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Some applications of the notions of forcing
and generic sets *

by
S. Feferman (Stanford, Calif)

1. The notions of foreing and of generic sets were introduced by
Paul Cohen [2], [3] to settle the long-outstanding problems of the logical
interrelationships of the axiom of constructibility, the axiom of choice,
and the continuum hypothesis, relative to the system of Zermelo-Fraenkel
set theory. In this paper we consider extensions of these notions to
other contexts, namely that of (1st order) number theory and of a part
of (2nd order) analysis, and obtain some applications there (§§ 2 and 3).
These results depsnd on a general framsform lemma concerning forcing;
this is proved in § 2 below. By means of this lemma we are also able
to obtain some new applications of Cohen’s methods in set theory (§ 4).
The most interesting of these are the following: (1) No set-theoretically
definable well-ordering of the continuum can be proved to exist from
the Zermelo-Fraenkel axioms together with the axiom of choice and
the generalized continuum hypothesis. (2) The prime ideal theorem in
Boolean algebra is independent of the Zermelo-Fraenkel axioms. (Both
results depend, of course, on the hypothesis of consistency of Zermelo-
Fraenkel set theory.)

The notion of forcing is syntactic and the notion of generic (se-
quence of) sets is obtained directly from it. However, the motivations
behind the introduction of these notions arve essentially model-theoretic.
In broad terms, what is involved is the following. One starts with
a cerfain language L, whose structures M we are interested in. L is ex-
tended to an auxiliary language L* = L*(S,, ..., S, ...) containing (a finite
or infinite sequence of) symbols Sq, ..., S, .y < 0 < w, for the generie
sets &, ..., Sn, ... to be defined. L* also contains means to denote the
members of a structure JM* = A8, ..., Sp,...) of objects constructed
in certain ways from the S, ..., Sy, ... Every L*-structure thus deter-
mines an L-structure.

* Text of a talk given under this title at the International Symposium on the
Theory of Models held at Berkeley, June 25-July 11, 1963. A summary of the main
definitions and results of this paper is to appear under the same title in the proceedings
of that Symposium.
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326 3. Feferman

The definition of forcing is given inductively for sentences of L.
Intuitively speaking, a sentence § of L* is forced by a finite amount
of information @ about the members of the sets S, ..., Sy vy if the
truth of § in M*(S,, ..., Sy, ...) ean be established on the basis of this
information. and will remain established no matter how Q is extended.
We cannot, in general, expect for any given 8, ..., S, ... and any sen-
tence § of L*, that the truth of § or ~§ in H* can be determined in
this way, i.e. that some finite amount of information @ forces & or for-
ces ~F. Those sequences for which this does hold are said to be generie.
Then, in accordance with the intuitive ideas which led to the definition
of foreing, Cohen’s basic theorem shows that if 8oy s Suy ... I8 & generie
sequence and § is a sentence of L* then § is true in A* if and only if
& 1s forced by some finite amount of information about the members
of the sets 8, ..., Sn, ... At the same time this result provides a reduction
of the determination of various properties of Jt* (and its induced
L-structure) to syntactic questions about foreing. It is from this theorem
that all the applications flow, once the existence of generic sequences
is established.

In the simplest of the cases taken up in Cohen {2], L is the language
of set theory and 6 = 1; in other words, only a single symbol S(=S,)
is adjoined in this case. Let o, be a denumerable ordinal such that the
structure A of sets constructible in less than a, steps, in the sense of
Godel {8], forms a model of Zermelo-Fraenkel set theory. Then IX(S)
also contains constant symbols Fo(S) and ranked variable symbols
X% X5 ... for each a < . The intention iz that HC*(S) shall consist of
the sets Fo(S) constructible from § in a 8teps, a<< @, and that the range
of the ranked wvariables X° shall be {Fs(8): f< a}. The definition of
forcing is given by Cohen in two stages: first, for what he calls limited
statements, in which all variables are ranked, and then by extension
to arbitrary statements of L*. In both cases, however, he restriets the
definition to statements in prenex normal form. By means of the re-
duction of truth in * to forcing in L*, Cohen shows that for generic
8, M*(S) is a model of Zermelo-Fraenkel seh theory together with the
axiom of choice and the generalized continuum hypothesis, but relative
to which § is not constructible.

