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Homogeneous operations and homogeneous algebras
by
E. Marczewski (Wroctaw)

Introduction. In algebraic systems usually treated in mathematics,
such as groups, fields, vector spaces, ete., single elements have some
individual properties and their roles in the systems considered are dif-
ferent. Nevertheless, in some research in universal algebra or the general
theory of algebraic systems, and especially in the study of the notion
of independence (see [1] and all the other papers in the references) there
are examples of interesting abstract algebras which are in a certain sense
homogeneous, i.e. in which all elements have the same properties. So are
some algebras defined by E. L. Post, denoted here by B,, P* and P
(cf. Marczewski and Urbanik [3] and [3a]), algebra S of Swierczkowski
(denoted by f, by Swierczkowski, see [4], p. 94) and others.

In this paper I adopt the following definitions of homogeneity
(see 1.1): an operation f in a set 4 is homogeneous whenever the formula
@o=[(®Byy ey Tk)

implies

h(w,) =f(h(ml)7 ey h(mk))
for every permutation b of A. An algebra is homogeneous if every oper-
ation in it is homogeneous (see 3.1).

By replacing permutations in these definitions by all transformations
of A into itself, I obtain the definition of strong homogeneity (see 2.3
and 3.1), a notion strictly connected with that of independence (cf. 3.1
(v); let us remark that strong homogeneity is called homogeneity in [3a]).

This paper contains a study of homogeneous operations and homo-
geneous algebras.

In the first section I give a representation theorem for homogeneous
operations (1.3 (v)) based on some ideas of Swierczkowski (see [4], espe-
cially pp. 95 and 96). ’

In the second section I consider some classes of homogeneous oper-
ations, first of all symmetrical homogeneous operations and strongly
homogeneous operations. Symmetry (= commutativity) of an operation
may be treated also as a sort of homogeneity, namely as a certain homo-
geneity of the set of indices (see 2.1 (iii)), It turns out that operations
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which are simultaneously homogeneous and symmetrical ravely ewist: only
in two-, three-, four-, and sic-elements sets (2.2 (iii)). Let us remember
that stlongly homogeneous non-trivial operations are still more excep-
tional: in view of a result of Swierczkowski [4] such operations exist
only in two-element sets (see 2. 3 (vii) and (viil)). I gather together all
representation and existence theorems in 2.4.

The third section is devoted to homogeneous algebras, especially
to their properties connected with the notion of independence. In an
earlier paper [2] I considered some numerical constants associated with
finite algebras: the minimal number y of generators, the maximal num-
ber ¢ of independent elements, and others. In 3.3 T give the complete
discussion of these constanis for homogeneous algebras.

Let us remark that in the third section the results concerning sym-
metrical operations (2.1 and 2.2) are used only in the Appendix (3.4).

Terminology and notation. For each finite or denumerable
sequence @y, @y, ... 1 denote by {a, @, ...} the set of its terms. E.g.,
{@,0,b,a,b}={a, b}

The cardinal of a set 4 is denoted by |4].

A one-one transformation of 4 onto 4 is called a permutation of A.

Every mapping f: AF—>A (where k=1, 2,...) is called an operation
of k variables in A, or shortly a k-ary operation in A. For operations
in a fixed set 4, we use the symbol = in the following sense: = every
where in A. E.g. the formula f(x;, 4,) = g(,) means

f(@y, m) =g(m) for every pair (my, ) e d®.

Operations of the form

(k)
65 (Bry ey Bn) =54

where k=1,2,.. and j=1,2, .., %, are called irivial.

An operation f in A is ealled qua,sz trivial i f(@y, ., 2x) € @y, 0y B}
for every (2, ..., o) e A"

All terminology and notation concerning abstract algebras, e.g. such
notions as algebraic operations, generators, independence, identity of two
algebras, etc. agree with my papers [1] and [2].

1. Homogeneous operations

1.1. Definition and examples. An operation j: A¥—>4 is called
homogeneous if

hﬁ@um,mnzﬂM%L“ﬂMm»
for every permutation & of A. It is obvious that
() BEvery trivial operation is homogencous and quasi trivial.

(ii) The identity operation i) = is the only quasi-trivial unary
operation.
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~ We will consider the following examples:

7, (where m > 2)—an (n—1)-ary operation defined in every n-ele-
ment set by the following conditions: if all terms of the sequence
@yy -y By ave different, then ru(@y, ..., @uoi) ¢ {@1, .oy Bua}, and if there
are in it two identical terms, then 7u(#, ..., &n_1) = @ (see [2], p. 2).

I.—an n-ary operation defined in an arbitrary set as follows:
In(Zyy ooy @n) = @y if @y, ..., 2n ave all different and Ilu(ay, ..., &) = @, in
the opposite case (see [2], p. 2).

Dy and p* —two ternary operations defined in every two-element set
by the equations

Pl@, 4, ¥) = Dulys Y, @ ) Pulyy @ ,y)~w7
@, 4, ) =YY, Y, @) =0y, 0, y) =

(Operations defined by E. L. Post. See Marczewski [2], Marczewski-
Urbanik [3], [3a].)

s—a ternary operation, defined in any four-element set a% follows*
s(@,y,2) ¢ {w,y, 2} if »,y,2 are different and s, y, 2) = p.(x,y,2) 1
the opposite case (Swierczkowski [4], p. 94, cf. Ma,lcyewskl [2], 9)

Let us remark that in the set 4 = {0, 1} the operations p, a,nd p*
may be described as follows (see Marczewski-Urbanik [3], p. 292):

D@, Ys 2) =@ +y+2(mod2),
P*®, ¥, #) = ay +yz -+ w2 (mod 2) .
It is obvious that
(iii) Operation rn for n =2 is a homogeneous, non quasi-trivial oper-
ation in an n-element sel; r, is the transposition in a two-element set.
(iv) Operation 1, for n =3 is a homogeneous, quasi-trivial, but non-
trivial operation in a set having at least n elements. If the set has less than
n elements, then 1, = 6. Moreover, I, = €, i.e. I, is the identity operation:
Liw) =« and 1, = &, i.e. L, y) =2

(v) Operations p, and p* are homogeneous, gquasi-trivial but nom-
trivial.

