeZ(n) and T ~ I, #@. Then T is a triangle with vertices
a, p, and ¢, with @p = 2, and & = (2a-+2p)/2. Thus the intervals of ¥3(T)
(Auxilliary definition) are subintervals of I. Let B(z) = | (), where
the union is over ail 7 e T(n) such that T ~ Iy # Q. Thls completes the
inductive definition of T(n) and of BV(z), xeDp, n=1,2, ...
For each n let M, be the union of elements of X(n), and let

=) Mo
n=1

It is clear from the definitions that M, D My.1, K, is compact, and for
e Dy, In~ My consists of the finite set of end points of the elements
of B(x). Also, Io~ M, = {(0,0)} and I ~ My ={(1,1)}. If #¢D and
©# 0, ¢ # 1, then I, ~ M, is the union of a disjoint collection of 2"
vertical intervals each of length less than 57", and I~ K, is a topo-
logical Cantor set. Now M, has two components, lying respectively in
the sets {(z,¥): 0 <2 <1/2} and {(z,y): 1/2 <=2 <1}. Similarly, for
each n, each component of M,., has an extent in the x-direction equal
to 27". Since K, contains no vertical interval, it therefore follows that
K, is totally disconneected.

We now prove that K, blocks every connectivity function from I
into I. Let f: I—I be a function, G its graph, such that G~ K, =@.
In the following construction the notation, for simplicity, does not show
the dependence of V(x), N;, and N on f. For all ¢ ({=1,2,...), and
xeD;, we define sets V(z) and N; such that

(a) V(@) eB(z) and (2, f(2)) ¢V (x),

(b) N; is a continuum which is a subset of the union of M; and all
vertical intervals V(z) for » e D;, j <4, and

(c) the number of components of Ny ~ M; is 2‘“1, and each of these
has an extent in the z-direction of 27

First, if 2¢D; then #=1/2, and V' (1/2) (definition) is one of the two
elements of B(1/2) such that (1/2,(1/2)) ¢ V(1/2). Of the four elements
of (1), let Ty and T; be the two which have V'(1/2) ag a side, with
(0,0)e Ty and (1,1)eT,. Set Ny =T, vV (12)u Ty =TyuTy.

Next, let V(1/4) be one of the two elements of $(1/4) which are
subsets of T, such that (1/4, f(1/4)) ¢ V'(1/4). Of the 16 elements of T(2)
there are two which are subsets of 7, and have V(1/4) as a side. These
may be labelled Ty and Ty, so that (0, 0) e Ty and the upper end point
of ¥ (1/2) is in Ty. Sets V(3/4), Ty, and Ty, may be defined similarly,
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with (1,1) € Ty, so that when we set No=TypoTuuV(12) v Ty Ty
requirements (a), (b), and (c) are satistied (i <2).

It is clear that this process’ can be continued. Set N — ﬁl\u
i=1
Then & is a continuum (in fact, an arc) containing (0, 0) and 1(1 1).

Suppose p ¢ N. If p eV (x) for some = e D then p ¢ &, by (a a). If p is not
in any V() then for all 4 (by (b)), p ¢ My, hence P e K, and therefore
p¢G. Then ¥ ~n G =@, so & is not connected. Thus f is not a con-
nectivity function.
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