Dana Scott made several suggestions to us for treating the notions
considered here in a way which would be more readily adaptable to
a variety of languages and which would make the general development
smoother going (1). These were as follows. First of all, he suggested that
the language L* to be used in the case of sef theory be modified so as

(') We are greatly indebted to Professor Scott for these suggestions, as will be
seen from what follows. We also wish $o thank him for his useful comments on a draft
of this paper.
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to correspond instead to the original definition of constructibility intro-
duced in Godel [7]; this was given in ramified terms rather than in terms
of the specific sequence of constructions F,. (Among other advantages,
this avoids having to re-determine the initial values of the sequence
Fo(8) according to different applications, as was necessary in Cohen’s
work.) Second, he showed us a simple way to define the notion of forcing
for arbitrary sentences of L*, without restriction to prenex normal form.
(This definition does not coincide exactly with Cohen’s on prenex sen-
tences, but it has the same desired main properties.) Finally, he pointed
out that a closely related definition of forcing could be given for a num-
ber-theoretic language L*, again with interesting properties.

Our own interest in this subject began with the idea of applying
Cohen’s methods to the construction of models of hyperarithmetic anal-
ysis. Scott’s suggestions turned out to be extremely useful to us, for
we realized that they could also be adapted to this situation. Our work
in this area then led us to see that they could be used to give a more
general treatment which would have applications in number theory,
analysis, and set theory. Namely, the definition of forcing and its main
properties can be developed for an auxiliary language L* framed in the
ramified theory of types, including variables X*f of (possibly trans-
finite) type § < f, and ramification rank « < @,. The specific cases are
dealt with by choosing different values for ag, f,- (However, for the
special case of set theory it is simpler to use a ramified type-free lan-
guage, as in Godel [7].)

For the purposes of exposition, we do not present this general ap-
proach here. Rather, we begin in the next section with a definition of
forcing for the simplest case, f, =1, oy = 0. We then show how the
definition is to be extended in each of the succeding special cases for
which we have been able to obtain applications.

2. For our purposes here it is simplest to specify the language L
of elementary number theory as follows. The variable symbols are only
those of type 0, namely, x, y, z, ..., and these are intended to range over
the set o of natural numbers. We have distinet constant symbols 7z for
n==0,1,2,..; L contains four basic relation symbols R;, 1<i<4,
of 1y arguments, where [, =, =2, L, =1, = 3; these correspond, respec-
tively, to the relations R; given by

Bz, y) <= o=y, Riw,y)=a' =y, Ryw,y,2)<>aty=2z,
Rz, y,2) = n-y=2.
(The following is easily generalized to deal with more basic relations.)

The basic logical symbols are ~, v, \/. The other propositional connee-
tives are assumed to be introduced in any one of the usual ways in terms
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328 8. Feferman

of ~ and v; universal quantification is introduced by AxF = ~Vz~§.
The symbols 1, &, =, <=, H, V are reserved for abbreviation in informal
statements.

Let 6 be fixed, 0 < § < w. The auxiliary langnage L* = I*(S,, ..., S,, ...)
is obtained from L by simply adjoining unary predicate symbols S,,
0 <n<d (In the case that 6 =1, we write S intead of S,.) We write
t €Sy, where t is a variable or individual constant, instead of S,(t), and
we write t ¢ S, instead of ~(t ¢S;). By a sentence of L* we mean a for-
mula with no free variables. We shall say that § is an arithmetical sentence
if it is a sentence of L. By a basic sentence of I* we mean one of either
of the forms % eS, or L¢S,.

A set X of basic sentences is said to be consistent if there are no
kyn with both (EeS,) and (k¢S,) in X. By a finite set of conditions
we mean a finite consistent set of basic sentences. Throughout the fol-
lowing we use the letters @, @', @” (with or without subscripts) to range
over finite sets of conditions. A sequence Qg ..., Qm, ... of finite sets
of conditions is said to be complete if:

(1) U @ulm < ] is consistent,
(i) for any &, n with 0 < n < § there ewists an m such that (k eS,)
or (k¢8S,) belongs to Q.
Any complete sequence determines a sequence of sets S, ..., 8ny ..
(0 <n < d) by means of:

{ill) % e Sp<=("m)[( eSn) belongs to Qpn].