(vi) Operation s is homogencous and non gquasi-trivial.
1.2. Properties. At first we will consider the case where a homo-
geneous operation is non quasi-trivial. The following simple but funda-

mental proposition shows that this situation is of a somewhat exceptional
character and that it is possible only in finite algebras:

i) If f is a homogeneous operation in a set A and
(%) b=f(ay, ..., ) ¢ {ay, ..., ax},

then b is the only element of A mot belonging to {ay, ..., ax}-
6¥
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Let us denote by ¢ an arbitrary element of A\{ay, ..., &} and by h
a permutation of A such that
h(d)y=¢, h(c)=b, h(w)=o for cdA\{D,c}.
Hence
ha)=a; for §=1,2,..,k.
Consequently
¢=h(b) = h(f(ay, ... a)) = f(W(a), ..., h(ar))
=f(ty,..,x)=0b, q.e.d.
Let us note the following corollaries to (i):
(ii) In an infinite set every homogencous operation is quasi-trivial,

(i) If () for & homogeneous operation f in a set A with [Adl=n>2
then A is finite and there are in the sequence gy wovy O Precisely n—1 dif-
ferent terms.

(iv) If () for a homogeneous operation  and a sequence ay, ...,
of different elements, then |A|= k+1.
The following proposition is obvious:

(v) If for a homogeneous operation fin A and a sequence ay, ey Ok
of different elements

Hoy vy a)=a;  (where 1<j < k)
then
F(b1y ey Be) = by
for every sequence by, ..., by of different elements of A.

The preceding‘ propositions imply some conclusions concerning the
case .?}f a set having only a few elements. In particular, propositions
1.1 (iii) and 1.2 (iv) and (v) imply

(vi) If f is a non-trivial komogeneous wnary operation in @ s
et A
then |A|=2 and f=1, v op ,

Proposition (v) implies

) (vil) In a two element set there are only
binary operations g, and Jat

two non-trivial homogeneous

9ileey, @) =ws i @, £,
} for j=1land2,

gilz, @) £
whence

(vil') In a two-element set each

Avil) In ¢ quasi-trivial homogeneous binary op-
eration 18 trivial. ¢ e

@ ©
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Propositions (iii) and (v) imply
(viil) In a threc-element set the operation 73 is the only now-trivial
homogeneous binary operation,
and
(ix) If |A| =>4, then every homogeneous binary operation in A is
trivial.
Finally let us note the following propositions, easy to prove.
(x) Every superposition of homogeneous operations is homogeneous.
(xi) Bwvery superposition of quasi-trivial operations is quasi-trivial.

1.3. Representation theorem. A finite class of sets §= {&, ..., En}
is called a decomposition of E into m parts whenever they are different,
non void, disjoint and

E=FEuv..uly,.

We denote by 4(k,n), where 1<k < co and 1< n < oo, the set
of all decompositions of K = {1, 2, ..., k} into at most » parts. Obviously,
for every # >k (and, in particular if » is infinite), A(k,n) is the class
of all decompositions of K.

For every sequence @y, ..., &z we denote by d(ay, ..., ax) the decom-
position of K = {1, ..., k} such that i, j e K belong to the same element
of 8(ay, ..., ax) iff a;=ay.

The following two propositions are obvious:

(1) 6(ayy ..oy ax) s @ decomposition of K dmto m parts iff the set
{ty, ..., ax} has precisely m elements.

(ii) Let A denote an w-element set and & a decomposition of the set
K=1{1,2,...,k}. There is a sequence @y, ..., axe A such that é=6(ay, ..., ax),
iff 6 ed(k,n).

Two sequences dy, ..., & and by, ..., by ave called similal if d(ay, ..., o)
= 0(byy ..., bg). Obviously,

(i) If @y, ..., ax € A, h is a permutaiion of A, and b;= h{a;), then
(@yy ey ax) and (by, ..., be) are similar.

The following proposition results immediately from the definition
of homogeneity and presents a generalization of 1.2 (v):

(iv) If f is a homogeneous operaiion in A and two sequences (ay, ..., Or)
and {(by, ..., bx) are similar, then

if f(@y.yox)=a; then  f(by, ..., bx)=bj,
if fayy ey an) € {0y, ..., ax} then F(by, .o, Di) € (b1, -, bi}.

We denote by @(k,n) the class of all functions ¢ the domain of
which is 4(%, n) and for which either (1) ¢(8) ed or (2) |6]+1 = n and
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¢(8) = 0 (= the empty set). In other words, ¢ is a set-valued function
which for every decomposition &e 4(k,n) either distinguishes a set
belonging to & or admits for & the value 0, but the second case is pos-
sible only if » is finite and if § is a decomposition into preeisely n—1
parts (cf. Swierezkowski [4], p. 96).

For every function ¢ e®(k,n) we define a k-ary operation f, in
any n-element set 4 by the following conditions: (1) if P(8(@yy vy @) 2 0,

then fo(@y, -, &%) = %7, Where j e @(6(a1, ..oy o)), and (2) if @(8(wy, ..., @)

= 0, then fo(@, ---) @) € {&y, ..., 2}, The definition is consistent and uni-
voeal because (1) if ¢(8(@, ..., )} is non-empty and if ¢, j e ?(8(m, ..., ),
then @; = @, and (2) if g(6(z, ..., 2)) = 0, then by definition of & (%, n)
n is finite and 8(y, ..., %) i3 a decomposition of K into n—1 parts or,
in other words, {#, ..., %} is a (n—1)-element set, whence A\{w,, ..., o}
is a one-element set.

We can now state the following representation theorem for
homogeneous operations:

(v) The correspondence p—f, is a one-one correspondence between the
class @ (k,n) and the class of all homogeneous k-ary operations in an
n-element set A.

