

Zero-dimensional sets blocking connectivity functions *

bу

J. H. Roberts (Durham, N. C.)

In [2], p. 262, Stallings described a compact 0-dimensional set $K \subset I^2$ (closed 2-cell) such that the graph of every continuous function $f\colon I \to I$ intersected K. He asked this question: If f is a connectivity function on I into I (definition below), then is it necessarily true that such a set K must intersect the graph of f^* . This question is answered in the present paper. Example 1 is a compact 0-dimensional set $K_1 \subset I^2$ which blocks (i.e., intersects the graph of) every continuous function but does not block every connectivity function. The compact 0-dimensional set K_2 of Example 2 blocks every connectivity function. A theorem is abstracted from the argument needed to prove that Example 1 has the desired properties.

DEFINITION. A function $f\colon A{\to}B$ (topological spaces) is a connectivity function if and only if for every connected set $C\subset A$ the graph of f|C is connected.

EXAMPLE 1. Description. First, define the Cantor set C on I = [0,1] as $\bigcap_{n=1}^{\infty} C_n$, as follows. We get C_1 from [0,1] by taking out the open interval of length 1/4 with center at 1/2. In general, C_n is the union of 2^n closed intervals, and C_{n+1} is obtained from C_n by taking out of each of these 2^n intervals a concentric open interval of length $1/2^{2n+2}$.

Thus the sum of the lengths of the intervals taken out is $\int_0^\infty 2^n/2^{2n+2} dx$ = 1/2, so we also have m(C) = 1/2, where m denotes Lebesgue linear measure. Now define $F: I \rightarrow I \times I$ as follows:

$$\begin{split} F(t) &= \big(x(t), y(t) \big) \,, \\ x(t) &= 2m(C \cap [0\,,t]) \,, \\ y(t) &= 4m(C \cap [0\,,t]) - t = 2x(t) - t \,, \end{split}$$

^{*} This research was supported in part by the National Science Foundation (U.S.A.), Grant GF-2065.

for $0 \le t \le 1$. Let M = F(I) and

$$K_1 = F(C)$$
.

Figure 1 shows an approximation to M. The set K_1 is obtained from M by taking out all open vertical intervals. These occur when the abscissa is 1/2, 1/4, 3/4, 1/8, ...

Now F is a homeomorphism and M is an arc with end-points (0,0) and (1,1). The set K_1 is a topological Cantor set and is a subset of M.

Fig. 1

The set $M-K_1$ is a countable union of disjoint open vertical intervals, one on each vertical line with abscissa of the form $k/2^n$ (k and n positive integers, $k < 2^n$, k odd). To see that $M \subset I \times I$, first note that, from (*), x(0) = 0, x(1) = 1, and x does not decrease as t increases. Also y(0) = 0, y(1) = 1. To prove that y(t) > 0 for all t > 0, it is sufficient to show that the average metric density of C on [0,t] (i.e., $m(C \cap [0,t])/t$) is greater than 1/4. In fact, a calculation shows that the minimum average metric density of C on [0,t] occurs for t = 5/8, and is equal to 2/5. Thus $y(t) \ge 0$ on $0 \le t \le 1$. That $y(t) \le 1$ follows from symmetry (y(1-t) = 1-y(t)).

We now prove that K_1 blocks every continuous $f: I \rightarrow I$. Assume that G, the graph of a continuous f, does not intersect K_1 . Then f(0) > 0 and f(1) < 1, so from formulas (*) we have g(0) < f(x(0)), but g(1) > f(x(1)). Thus there exists a smallest g(0) < g(1) > g(1) >

Finally, we show that K_1 does not block every connectivity function $f\colon I\to I$. We use the theorem, below, and our immediate objective is to identify the terms used in the theorem and to show that the hypothesis is satisfied. Obviously K_1 is a compact 0-dimensional subset of I^2 . Let D be the set of all x of the form $k/2^n$, k and n positive integers, $k<2^n$, k odd, and for $x\in D$ let s_x be the component of $M-K_1$ in I_x . (For $0 \le x \le 1$, I_x is the vertical interval from (x,0) to (x,1).)