We call this the associated sequence of sets for the given Qn’s. Con-
versely, given any sequence of sets Sy, ..., 8, ... (0 <i< 6), we form
its diagram, in symbols, Diag(S,, ..., S, ...) by:

(iv) (keSz) or (keS,) is in Diag(8,, ..., 8i, ...) for each k,n with
0<n<é and

(v) (EeSn) is in Diag(Sy, ..., Si, ..) == ke Sp.

Then the collection of all finite subsets of Diag(8Syy .y Sny -..) can
be arranged in a complete sequence of conditions whose associated se-
quence of sets is Sy, ..., Sy, ...

We now give the definition of forcing for sentences of IL*, in the
inductive form suggested to us by Scott. This is very close to the indue-
tive definition of number-theoretical truth. In fact, the only difference
Is in the treatment of atomic formulas (% ¢ S,) and of negation, as needed
to express precisely the intuitive formulation of §1.

2.1. DEFINITION. The relation, Q forces §, in symbols QI %, is defined
inductively for arbitrary finite sets of conditions Q and sentences § of L*,
as follows: .
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(i) Q|- (EeSn) == (keSy) is in Q;

(i) @FRalFy, ooy F) <= Rilloy, ooy Frg)y Jor =1, ., 4;

(i) Q-§ v 6 <= QI-F or Q- ;s

(iv) @ ~F = HQ)Q' DQ &Q'|-F);

) Q- VEF(x) <= (EE) QT (k).

2.2. DEFINITION. A sequence Qo ..., Qm, ... is said to be generic if

(i) U @Qulm < w] is consistent, and

(i) for any sentence § of L* there exists an m such that Qp % or
Q- ~F.

A sequence 8y ...y Suy .. (0 < 1<) of sets is said to be gemeric if
it is the associated sequence of a generic sequence Q, ..., Quy -

Clearly, any generic sequence Qg ...,Qm,.. is complete. Also
84y <3 Buy ... is generic if and only if any enumeration of the finite sub-
sets of Diag(8y, .-y Sn,...) is generic—hence, if and only if for any
sentence §§ of L*,

(EQ)[Q C Diag(8y, ..., 8n; ) &(Q-F v @ -~F)].

For any 8o, «oy Suy oo (0 <n < 8), leb A* = M*(Sy, ooy Sny ...) be
the structure <(w, Ry, R,, By, Ry, Sy, .ovy Sn, ...>. As usual, =4+ § means
that (the sentence) § is true in *. If F is a sentence of L we say that
& is true in the natural numbers if it is true in M*, equivalently if it is
true in the structure {w, R, B,, Ry, R,).

Following Cohen [2] or [3], we can easily derive the next results
2.3-2.4 from the basic definitions. In particular, the important property
2.4 (i) is immediate from 2.1 (iv).

2.3. THEOREM.

(i) If § is an arithmetical sentence then Q |—§ if and only if & is true
in the natural numbers.

(i) @} (k¢ Sn) <= (k¢ Sn) is in Q. :

(i) Q- AxF(x) <= (VE)(VQ){Q' 2 @=(TQ")[Q" D Q' & Q" |-F(B)]}.

2.4. THEOREM.

@) Q-F&QLQ =Q'|-F.

(i) (VQ)(VH){F a sentence of L#=(AQ")[Q' 2 Q& (@' |-F v @'|-~F)1}-

This leads directly to the following result.

2.5. THEOREM. Given any 6, 0 < 8 < w, there exists a generic sequence
8o5 weey By e (0 << B).

Proof. We shall construct a generic sequence of conditions
Qo) -y @m, ... By 2.4 (ii) there exists a function ¢(Q,§) such that for
each ¢ and each sentence § of L¥,
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(1) 9(@,%) is a finite set of conditions and Q C g(Q,F), and

2) 9@, BT or 9(@,F) —~F.

Let &, ..., §m, ... be an enumeration of all sentences of L*. Then
define

(3) Qo =0 and Quir = g(Qm,Fm) for any m.

This gives the desired result.

The next is the basic reduction theorem due to Cohen, referred to
in §1 (ef. [3], Part I, Lemma 3).