Proof. 1. Let us first verify that for ¢ « (k, n) the operation f, is
homogeneous, or, in other words, that if

al’=f,p(m1, wery )

then, for every permutation h of 4,

hiz) = fq)(h'(ml)y ey h(“"k)) .

This is an easy consequence of the preceding definitions, of (iii) and
of the ren;ark that if {z}= A {m,, ..., s}, then {h(z)}= A\{h (@), ..., (haw)}.
i 2. We :%hall prove that for cvery homogeneous k-ary operation f
in A there is a function ¢ e &(k, n) such that f = fp- Namely, for every
6'5 A(k, n) we consider such a sequence a,, ..., ay ¢ 4 that 0(ay, ..., ax) = o
(in view of (ii)) and we put

P =K~ {j: a;=F(ay, ..., m)}.

In view of (iv) this set depends only on é, ie. it does not depend
on the choice of ay, ..., ax.

For every =y, ..., 2,

if @y, ey o) € &y, .., 2x),  then @By, .y ) =0,
and consequently
: fl;(mn'“a'l"/ﬂ)f{mn'--:wk}'
Since, in view of 1.2 (i), 4" {w, ..., #} iy, in this case, a one-element

set, we have here fu(w, ..., %) = f(m,, ey T,
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If f @y, ..., @) = o7, then j e @(8(wy, ..., @), Whenee folm, ..., o) = o
= f (13 ooy @k)-

Hence = f,.

3. We shall prove finally that if j, = f,, then ¢ = p. For this pur-
pose, let us consider a decomposition & e A(k, n).

If
a = fm(”‘l! weey ) =fw(a17 oy U) € {Byy ooey 01}
then
P(8(ay, oy ax)) = 0 = (3(ay, ., o).
If
05 = [ty vy @) = fylt1y ..o, k)
then
j 59”(5((1‘1) ey “k)) "\"P(a(al: (] ak)) .
Consequently

q'(é(al, ey (lk)) = Ip(é(al, veey (lk))
for every ay, ..., o € A, whence, by (ii), ¢(0) = p(6) for every 8 e 4(k, n),
or, in other words, ¢ =1v.

Representation theorem (v) is thus proved.

The following easy consequence of the definition of f, can be treated
as a supplement of (v) for quasi-trivial operations:

(vi) A homogeneous operation f, is quasi-trivial éff ¢ does not vanish
(d.e. if p(8) #£0 for every 6 e A(k,n)).

Tor trivial operations we first formulate the following obvious
proposition: .

(vii) Let g e Bk, n) and |4|=n. In order thal f,= & in A it is
necessary and sufficient that @ be defined as follows: for each decomposition
8= {Ky, ., Kn} e A(k, n) we have p(8) = Kp, where j e Ky.

For each ¢ e ®(k,n) we denote by P(p) the intersection of all sets
¢(8), where 8 ed(k,n).

We shall prove that

(viii) If pe®(k,n) and |A|= n, then the following conditions are
equivalent:

(t) 1, is trivial in 4.

(t) ¢ does mot vanish and the class {@(8): & eA(k,n)} is maulii-
plicative.

(tz) P(p) 0. ‘

It is easy to sec that, in the case m > 2, these conditions are equiv-
alent also to

(t;) P(@) 18 a one-element set.

(t)=(t;). If f, = ¢, then for any two decompositions &, y 4 (k, %)
we have, in view of (vii),

jep(d)noly).
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Let us denote by & any decomposition of K such that ¢(6) ~ p(y) ¢ ».
Then, by (vii),
ple)=9(@) nely), ded.
(ty) = (ty). It follows from (t,) that there is a decorposition &, such
that ¢(d,) = P(p), whence (t,).
(ty) =(t). If j € P(p) then fi(ay, ..., %) = @, or, in other words, fo is
trivial, g.e.d.

2. Symmetrical homogeneous operations and strongly
homogeneous operations

21. Symmetrical homogeneous operations. A %k-ary oper-
ation f is called symmetrical or commutative if for each permutation
p: §—>py of the set K= {1, ..., k)

H@yy ony n) =] (py; -, Ty -

It is obvious that

(i) Operations py, p*, 15, 1y and s are symmelrical, whereas (in a set
having at least two eclements) &° with & > 2, b with k>3 and ry with
k>4 are not.

I shall prove that

(i) If 2 <k <, then no k-ary homogeneous and quasi-trivial oper-
ation | in an n-element set A is symmetrical.

In fact, if ay, ..., a; are different elements of A, and if, say,
fay, @y ) =0y
then, by the homogeneity of f,
o, 6oy ) = ay s
whence f i3 non-symmetrical.

For every permutation p of K, every EC K and every class F of
subsets of K we define p(E) and p(F) by the formulas

P(E)={ps: jeB}, p(F)={p(E): EF}.
Let us verify that
(0) p(a(wpn ey wﬂk)) = 8(@y, «u., @)

In fact, ¢ and § belong to the same part of p(d(my,, ..., @) 1L i
-1
fa,nd 27 belong to _the same part of §(mp,, ..., ®,,), or, in other words,
iff wpﬂ‘_l-:wpp;l, which is equivalent to @ = @,

° ©
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A function ¢ e @(k,n) will be called homogeneous whenever o(p(8)

= p(qo(é)) for every permutation p of K. We may now prove a supple-
ment to the representation theorem which concerns symmetrical
operations.

(iif) A4 homogeneous k-ary operation f,in A (where p ¢ ®(k s 1), || = n)
is symmetrical iff ¢ is homogeneous.

Let us suppose ¢ homogeneous and let p denote a permutation of
K=1{1,2,..,k}. We have to prove that

(+) fol@ry oovy Br) = fol By, vy Tpy)

It @(0(®pyy -y ¥y)) = 0, then, in view of (o) and of the homo-
geneity of ¢,

‘P(a(ml: ey ’”k)) = ‘P(p (6(51’171’ ey mpn))) =Z)(‘P(6 (D15 ey mm-))) =0.