Now suppose that N is a continuum in I^2 such that (ii) and (iii) are false. Then there exist points $p \in N$, $q \in N$, $x \in D$ such that $x_p < x < x_q$ and s_x is not a subset of N. Choose y so that $(x, y) \in s_x - N$. For every $\varepsilon > 0$ let I_ε be the arc which is the union of two vertical intervals and one horizontal interval connecting the following points in the indicated order: $(x-\varepsilon,0)$, $(x-\varepsilon,y)$, $(x+\varepsilon,y)$, $(x+\varepsilon,1)$. For sufficiently small ε , I_ε separates p from q in I^2 , hence intersects I_ε . But for sufficiently small ε , $I_\varepsilon \cap K_1 = \emptyset$ and (since I_ε is closed) the interval from $(x-\varepsilon,y)$ to $(x+\varepsilon,y)$ does not intersect I_ε . Thus $I_\varepsilon \cap K_1$ intersects at least one of the two vertical intervals having abscissas $x-\varepsilon$ and $x+\varepsilon$, so (i) is true. We have shown that the hypothesis of the following theorem is satisfied, and thus it follows that I_ε does not block every connectivity function.

THEOREM. Hypothesis. K is a compact 0-dimensional subset of I^2 , $D \subset I$ is a countable set and for every $x \in D$ there is an open vertical interval $s_x \subset I_x$ such that $s_x \cap K = \emptyset$ and such that if N is any continuum in I^2 , separating I^2 , then at least one of the following is true:

- (i) N-K intersects the vertical interval I_x for every x in some set having the cardinality of the continuum,
 - (ii) N is a subset of a single vertical interval, or
 - (iii) N contains s_x for some $x \in D$.

Conclusion. There exists a connectivity function $f: I \rightarrow I$ whose graph G does not intersect K.

Proof. Let $\mathfrak N$ be the set of all continua $N\subset I^2$ such that N separates I^2 and (i) is true. Since each $N\in \mathfrak N$ is closed and I^2 has a countable base, it follows that $|\mathfrak N|\leqslant |I|$, where $|\cdot|$ denotes cardinality. Obviously $|\mathfrak N|\geqslant |I|$ so $|\mathfrak N|=|I|$. It follows that there exists a smallest ordinal Ω such that $|\mathfrak N|=|\Omega|=|I|$. We define $f\colon I\to I$ as follows:

Step 1. For all $x \in D$ define $f(x) \in I$ so that (x, f(x)) is the midpoint of the vertical interval s_x . Then $(x, f(x)) \notin K$.

Step 2. We may write $\mathfrak{N} = \{N_a: a < \Omega\}$, and $\Omega = (0, 1, ...; \omega, \omega + +1, ...)$. From (i) in the hypothesis, and the fact that D is countable, there exists $x_0 \notin D$ such that $N_0 - K$ intersects the vertical interval with

abscissa x_0 , and we define $f(x_0)$ so that $(x_0, f(x_0)) \in N_0 - K$. In general, we want the following:

- (a) $x_a \in I D \{x_\gamma : \gamma < \alpha\}$, and
- (b) $(x_a, f(x_a)) \in N_a K$.

Assume $\beta < \Omega$ and for all $\alpha < \beta$, x_{α} and $f(x_{\alpha})$ have been defined and (a) and (b) are true. Let $A_{\beta} = \{x \colon (N_{\beta} - K) \cap I_{x} \neq \emptyset\}$ and let $B_{\beta} = D \cup \{x_{\alpha} \colon \alpha < \beta\}$. From cardinality considerations it is clear that $A_{\beta} - B_{\beta} \neq \emptyset$ and we choose $x_{\beta} \in A_{\beta} - B_{\beta}$ and define $f(x_{\beta})$ so that $(x_{\beta}, f(x_{\beta})) \in N_{\beta} - K$. Thus we may assume that x_{α} and $f(x_{\alpha})$ have been defined for all $\alpha < \Omega$ and (a) and (b) are true.

Step 3. Set $C = I - D - \{x_a: a < \Omega\}$. If $x \in C$ define f(x) so that $(x, f(x)) \in I^2 - K$. This completes the definition of $f: I \to I$.

ASSERTION 1. $(x, f(x)) \in K$ for all $x \in I$.

For the proof of Assertion 2 (below) we need the following

LEMMA. If A and B are mutually separated sets in I^2 and $a \in A$, $b \in B$, then there exists a continuum $N \subset I^2 - (A \cup B)$ such that N separates a and b in I^2 .