2.6. TEROREM. Suppose that 8, ..., Sn, ... is a generic sequence and
that M* = M*(S,, ..., 8, ...). Let D = Diag(Sy, ..., Su, ...). Then for any
sentence § of L*,

Far B == (HQIQ L D&QI-F].

Proof. This is proved by induction on §. It is seen for atomic 3
by 2.1 (i), (ii). The passage to v and \/ is ensured by 2.1 (iii), (v). Sup-
Dose |= g+ ~F. Then Tj=y+F so that, by induction hypothesis, for each
QC D we have (Q|-F). But then by the definition 2.2 of generic se-
quence, there must exist ¢ C D with Qi—~§. Conversely, suppose QC D
and Q|—~§. For any Q' C'D, Q u @’ is consistent and @~ @u Q. Hence
by 2.4 (1), (@ @)}~ But then by 2.1 (iv) and 2.4 (i), HQ'I-F).
Thus § is not true in M*, by induction bypothesis, and |= .« ~.

Clearly, the converse theorem is also true, i.e. if Sgy ey Sny e ds
any sequence for which the conclusion of 2.6 holds them 4 is a generic se-
quence. (This lends added justification for the present use of the term
“generic”.)

In proving the independence of the axiom of choice in his paper [2],
Cohen introduced certain symmetries into the model he constructed by
considering permutations = of w. Corresponding o any such permutation
there is a permutation of the basic symbols given by sending S, into
San). This induces a transformation of finite sets of conditions @ and
of sentences §, denoted by (@) and =(F), respectively. Namely, =(Q)
consists of all sentences % ¢Sy (resp., k¢ Sum) such that % eS, (resp.,
k€8S,) belongs to @, and =(5) is obtained from & by replacing each
occurence of the form (teSy) in § by teS,,,. Then

Q=8 = a(Q)l-=(F).

The desired symmetry is obtained for those @ and = such that
a(@) = Q.

In this paper we make use of a different kind of transformation
which proves useful in a variety of situations. Let r be a function de-
fined for any %, n with 0 <n < 8, but taking only the values 0 and 1.

icm
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Given any sequence S, ..., Sy, ... (0 << d), consider the sequence

8, ..., 87, ... obtained from it by taking
e e | P45 o,
\ keS8 i w(k,m)=0.

Thus, for example, if for given n, 7(k,#) =1 for all but finitely many
values of %, then S and S, agree except for finitely many elements.
On the other hand, if v(%, n) = 0 for all but finitely many %, then &
agrees with w—8, except for finitely many elements. It is clear how
to associate with an arbitrary such v an associated transformation of
conditions @ into z(Q). However, in order to define the associated trans-
formation of sentences, we need, in general, a formal definition of the
function ¢ in L*. For the main transform theorem we obtain in 2.8 be-
low, it is further necessary that this definition be “absolute”, i.e. be
given by an arithmetical formula (formula of L). Let T(x , ¥, z) be such
a formula with the free variables x,y,z. We say T defines = if for any
kyiyn (0 <n<d) we have

Tk, n) =i <> T(k, W, 1) is true in the natural numbers.

We assume throughout the following that v is arithmetically definable
by T in this sense.

2.7. DEFINITION. (i) For any Q, v(Q) is taken to consist of all sentences
of the form (k eS,) such that [(k eSa) is in Q and v(k,n) =1 or (k¢ Sy)
is in @ and 7(k, n) = 0], together with all sentences of the form (% ¢ Sp)
such that [(k ¢ Sy) is in Q and t(k,n) =1 or (k €Sp) is in Q and t(k, n)
=0].

(i) For any formula § of L*, v() is obtained from F by replacing
each ocourrence of an atomic formula (s eS.) in § (s variable or constant,
by ([T(s,7,1) 4 8€Sp] v[B(s,7,0) A 5¢8S,]).

Note that if @ C Q" then 7(Q) C ©(Q’) and that -r:(r(Q)) = for any Q.

2.8. THEOREM.

Q-8 = (@) -7(F).