Hence, in view of 1.2 (i) and of the definition of f, the element
Jol@yy ey Tx)y a5 Well a8 fo(tp,, ..., ¥p,) is the only element of A not be-
longing to {w, ..., x}. Thus we obtain (+) in the case considered.

It ¢ (8(wp,, -y ¥n,)) 5 0, i.e. if there exists a § such that j e ?(8(@py, ...
vy @g,)), OF, in other words, f,(ap,, oy ®p,) = @p,, then, in view of (o)
and the homogeneity of ¢,

Dy ep(cp(d(mp,, . mpk))) = <p(p CIC - mi,,k))) = o (0(m, ..., ay)) .
Hence

jq‘(mlj ooy D) = Bpy == fw(mzlu ey Bpy) -
The formula (+) is thus proved.

Let us suppose now that an operation 7, is symmetrical. We have
to prove that

?(p(8) = p(p(8)
for every permutation p of K and every 6 ed4(k, n).

By 1.3 (ii) there exists a sequence ay, ..., az ¢ 4 such that B(tyy oeey k)
= 6. It is sufficient to prove that

(++) 9(p(8(a; .., @) = plp(O(aa, -, ar))
or, in view of (o),

‘7’(6(%17 ey “qk)) =]7(‘P(6(a'17 oy “’C))) ’
where q: j->g; denotes the inverse of .

The relation ieq(6(ag,, ..., ag)) is equivalent consecutively to the
following ones:

g = f'p(a’qu ey “Q)c) =fw(a17 ey ak)’
gre(d(ay, ..., o)), 4 ep((p(a(al, ey ak))),
whence we obtain (++).
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Proposition (iii) is thus proved.
It easily follows from the definition of homogeneity of ¢ that
(iv) 4 function pe®(k,n) is homogeneous (or, in other words, f, is
symmetrical) iff for each two decompositions of K= {1,2,...,k} into
m<<n parts:
6= {Ky, o, En}eA(k,n),
0% = {K¥, .., Kn} e Ad(k, n)

with (K4} = |K}| forj =1, ..., m, the equation p(0) = Kiimplies p(6*) = Kf.

We can now prove

(v) If a function ¢ e D(k, n) is homogeneous, then for every d e A (k, n)
we have |E| # |p(8)] whenever ¢(8) # Eed (in other words, the set ¢(6)
has a different number of elements from any other set belonging to 8).

In fact, if for 6 = {K;, ..., Ku} we have, say, ¢(d) = K, and |K,]
= |K,|, then, applying (iv) to the same decomposition written in two
forms:

0= {K;, Ky, K3, ..., Kn},
0= {K,, Ky, By, ..., Em},

we obtain a contradiction: ¢(d) = K, and ¢(8) = K,, whereas K, # K,.
Let us translate (v) into the terms of operations (with the aid of (iii)):
(v) If @ homogeneous operation is symmetrical and if

gy ooy @) = as # ay
then

it 1<j <k and ay=a}| #|{i: 1 <j <k and a; = a;}].

(vi) If k < n, then no symmetrical homogeneous k-ary operation in
an n-element set A is quasi-trivial. ’

It is sufficient to consider k different elements of 4 and to apply (v/).

22. Existence of symmetrical homogeneous operations.
T'o every decomposition §= {K,, ..., Kn) e A(k,n) (where all K, are
different) corresponds an arithmetical decompaosition of the number
k=Kl

'KI = [Kli + .. +IKm] .

We. denote by D(k,n) the class of all such decompositions cor-
responding to decompositions belonging to A(k,n) or, in other words,
the class of all decompositions

(%) E=Ty+..+kn

Wh(_are k; are natural numbers and m < n. Obviously two decompositions
which differ only in the order of summands are treated as identical.
By D*k,n) we denote the class of all decompositions () belonging to
D(%,n) such that m = n—1

* ©
Im Homogeneous operations and homogeneous algebras 91

A decomposition () is called good if there is a summand which
appears in (*) only once. In the opposite case the decomposition is bad.
A decomposition é e d(k,n) is called respectively good or bad if the
corresponding arithmetical decompesition belonging to D(k, n) is such.

We shall prove

(1) In an n-element set A there emists a hLomogeneous, symmetrical
k-ary operation with k> 1 iff every decomposition belonging to D*(k, n)
is good.

(ii) In an n-element set A there ewists « homogeneous symmetrical
and quasi-trivial k-ary operation with & >1 iff every decomposition be-
longing to D(k, n) is good.

(Let us remark that, in view of 2.1 (ii), only the case k > n is essen-
tial in (ii).)

The necessity in theorems (i) and (ii) follows from 1.3 (v), 1.3 (vi),
2.1 (iii) and 2.1 (v).

In order to prove the sufficiency, let us define ¢ « @(k, n) as follows.
Let 6= {K;, ..., En} ed(k, n).

We may suppose of course that

K| < B << 5 [ Kol

If 6 is a bad decomposition, then we put ¢(d8) = 0. If it is good,
then there exists a smallest index ¢ such that |K| # |K;| for js£s.
We then put ¢(8) = K.

If every decomposition belonging to D*(k, #) is good, then ¢ e &(k, n),
whence f, is homogeneous by 1.3 (v). It is easy to see that ¢ is homo-
geneous, whence f, is symmetrical by 2.1 (iii) and theorem (i) is thus
proved. ’

If every decomposition belonging to D(k,n) is good then f, is
a fortiori homogeneous and symmetrical. Moreover, ¢ does not vanish,
whence, by 1.3 (vi), f, is quasi-trivial. Theorem (ii) is thus proved.

Theorems (i) and (ii) reduce the problem of the existence of oper-
ations simultaneously homogeneous and symmetrical to purely arith-
metical questions. I shall prove the following existence theorem for
symmetrical homogeneous operations.

(i) Symmetrical homogeneous operations of more than one variable
in an n-element set ewist iff n=2,3,4 or 6. For these values of n there
is a symmetrical homogeneous k-ary operation (with % > 1) iff kb and n are
relatively prime and k > n—1.