Proof. By [1], Theorem 73, p. 150, there exists a closed set N such that (i) $N \subset I^2 - (A \cup B)$, (ii) N separates a and b in I^2 , and (iii) N is irreducible with respect to properties (i) and (ii). Let D_a be the complementary domain of N (relative to I^2) which contains a. Then \overline{D}_a and $I^2 - D_a$ are continua whose union is I^2 and whose intersection is N. Since I^2 is unicoherent, it follows that N is connected.

ASSERTION 2. G, the graph of f, is a connected set.

Proof. Assume that G is not connected. Then by the lemma, there exists a continuum N such that $N \subset I^2 - G$ and N separates I^2 . It follows that (ii) and (iii) of the hypothesis are false for this N. Therefore (i) is true and $N \in \mathbb{N}$, so there exists $\alpha < \Omega$ such that $N = N_{\alpha}$, and $(x_{\alpha}, f(x_{\alpha})) \in N \cap G$, a contradiction. Thus G is connected.

ASSERTION 3. f is a connectivity function.

Proof. Suppose that C is a connected subset of I such that the graph of f|C is not connected. Then it easily follows that there exists a closed interval $C_1 = [c, d]$ with c < d such that $C_1 \subseteq C$ and T, the graph of $f|C_1$, is not connected. Then $T = A_1 \cup B_1$, mutually separated, with $(c, f(c)) \in A_1$ (a matter of notation). If $(d, f(d)) \in A_1$, write

$$G = [A_1 \cup \{(x, f(x)): x \notin C_1\}] \cup B_1,$$

mutually separated sets. If $(d, f(d)) \in B_1$, write

$$G = [A_1 \cup \{(x, f(x)): x < c_1\}] \cup [B_1 \cup \{(x, f(x)): x > d_1\}],$$

mutually separated sets. In either case we have a contradiction to the fact that G is connected. This completes the proof of our theorem.

EXAMPLE 2. For each positive integer n, let D_n be the set of all numbers $k/2^n$, where k is an odd positive integer less than 2^n . Thus $D_1 = \{1/2\}, \ D_2 = \{1/4, 3/4\},$ etc. Set $D = \bigcup_{n=1}^{\infty} D_n$. (This is the same D as in Example 1.)

For each n (n = 1, 2, ...) we will define, for each $x \in D_n$, a disjoint collection $\mathfrak{D}(x)$ of 2^n vertical intervals all in I_x , and a collection $\mathfrak{T}(n)$

Fig. 2

of 4^n closed 2-simplexes. Figure 2 shows the 4 elements of $\mathfrak{T}(1)$, the 16 elements of $\mathfrak{T}(2)$, the two elements of $\mathfrak{V}(1/2)$, and the four elements (each) of $\mathfrak{V}(1/4)$ and $\mathfrak{V}(3/4)$. If n=1 and $x \in D_1$ then x=1/2 and (definition) $\mathfrak{V}(1/2)=\{[(1/2,1/5),(1/2,2/5)],[(1/2,3/5),(1/2,4/5)]\}$. Each of the four elements of $\mathfrak{T}(1)$ has an element of $\mathfrak{V}(1/2)$ as one side, and the third vertex is (0,0) or (1,1).

AUXILIARY DEFINITIONS. Suppose that T is a closed 2-simplex with vertices a, p, and q such that $T \subset I^2$, $x_p = x_q$ (i.e., [p,q] is a vertical interval) and $y_p < y_q$. Let $x = (x_a + x_p)/2$ and let [s,t] denote the vertical interval $I_x \cap T$, with $y_s < y_t$. Divide [s,t] into 5 equal subintervals and let $\mathfrak{W}(T)$ be the disjoint set consisting of the second and the fourth of these subintervals. Let $\mathfrak{S}(T)$ be the collection of 4 closed 2-simplexes determined as follows:

Case 1. $x_a < x_p$. Each element of $\mathfrak{S}(T)$ has an element of $\mathfrak{W}(T)$ as one side, the third vertex being a or q.

Case 2. $x_a > x_p$. Each element of $\mathfrak{S}(T)$ has an element of $\mathfrak{W}(T)$ as one side, the third vertex being a or p.