Proof. This statement, when preceded by ‘V@’ is proved by induc-
tion on §. For atomic § we make use of 2.3 (i) and the fact that T is an
arithmetical definition of 7. Since v preserves v and \/, the inductive
passage for these is immediate. v also preserves ~. Hence it is sutficient,
assuming the inductive hypothesis, to show for any @ that

(HONQ' 2Q&Q —F) = (HQ")(Q" C7(Q) & Q" |-(F)) -

Indeed, we get = from the.fact that @' C @ implies 7(Q’) Dz(Q). For
the converse, if Q" D 7(Q) and we put @’ =7(Q"), we have t(Q’) = (¢("))
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=@", and @' 2 Q. Thus the induction hypothesis applied to @ gives
the desired result.

This concludes that part of the theory of forcing and generic sets
which we shall see carries over intact to other languages. We now turn
to consider results which are more specific to the language of number
theory. In particular, we want now to obtain a more constructive de-
scription of how a generic sequence Sy, ..., Sy, ... can be defined. For
this purpose we make use of the theory of hyperarithmetical sets, with
which we now assume some familiarity (3). A set B of natural numbers
is said to be a [[i set or predicate if for some arithmetical predicate
A(z, X), where X ranges over subsets of o, we have for every k,

keB < (VX)A(k, X).

We say B is a )] predicate if o—B is [J'. B is said to be hyper-
arithmetical if it is both []i and J}. These notions arve extended in
the obvious way to relations, e.g. by identifying n-tuples <k, ..., ks>
of natural numbers with natural numbers pf’ p,’i"; we do so through-
out the following. A function is said to be hyperarithmetical if its
graph is. We also apply these notions to predicates or functions of ex-
pressions and of finite sequences and sets of expressions in a formalized
language, by means of any one of the standard effective one-to-one
correspondences between expressions and numbers (Godel-numbering),
Finally, we will also make use of relativized versions of all these notions,
such as that of being hyperarithmetic(al) in (given sets).

2.9. THEOREM. The relation, Q-§, is a Il predicate of @ and F;
i fact, it is hyperarithmetical.

Proof. The proof is very similar to that for establishing that the
set of true arithmetical sentences is []} and thence hyperarithmetical.
However, for purposes of reference in § 3, we briefly describe how it is
carried out. One first defines a set K of triples <@, §, 4>, where Q is
a finite set of conditions, § is a sentence of L* ¢ =0 or 1. This shall
have the property that for any @ and ¥,

1) Qﬁ'%@(Qy%;l)EKC:’<Q;%;O>$K-

Namely, K is described as the intersection of all sets X sai:isfyin‘g certain
closure conditions, corresponding to 2.1 (i)-(v). For example the closure
conditions eorresponding to 2.1 (v) are:

@) if for some k, <Q, (%), 1> ¢ X then @, VEFEX),1)eX;
if for all &, <Q,F(k), 0> ¢ X then @, VXF(x),00eX.

(*) Most of the basic notions and results of thig field can be found in Kleene 9
and Spector [16].

° ©
Im Applications of the notions of forcing and generic sets 333

The closure conditions corresponding to 2.1 (iv) are:

if for some Q' D Q, <Q',F,1>eX then @, ~F,00¢X;
if for all. Q' 2Q, <Q',F, 0> X then <Q, ~F,1>eX.

These closure conditions are arithmetical in X. Hence the set K is seen
to be |]i. Then one shows that K satisfies the same closure conditions.
Finally, we prove (1) by induction on §, using the pairing of the closure
conditions on K as in (2) and (3). By the second equivalence in (1), the
forcing relation is hyperarithmetical.

2.10. THEOREM. There exists a hyperarithmetical set 8 such that the
sequence of sets Su, determined by Sn, = {k: <k,nd>e8} for 0 < n< s,
i8 generic.

Proof. We make use of the following theorem proved by Kreisel
(1121, p. 807):

(1) If P(w,y) is a [ predicate such that (Va)(Ty)P(z,y) then there

ewists o hyperarithmetical function g such that (V)P (z, g(z)).

(In fact, Kreisel shows explicitly how to define g given a definition of P.)
Now by 2.4 (ii) we have

(2) (VQ,¥)(HQ') [ a sentence of 1* = Q' 1 Q & (@' |-F V@ I~%).

Hence by 2.9 and Kreisel’s theorem (1), we can find hyperarithmetical g
satisfying the conditions (1) and (2) of the proof of 2.5. Then the se-
quence @, ..., @m, ... defined from g in (3) of that proof is also hyper-
arithmetical. Finally, we determine the required 8 by, <k,nd e < (Hm)
[(k €Sn) is in Qn].