We denote by § the set of all pairs (k,n) (with ¥ >1) such that
there exists a k-ary homogeneous and symmetrical operation in an
n-element set or, in other words (by (i)) that every decomposition be-
longing to DXk, n) is good.
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Theorem (iii) will be proved by the aid of the following lemmas:

(a) If (k,m) €8, then k=n—1or I >mn.

Tt is enough to consider the following bad decomposition: %k =1+
+1 4.+

() If (k,n) ¢8, then (k,m)¢8 for m >n+1.

This iy because a bad decomposition of k into I summands where
1< n satisties at the same time the inequalities 1< m and 1 # m—1.

() If & 4s even, then (k,2)¢ 8.

This is because the decomposition k= j+7 is bad.

(¢*) If & is even and n >4 then (k,n)¢8.

This follows from (¢) and (b).

(@) If & is odd and % >3, then (k,2) el and (k,4) e S,

Clearly, each decomposition of an odd number %33 into two
summands is good. Fvery decomposition into four summands is also
good: indeed, if such a decomposition were bad, then every summand
would repeat itself two or four times and hence k¥ would be even.

(e) (k,3) €8 (for k>1) iff &k is not divisible by 3.

I % is divisible by 3, then k= j+j+j is a bad decomposition.
1f % is not divisible by 3, then in every decomposition into three summands
at least one summand appears only once.

) (k,B) ¢S for k=2,3, ...

In view of (b), (¢c) and (e), it is sufficient to prove the existence
of bad decompositions for k # 5 not divisible by 2 and 3, which follows
from the equations:

T=2+2+1+1+1,
9+27.=3+3+3+j+7.7 j=1525---

) (kyn)éS for n>1, k=2,3, ..
A consequence of (f) and (b).
(g) If & and 6 are relatively prime and %k > 5, then (k,6) € 8.

There is no bad decomposition of % into 2, 3 and 4 summands, in
view of (d) and (e). In a decomposition of % into 6 summands the cases

F=ututvot+otwt+w and k=ututu-tv+o+o

are impossible since k is not divisible by 2 and by 3, and hence one
summand appears precisely once.

The proof of (iii) has been reduced to an easy verification. By (f)
and (f¥) if (k,m)e 8, then n=2,3,4 or 6. The case n=2 is treated
in lemmas (¢) and (d), the case n = 3 in lemma, (e), the case n = 4 in (c*),
and (d). Lemma (g) says that if ¥ and 6 are relatively prime and % > ,b
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then (k, 6) € 8. It follows from (ec), (e), (b) and (a) that for other k’s
we have (k, 6) ¢ 8.

Theorem (iii) is thus proved.

Passing now to symmetrical, homogeneous and quasi-trivial opera-
tions, we will prove a theorem analogous to (iii):

(iv) Symmetrical homogeneous gquasi-trivial operations of more than
one variable in an n-element set exist iff m =2, 3 or 4. For these values
of m there ewist k-ary operations having the above mentioned properties
iff & 4s not divisible by any number <n.

Let us denote by S, the set of all pairs (%, n) with k > 1 such that
there exists a k-ary homogeneous symmetrical and quasi-trivial operation
in an n-element set, or, in other words, (by (ii)) that every decompo-
sition belonging to D(k, n) is good.

Theorem (iv) follows from the following lemmas (a,)-(g).

(ag) If (B, m) €8y, then k& > n.

(be) If (k,m) ¢ 8y, then (k,m)¢8, for m=n.

(co) If % is even, then (k,n) ¢S, for n=>2.

(do) If % is odd and % =3, then (%, 2)eS,.

(eo) If % is devisible by 3, then (k,n) ¢ 8, for n =3.

These lemmas are easy to verify.

(L) (kyn) ¢S, for n=58, k=2

This lemma follows from (f), (b,) and the relation: §,C 8.

(2o) If & > 1 is odd and not divisible by 3, then (k, 3) ¢ S, and (%, 4) € 8,.

In fact, under the above suppositions, in each decomposition of %
into two or three summands the equality of all summands is impossible
and consequently one at least of them is different from the others. Each
decomposition into four summands is also good. Indeed, each bad de-
composition into four summands is of the form % = #+u+v v, which
is impossible for odd k.

‘We finish this paragraph by answering the following question: let
(kym) be a pair of numbers satisfying all conditions of (iii) [or (iv)];
in what manner can one define explicitly a homogeneous symmetrical
[and quasi-trivial] %-ary operation f in an arbitrary n-element set?
The answer is easy: it is enough to consider the operation f, where ¢ is
a function belonging to ®(k%,n) defined in the proof of 2.2 (i) and (ii).

Let us consider the pair (5,4) for example. According to this rule,
a quintenary operation in a four-element set {a, b, ¢, d} can be defined
by the following scheme:

B=1+1+1+2, 5=1+2+2,
B=1+1+3, 5=2+3.
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In each decomposition belonging to D(5,+) the number lp(d)| is
here in bold type. Thus, for example, .
fla,bye, dydy=1d,a,b,¢,d)=...= foldydye,b,a)=4d,
folay,a,b, b, b)=...=fub, b, a, b,ay=a.
2.3. Strongly homogeneous operations. A k-ary operation
in 4 is called strongly homogeneous if the fundamental equation

(0) h(f(mu ey -'”k)) = f(h(w.t): ey h(wlc))
is satisfied for every transformation h of 4 into itselt (*). It iy easy to
verify thabt

(i) Bvery trivial operation is strongly homogeneous.

(ii) Operations p, and p* are strongly homogeneous.

(iii) Every superposition of strongly homogeneous operations is & strongly
Tomogeneous operation.

I shall prove that

(iv) Bvery strongly homogeneous operation is quasi-trivial.

In fact, if

flagy ooy ax) = € {Qy, ..oy Ox},
then, for the transformation h: 4-—+4 defined as
ha)=a, hi@)=2 for ws*a,
we have
Fh(as), ooy Blaw)) = f(ay, .., ax) = a # h{a)
and, consequently, (o) does not hold.