Inductive definition. Let $\mathfrak{T}(n+1) = \bigcup_{T \in \mathfrak{T}(n)} \mathfrak{S}(T)$. Suppose $x \in D_{n+1}$, $T \in \mathfrak{T}(n)$ and $T \cap I_x \neq \emptyset$. Then T is a triangle with vertices a, p, and q, with $x_p = x_q$, and $x = (x_x + x_p)/2$. Thus the intervals of $\mathfrak{B}(T)$ (Auxilliary definition) are subintervals of I_x . Let $\mathfrak{B}(x) = \bigcup \mathfrak{B}(T)$, where the union is over all $T \in \mathfrak{T}(n)$ such that $T \cap I_x \neq \emptyset$. This completes the inductive definition of $\mathfrak{T}(n)$ and of $\mathfrak{B}(x)$, $x \in D_n$, n = 1, 2, ...

For each n let M_n be the union of elements of $\mathfrak{T}(n)$, and let

$$K_2 = \bigcap_{n=1}^{\infty} M_n$$
.

It is clear from the definitions that $M_n \supset M_{n+1}$, K_2 is compact, and for $x \in D_n$, $I_x \cap M_{n+1}$ consists of the finite set of end points of the elements of $\mathfrak{B}(x)$. Also, $I_0 \cap M_n = \{(0,0)\}$ and $I_1 \cap M_n = \{(1,1)\}$. If $x \notin D$ and $x \neq 0$, $x \neq 1$, then $I_x \cap M_n$ is the union of a disjoint collection of 2^n vertical intervals each of length less than 5^{-n} , and $I_x \cap K_2$ is a topological Cantor set. Now M_2 has two components, lying respectively in the sets $\{(x,y)\colon 0 \leq x \leq 1/2\}$ and $\{(x,y)\colon 1/2 \leq x \leq 1\}$. Similarly, for each n, each component of M_{n+1} has an extent in the x-direction equal to 2^{-n} . Since K_2 contains no vertical interval, it therefore follows that K_2 is totally disconnected.

We now prove that K_2 blocks every connectivity function from I into I. Let $f : I \to I$ be a function, G its graph, such that $G \cap K_2 = \emptyset$. In the following construction the notation, for simplicity, does not show the dependence of V(x), N_i , and N on f. For all i (i = 1, 2, ...), and $x \in D_i$, we define sets V(x) and N_i such that

- (a) $V(x) \in \mathfrak{B}(x)$ and $(x, f(x)) \notin V(x)$,
- (b) N_i is a continuum which is a subset of the union of M_i and all vertical intervals V(x) for $x \in D_i$, i < i, and
- (c) the number of components of $N_i \cap M_i$ is 2^{i-1} , and each of these has an extent in the x-direction of 2^{-i+1} .

First, if $x \in D_1$ then x = 1/2, and V(1/2) (definition) is one of the two elements of $\mathfrak{V}(1/2)$ such that $(1/2, f(1/2)) \notin V(1/2)$. Of the four elements of $\mathfrak{T}(1)$, let T_0 and T_1 be the two which have V(1/2) as a side, with $(0,0) \in T_0$ and $(1,1) \in T_1$. Set $N_1 = T_0 \cup V(1/2) \cup T_1 = T_0 \cup T_1$.

Next, let V(1/4) be one of the two elements of $\mathfrak{B}(1/4)$ which are subsets of T_0 such that $(1/4, f(1/4)) \notin V(1/4)$. Of the 16 elements of $\mathfrak{T}(2)$ there are two which are subsets of T_0 and have V(1/4) as a side. These may be labelled T_{00} and T_{01} so that $(0,0) \in T_{00}$ and the upper end point of V(1/2) is in T_{01} . Sets V(3/4), T_{10} and T_{11} may be defined similarly,

with $(1,1) \in T_{11}$, so that when we set $N_2 = T_{00} \cup T_{01} \cup V(1/2) \cup T_{10} \cup T_{11}$ requirements (a), (b), and (c) are satisfied $(i \leq 2)$.

It is clear that this process can be continued. Set $N = \bigcap_{i=1}^{\infty} N_i$. Then N is a continuum (in fact, an arc) containing (0,0) and (1,1). Suppose $p \in N$. If $p \in V(x)$ for some $x \in D$ then $p \notin G$, by (a). If p is not in any V(x) then for all i (by (b)), $p \in M_i$, hence $p \in K_2$ and therefore $p \notin G$. Then $N \cap G = \emptyset$, so G is not connected. Thus f is not a connectivity function.

References

[1] R. L. Moore, Foundations of Point Set Theory, New York 1932.

[2] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), pp. 249-263.

DUKE UNIVERSITY

Reçu par la Rédaction le 15.6.1964