2.11. DEFINITION. (i) Suppose given subsets B, Cy, ..., iy of @ (i>1).
We say that B 4s arithmetically dependent on C,, ..., Ci—y if for some arith-
metical predicate A (X, ¥y, ..., ¥;),

(3)

B =the unique X such that A(X, Cy, ..., Oi1).

(i) 4 (finite or infinite) sequence By, ..., By, ... of sels s said to be
arithmetically independent if for no m,my, .., mi_y with 4>1 and
7 My oy My—1, do we have By arithmetically dependent on By, ..., Bmyy-

Clearly, if a set B is arithmetically definable in terms of sets
Ci, ..., Oiy, then it is arithmetically dependent on these sets. In partic-
ular, every arithmetical set is arithmetically dependent on the empty
set. However, the converse is far from true. For example, it is well
known that for each of the sets H, (¢ ¢ O) in Kleene’s hyperarithmetical
hierarchy, we have an arithmetical predicate A.(X) such that

H, =the unique X such that A, (X).
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Every hyperarithmetical set is recursive in some H, for ¢ e 0. Kreigal
raised the question whether every hyperarithmetical set is the unique
solution of an arithmetical predicate. Despite the preceding result con-
cerning the H,’s, the answer is shown to be negative by part (iii) of the
next theorem.

2.12. THEOREM. (i) Any generic sequence of sets Sy, ..., Spy ... (0<n
< 8) is arithmetically independent.

(i) There exist hyperarithmetical, arithmetically independent sets
Sy ooy By e (0K 0 < ).

(iil) In particular, there exist hyperarithmetical sets S which are not
a unigue solution X of any arithmetical predicate A (X).

Proof. (ii) and (iii) are iramediate corollaries of (i) by 2.10. To
prove (i), let S, ..., 8n,... be any generic sequence of sets. We show,
as a typieal case, that 8, is not arithmetically dependent on 81y ey Sia,
where 4 > 1. Note that we can associate with any arithmetical predicate
A(Xy, ¥y, .., ¥ig) a sentence § of L* such that § contains only the
constants S,, ..., S;—; and such that A(S,, 8y, ..., Si_;) holds if and only
it § is true in M*. We write § = §(S,,S,, «+;8;_1). Now suppose the
predicate 4 is snch that 4(8,, 8, ..., Siu1). Taking the corresponding
sentence §(S,,S,,...,S5;—1) we thus have =4+ (So, St -, Si1). Hence
by the basie reduction theorem 2.6, we can find Q such that

(1) QC Diag(8y, ... 8ny-.) and  Q-F(Sy, Sy, ..., Si—1).
Consider the least &, such that neither (%,  S,) nor (k¢ S,) belongs to Q.
Then define

2) r(hn):‘l ?7 nFEO o n=0&k 2k,

lo if n=0and k=k%,.

Thus the sequence of sets 85, .., 87, ... obtained from Soseery Suy o
by the transform v is such that 8 differs from 8, exactly at the one
point %, while 82 =48, for n> 0. Since (@) =@ by choice of k,,
we have

(3) Q“_T(%(Su; Sy, Si_l)) .
by 2.8, and hence by 2.6

(1) . j‘uﬂ,*"(%(sua Sy, Si~1)) .

We then see from 2.7 (ii) that (4) formally expresses that 4 ( ;S'E.’), 81,0y Sia).
Hence 8, is not a unique solution X of A(X, 8y ey 8iy).

) We have not been able to find any direct, e.g. diagonal, argument
which would establish even (iii).
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Consider the case 6 =1, so that we are dealing with a single pred-
icate symbol S when forming L* and we have only a single generie
set § relative to this language. Let Sy = {k: (&, n) € 8}. Then the ge-
quence- Sy, 81; ..., S, ... has many of the properties of a generic sequence
for 6 = w (®). In particular, by an argument quite similar to the one
just given, we can obtain the following theorem.

2.13. THEOREM. Suppose that 6 =1 and that 8 is generic for the
language 1* = L*S). Let 8y = {k: <k, n) ¢ S}. Then the sequence of sets
8oy coes Suy oov A8 arithmetically independent.