Passing to the representation theorem for strongly homogeneous
operations let us define the relation < in A (%, n): we write 6 < &* if
every set belonging to -4 is contained in a certain set belonging to &*.

It is easy to see that

(v) Let aje A and bje A (j=1,2,..., k). We have

; 0{ayy oory ax) < 8(byy .oy bi)
iff there is a mapping h: A~ A such that h(as) =b;.

A function ¢e®(k,n) is called monotone whenever 6 < &* implies
2(8)Cp(8) ().

We sghall prove the representation theorem for strongly
homogeneous operations:

(vi) A homogeneous k-ary operation f, in A (where ¢ e ®(k, n), |4]
= n) is strongly homogeneous iff ¢ is monotone and not vanishing.

() Operations of this kind are called homogeneous in paper [3a] of Marczewski
and Urbanik. ’

(*) Notions essentially due to Swierczkowski. See [4], p. 96.
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Let us suppose f, strongly homogeneous. Consequently it is quasi-
trivial by (iv), whence, in view of 1.3 (vi), ¢ does not vanish.

In order to prove that ¢ is monotone, let us put K = {1, 2, ..., k}
and consider two decompositions 6 <y belonging to 4(k,n):

§={Ky, ..., K.}, y=1{ly s L}y, 1<s<r <.

In view of 1.3 (if) there exist in 4 two sequences aj, ..., ay and
by, ...y bx such that

o(ay, .-y ax) =6, 6(1)1,...,1)‘:):7/,

Proposition (v) implies the existence of a mapping h: 4 — A such
that h(a;)=b; (j =1, ..., k), whence

(%) Foliy ooy b)) = Fo(B(ay)y ooy Rolan)) = Wfp(ay, ..., a).
In order to prove

(%) (8 Ceoly)

let us suppose j e ¢(8). Hence

a5 = 74:(“17 “ery ak)
and consequently, by (%),

folbyy ooy i) = hiay) = by,

which means that § e ¢(y). Formula (#+) and the monotoneness of ¢ are
thus proved.

Let us suppose conversely that ¢ does not vanish and is monotone.
The operation f, is thus quasi-trivial by 1.3 (vi). If a; = f(ay, ..., &)
or, in other words, j e @(d(ay, ..., az)), then for each mapping h: 4 >4
we have, by (v),

8(tyy vy ag) < 8(h(a), ..., hlax)),
whence j e p(d(h(ay), ..., h(ak))), or, in other words

Foll (@) ooy Blan)) = hlag) = h(fpltr .y o)) -

Hence f, is strongly homogeneous.

Theorem (vi) iy thus proved.

Swierezkowski has proved ([4], p. 96, Lemma (B8)) that if ¢ e D(k, n)
with # >3 is monotone and does not vanish, then P(p) % 0. Thus, in
view of (vi) and 1.3 (viii) there are no strongly homogeneous and non-
trivial operations in a set having at least three elements. On the other
hand, in a two element set each binary homogeneous and quasi-trivial
operation is frivial (1.2 (vii’)). Hence, in view of 1.1 (i), we obtain

(vii) If f is a k-ary strongly homogeneous non-trivial operation in 4,
then |A| =2 and %k = 3. ‘
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As an example of a k-ary strongly homogeneous, non-trivial oper-
ation with % >3 we may consider

Ftyy eony 1) = Du(@1, Tay 25) -

It is known that the class of all strongly homogeneous operations
may be described by the common converse of theorems (i), (i) and (iii)
as follows:

(viii) The class of all strongly homogeneous operations s identical with
the smallest class of operations in o two-element set, containing trivial oper-
ations, the operations p, and p* and closed with respect to superposition.
(In other words, the dlass of all strongly homogeneous operations can be
treated as the class of all algebraic operations in the algebra P = (a, b; py, p*).)

The proof of (viil) is complicated (see Marczewski-Urbanik [3a]).

2.4. Table of representation and existence theorems. We
list here the main theorems of sections 1 and 2:

REPRESENTATION THEOREMS. The correspondence ¢ —f, is one-one be-
tween Dk, n) and the class of all k-ary homogeneous operations in an

n-element set A (1.3 (v)). In the above correspondence the following are the
corresponding properties of f, and .

; b ? Number of
! theorem

H

‘ trivial P@) #0 1.3 (vil)

| quasi-trivial not vanishing 1.3 (vi)

! symametrical homogeneous 2.1 (iii)

1 strongly homogeneous not vanishing and monotone 2.3 (vi)

ExisTeNCE THEOREMS. The following table gives all pairs (%, n) with
k22 such that in an n-element set there exists a non-trivial k-ary homo-
geneous operation having the property formulated in the first colummn.

Property of operation n A Number of
theorem
symmelrical 2,8,4,6 E>n—1 2.2 (i)

k and n relatively prime

symmelrical and guasi- L not divisible by num-

trivial . 2,3, 4 bers <n 2.2 (iv)
strongly homogeneous and
non-trivial 2 k>3 2.3 (vii)
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3. Homogeneous algebras

3.1. Definition and properties. An algebra (4;F) is called
Lomogeneous [strongly homogeneous] if each operation f e F iy homogeneous
[strongly homogeneous].

Proposition 1.2 (x) implies

(i) AWl algebraic operations im a homogeneous algebra are homo-
geneons
and 1.2 (i) implies

(ii) If G is a set of generators of a homogeneous algebra A, then either
G=A or A is finite and ANG 1is a onec-element set.

In view of (i) we have

(iii) If S and T are two equivalent subsels of & homogeneous algebra A
(i.e. |8]=|T| and |A\S|= |4A\T)), then 8 is a set of generators of A iff
T is so, and S is a set of independent elements iff T is so.

Propositions 1.2 (v), (vi), (viil) and (ix) imply

(iv) Every element of a homogeneous algebra A forms a set of inde-
pendent eclements, and, if |A| >3, then every pair of elements is a st of
independent elements.

It is easy to see (cf. [3a], p. 200) that

(v) An algebra A is strongly homogeneous iff the whole set A forms
a set of independent elements.