3. We now turn to a discussion of the notions of forcing and gen-
eric sets with respect to certain 2nd order languages. Thus, in the terms
of §1, f, = 2; for the moment, let ¢, be any fixed denumerable limit
ordinal. The basic language L is that of 1st order number theory (§ 2)
extended by the introduction of 2nd order variables X, Y,Z, ..., in-
tended to range over subsets of w, and by the binary relation symbol e.
The auxiliary language L* = L*(S,, ..., Sz, ...), 0 < m < §, is an extension
of L by the (now) 2nd order constant symbols S,, ..., Sy, ... In addition,
L* contains for each o < a, a stock of distinet 2nd order variable sym-
Dbols X% Y%, Z% ... of rank a« (not to be confused with the set-theoretical
notion of rank). The intention is that the variables of rank a shall range
over sets defined by formulas involving only 2nd order quantifications
with variables of ranks less than a. We say that L* is a 2nd order ra-
mified language of rank . Formulas of L* may involve both ranked
and unranked second order wvariables.

To be more precise about the foregoing, we say a formula § is (com-
pletely) ranked if each 2nd order variable in ¥ has some rank o< a,.
T § is ranked, we denote by o(§¥) the maximum of all « such that a var-
iable X is free in § and of all 41 such that a variable X’ is bound
in ¥; o(®) = 0 if there are no such variables. We say that an arbitrary
formula § is arithmetical (in its free variables) if it contains no 2nd order
quantifiers. For § ranked this is equivalent to o(§) = 0.

Suppose given any sets S, ..., Su, ..., 0 < 1 < §. We define structures
Mod = ME(Boy -y Sy .o} = (M2, > and the notion of truth in (M dp<a
recursively, for a < ay, by the following conditions:

(i) 4 ranked sentence F with o(F) < a is soid to be true in {(MEdp<a
#f 4t is true when the 1-st order variables are interpreted io ramge over w
and each 2-nd order variable of ramk B(<a) is interpreted to ramge
over Mj.

(*) In fact, and as is easily seen, it is a generic sequence for § — w in the case
-of number theory. However, we do not know if this extends to the languages L* con-
sidered below. In any case, 2.13 does extend to these languages.
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(i) For each ranked formula G (x) with just X free and ¢(® (x) < q,
take Bg = {n: G (%) is true in (Mofdscat. Then MZ comsists of all such
sets B, and only of such sets.

It is seen that Mf = MF(S,, ..., Sn,...) consists just of the sets B
arithmetically definable in &, ..., Sn, ... Furthermore, MpC M} for
B <a We take M* = ME.

To extend the definition of forcing to L*, we need s means of de-
seribing substitution for 2nd order variables by particular formal def-
initions. Given §(U), where U may be ranked or unranked, and (x)
containing a distingnished 1st order variable x, we write 8(§®(X)) for
the result of replacing each occurrence of an atomic formula (teT)
in & by G(t).

3.1. DEFINITION. The relation, Q—5F, for § a ranked sentence of L*
1s defined inductively as follows. For atomic sentences, disjunction, negation,
and nwmerical existential quantification, we use exactly the same condi-
tons as in 2.1 (i)-(v). In addition, we take:

(vi) QI-VX F(X®) <= for some ranked formula ® (x) with just x
free and o(6(x) <q, Q-F(2G(x)).

The relation, QI-F, is then estended to arbitrary sentences § of L* by

(vii) Q1= V XF(X) <= (Fa)[a < 0 & Q|- V X°F(XY)].

That these induetive conditions well-determine the relation I can
be seen by using an argument due to Schiitte ([14], p. 250).

If we now read the relation of forcing in this new sense the defini-
tion 2.2 gives us a corresponding definition of generic sequences of con-
ditions @, ..., Qu, ... and of sets 8oy ers Su, ... Definition 2.7 is carried
over without change. Then we easily obtain the following.

3.2. THEOREM. Al the results 2.3-2.6 and 2.8 continue to hold for
the new definition of I and generic sequences.

Proof. The only really new point to be considered is in the proof
of what corresponds here to 2.8. Note that if & is ranked then so is z(§)
and (z(§)) = o(§). Further, oV XF(X) = V X% (F(XY) = V X5FHXT)
and z(g(m(x))) = &2 (6 (x))).