It is easy to prove, by the aid of (v) and proposition 2.2 (vi)
of [1], that

(vi) Every trivial algebra is strongly homogeneous, the algebras (de-
fined by Post) Py = (a, b; p*), Pu = (a, b; p*) and P = (a, b?,Z’uP*) are
strongly homogeneous and the algebra S = (a,b, ¢, d; s) of Swiercekowski
18 homogeneous but mot strongly homogeneous.

Let us add that P, P* and P are the only strongly homogeneous
non-trivial algebras (cf. [3] and [3a]).
An algebra A= (4; F) is called gquasi-trivial if each operation f e F
is quasi-trivial.
(vil) The following conditions for an algebra W = (4; F) are equivalent:
(2) A is quasi-trivial.
(b) Each algebraic operation in U is quasi-trivial.
(¢) Each non-void subset of A is a subalgebra of A.
(d) A is the only set of generators of U.
If |A| = n is finite, then these conditions are equivalent to the following
(e) Each algebraic n-ary operation is quasi-trivial.
The implication (a)=-(b) follows from 1.2 (xi).

Fundamenta Mathematicae, T. LVI 7
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The implication (b)=-(c) and (¢)=(d) are obvious.
It
& =F(y e, ) & {00y ooy G}

for an operation feF, then A\{c} is a set of generators of . Hence
(d) =(a).

The implication (b)=-(e) is obvious and its converse (e)=(b) follows
from the fundamental properties of algebraic operations (see [1], p. 48,
(v) and (vi)).

3.2. Numerical properties of finite algebras. For each algebra
A= (4;F) with 2 < |4] <x, we define the following integral numbers
(see [2] and [5]):

a=[d],

y* = the smallest number with the following property: every set
GC A with [G|=9* is a set of generators,

y = the minimal number of generators,

¢=the maximal number of independent elements,

1, = the greatest number with the following property: every set
IC A with {I}=1, is a set of independent elements,

7= the greatest number with the following property: every alge-
braie 7-ary operation is trivial (obviously this number is defined only
for non-trivial algebras; if there are in U algebraic constants, we put
7= —1 by definition, and if there are no algebraic constants, but there
is an algebraie non-trivial unary operation, we put v = 0).

Let us add that if each element of A is an algebraic constant in 4,
then the empty set is treated by definition as a set of generators of A4,
whence we have y = y* = 0.

I will now list some known relations between the numbers defined
above. In particular, it is known ([2], (i) and (vii)) that

(@) azy*zy>iz2u>7 and T=1t, OF T=1,—1.
(b) If a>vy, then y >z ([2], p. B, (viii)).
{e) Ij in o non-trivial algebra o= ., then U is sdentical with Py P*

or Poand a=y*=y=1=4=1=2 (see Swierczkowski [4], 1. 94,
Theorem 1, Marcezewski-Urbanik [3] and [8a], Marczewski [2], p. 6)

(@) If y*= 1,23, then a=4 and U is identical with & (Swierez-
kowski [4], p. 94, Theorem 4).

(€) If tx >4, then v=, (Swierczkowski [5]).
Let us also note an easy consequence of 3.1 (vii):
(£} a=y iff the dlgebra is quasi-trivial.
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Suppose now that the algebra A = (4; F) is homogeneouns (and that

9 < 4| <8&). Thus it easily follows from 8.1 (iii) that
(0) y=19* and 1=1,,

whence we obtain the following simplification of (a), (d) and (e):
D)ezy=zizrand =1t 0r T=1—1,
(i) If y=1>=3, then a=4 and U is identical with S.

(iii) If ¢ =4, then 7=t

I will now formulate other conclusions from the homogeneity of 9.
Propositions 3.1 (ii), 8.1 (iv) and 1.2 (vil’) imply respectively:

(iv) Either y=qa or y =a—1.

(v) e=1 and, if a>=3, then 1= 2.
and

(vi) If y=a=2 then 7 >2.

Let us remark incidentally that, in view of 1.2 (viil), proposition (vi)
is also true under the hypothesis y = a=3.

I shall now prove that

(vil) If ¢, then v = ¢ <3 and a=y-+1.

In view of (v), we have ¢« >1 and hence, by definition of ¢, there
exists a set I= {ay,..,a} of « independent elements of 4. By hypo-
thesis, we have, on account of (i), ¢ > 7, whence there exists a :-ary
non-trivial algebraic operation f. Since I is a set of independent ele-
ments, we have

F@yy eey @) € {01y ooy a0},
whence, by 1.2 (i),
4= {01, ooy a0y f(aly ey @)}

and, consequently, I is a set of generators of 4. We thus have y =,
and a=y 1. Proposition (iii) gives the inequality :<3.
Proposition (vii) is thus proved.

3.3. Examples and conclusions. We can now summarize the
discussion of numerical constants a, y, : and v for homogeneous algebras.

(1) For every homogeneous non-trivial algebra the quadruple (a,y,t,7)
18 one of the following:

a ¥ L T

?

b1 | 2| 21 2] 2

2 » n k k where n >k > 1
|3 % |n—-1 k k where n—1>k>1
[ 4 % |n—1|n—-1|n—2| where n =2, 3 or4

T¥


GUEST


100 E. Marczewski

Let us consider at first the case ¢ = 7. In view of 3.2 (iv), we have
either y = or y= a—1. If y=1q, we have either y = whence we
obtain, by 8.2 (¢), the first row of the table, or y > whence we
obtain the second row. It remains to prove in this case that % >1.
In fact, if a=2, we obtain, by 3.2 (vi), 7> 2, and if a>3 then,
by 3.2 (v), e = 2.

If a >y, we obtain the third row of the table. It remains to prove
in this case that n—1 >k > 1. In fact, the inequality »—1 > & follows
from 3.2 (b) and the inequality % > 1 from 3.2 (v) for a« >3 and from
3.2 (vi) for a=2.

Passing to the case ¢ 7, it is enough to remark that 8.2 (i) and (vii)
imply directly the fourth row of the table.

Proposition (i) is thus proved.

Let us consider the following algebras:

Lum=(N;lm), Fn=(;m), Rum=(N;ln,m),

where |N|= n and I, and #, are operations defined in 1.1. These alge-
bras are, of course, homogeneous.

I shall prove that

(il) For every guadruple of numbers in the rows of iable (1) there

exists a homogeneous algebra for which (a,y,t,t) 4s identical with that
quadruple:

Algebras a ¥ [} T
|

Bes P, B 1 2 2
Lo With n>k>1 n " k k

3 Rppr With n—1>%k>1| o |a-1] & k
4a | R, 2 1 1 0
4b | Ry 3 2 2 1
4 | B 4 3 3 2

Row 1. See 3.1 (vi).

Rows 2 and 3. On account of the relation n >% > 1 (supposed in
both rows) we have k+1>3 and n> k-1, whence, by 1.1 (iv), lg4s is
non-t‘rivial, and consequently, v <%. In order to show that z=1% it
remaing to prove that every k-ary algebraic operation in the algebras
under consideration is trivial. This follows easily from the fact that if
f1s fay - are trivial k-ary operations, then

- Zk+1(f1; ooy fop1) = fk+1

icm°®
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and, for n—1 >k,
”'-n(fla vy fom1) =F1,

on account of definitions of l,—; and 7a.
In order to verify that ¢ =k it suffices to remember that ¢ > 7 and
remark that every k +1 elements a, ..., a1 of N are dependent. In fact,

(k-+1)
Teia(@yy ooy Q1) = Gy = €1 (B1y veey Qg4

whereas -
lpyr # °0

Sinee the operation Iy, is quasi-trivial, we have y= a=n for
111, and, ginee 7, is a non-quasi-trivial (n—1)-ary operation, we have
y=a—1=n—1 for Ry on account of 3.2 (iv).

Rows 4a, 4b and 4c. All values in these rows are known (see [2],
p. 6) and easy to compute. 4

Propositions (i), (if) and 3.2 (f) give the final conclusion of owr
discussion:

(iii) Table (i) consists of all quadruples (a,y,t,7) for homogeneous
non-trivial algebras: quasi-trivial in rows 1 and 2 and nonquasi-trivial
in rows 3 and 4.

3.4, Appendix. In the preceding paragraphs Swierczkowski’s theo-
rem 3.2 (e), or, more precisely, the simplified version of this theorem
for homogeneous algebras 3.2 (iii), plays an essential part. Since the
proof of 3.2 (e) is based on some earlier results, not easy to prove, it is
worth noticing that 3.2 (iii) for homogeneous algebras can be obtained
in another way, namely with the aid of the properties of symmetrical
operations stated in section 2.

Let us begin by the following lemma:

(i) If in @ homogeneous algebra (A; F) with |A|= 6 there is an alge-
braic symmetrical operation f of five variables, then there ewists an alge-
braic quasi-trivial (and consequently non-symmetrical) mon-irivial opera-
tion g of five variables.

Put A = {a;, ..., a;}. The homogeneity and symmetry of / imply

() Flon, oy @5) = a5
Putting

g=10, e, &, &, &)
we obtain, in view of (),
9@y, oy g, gy O5) = (a6, By, Gy, Ggy Ag)

whence, by (*) and the homogeneity of f,

(%) 9(ayy Gay 0q, 04, a5) = a5


GUEST


102 : E. Marczewski

Since, in view of 2.1 (v'),
Fays @y, 1y @ny O5) = a5
we obtain, on account of 1.2 (i),
(%) GGy Gy Oy gy 5) =T (ty Gu,y Gay Gyy @) = 01 OT Q.

Formulas (#«) and (z%) show that g is non-trivial. It follows from
formula (x#), the homogeneity of g and proposition 1.2 (i) that g is quasi-
trivial (and, by 2.1 (ii), non-symmetrieal). Proposition (i) is thus proved.

(ii) Let us suppose k< n>6. If in a homogencous n-element alge-
bra U there exists a k-ary mon-trivial algebraic operation, then there ewists
a non-symmetrical operation with the same properties.

In view of 2.2 (ili) it suffices to consider the case n=6, k= 5.
On account of (i) there exists in % a non-symmetrical and non-trivial
algebraie operation g of five variables, q.e.d.

In order to prove 3.2 (iii) for homogeneous algebras it iy sufficient
to prove the following proposition:

(iii) et n > k>4 and |A|=n. If the algebra W= (4;F) is homo-
geneous and if every k-element set in it is a set of independent elements,
then every k-ary algebraic operation in W is trivial.

Let us suppose a contrario that there exists in % a k-ary non-trivial
algebraic operation 7. Moreover, let us consider % different elements
ayy ey 0x of A and pubt ages = f(ay, ..., a). It follows from the inde-
pendence of ay, ..., ax that

Ox1 € {agy oo, O}
and from 1.2 (i) that
(+) A ={ay, ..., ag1a}.
Hence n=k-+1.
I will prove that f is the only algebraic non-trivial %-ary operation.

In fact, if g is also an algebraic non-trivial %-ary operation, we have

in view of the independence of ay, ..., a, ,

9@y .oy @) € {ay, ..., ax},
whence, on account of (4),
Flary ey ag) = glag, ..., ax)

and, again in view of the independence of ay, ..., ax, we obtain f=g.
Let us put, for an arbitrary permutation pof K={1,..,%k}

@1y vey ) =f(@pyy oery B,)

Opera,tion.f* is thus an algebraic, non-trivial k- ary operation, whence,
by the preceding remark, j = f*. Consequently f is symmetrical.

- ©
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Tt follows from the existence of symmetrical homogeneous opera-
tions in A that n = 2, 3, 4 or 6. The case n = 6 is impossible on account
of (ii). Since n=Fk+1, we obtain k=1, 2 or 3, contrary to our hypo-
theses.

Proposition (iii) is thus proved and hence we obtain a new proof
of 3.2 (iii) for homogeneous algebras.
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