We shall refer to these extended results as 3.3, 3.4, 3.5, 3.6 and 3.8,
respectively. To obtain further results corresponding to the other theo-
rems of § 2, we need to consider more closely the choice of a, and the
form of the definition of |- In particular, we now assume for the re-
mainder of this section that @ = o, = least non-recursive ordinal.

Let O be the set of recursive ordinal notations in the sense of
Kleene [9], with each a < o; being o = |a| for some a € 0. By.Gandy [6]
Or our paper with Spector [4], we can find a [} subset 0, of O which
contains a unique notation a = le] for each a < w,. Furthermore, 0, can
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be chosen to be well-ordered by a certain recursively enumerable rela-
tion ~5 which contains O, in its field. The language L* is isomorphic
to one in which we use variables X° Y°, ... for each a ¢ 0),. (The rank
function p now takes values in 0,.) Then the notions and results 3.1-3.8
transfer directly to this new langnage. Since we can now assign Godel-
numbers to expressions in this isomorphic language, we can undertake
to classify the relation |- in the analytic hierarchy. Note first, though,
that the set of sentences of L* is no longer a recursive set, as it is in the
1st order case. It is, however, a [[7 set; the same holds true for the set
of ranked sentences.

3.9. TErOREM. (i) The relation between Q and §, which holds if and
only if § is o ranked sentence of I* and Q|—F, is []i.

(ii) The relation between Q and §, which holds if and only if § is an
arbitrary sentence of 1* and Q|—F, is hyperarithwmetical in O.

Proof. This follows the lines of proof of 2.9. For (i), we introduce
a set K of triples <Q,%, ) for which it will be shown that

(1) § a ranked sentence of L* = [QI-F<=<(Q,F,0> e E<=><Q,F,1>¢ K].

K is again described as the intersection of all sets X satisfying certain
closure conditions, such as those given in the proof of 2.9, together with
the following:

(2) if for some ramked ©(x) with ¢(G(x)) = a, Q,F(E6(x)),1> X

then <Q, VX*F(X"), 1> € X; if for all ranked G (x) with o(G(x)) 2 a,

{0, F(E6(x), 0> e K then <@,V X F(X?, 0> X.

Because <5 is recursively enumerable, these are again arithmetical clo-
sure conditions, so that K is a []i predicate. This leads us to the con-
clusion (i). However, because of the hypothesis in (1), we can not con-
clude in this case that |~ is hyperarithmetical. In the proof of (i), in
light of 3.1 (vii), we make use of closure conditions arithmetical in 0,
and hence in 0. Then the general relation of forcing is both []F and
>in 0.

By relativizing the argument of 2.10 to 0, we next obtain the fol-
lowing from 3.9 (ii).

3.10. THEOREM. There exists a set S, hyperarithmetical in O, such
that the sequence of sets Sn, determined by Sy = {k: (k,nd> eS8} for
0 <n<§, is generic.

We could consider a restriction on the notion of generic sequence,
by requiring only that for each ramked sentence & there exists QT
C Diag(8y, ..., Bny -..) such that Q|-F or Q|- ~§F. It is then easily seen
that there exists a set S recursive in 0, such that the associated
sequence of sets S, = {k: ¢k, n>eS} is generic.in this restricted sense.



GUEST


338 8. Feferman

We now turn to giving an appropriate definition of independence
of sets in this context, so as to get a theorem:corresponding to 2.12.
We say that a formula § of L* is S-free if no symbol S, occurs in §.

3.11. DEFINITION. Let 8, .., Su,... be any sequence of sets and
HF = MF(Sgy cary Sy onn)-

(i) Suppose B, Cy, ..., C;_x e M*, where i>1. We say that B is
AG*-dependent on G, ..., O;_; if for some S-free formula F(X, ¥4, ..., Y1)
of L*,

B =the unique X in M* such that |=x+F(X, C, ..., Ciy).

(i) 4 (finite or infinite) sequence By, ..., Bn,... of elements of MF
is said to be JM*-independent if for no Ty Myy ouy My—y With 1> 1 and
N FE My, ey Mi—y Ao we have By is Mo*-dependent on By, ..., By, ,.

By using the results of this section, and following the lines of proof
of 2.12 and the remark for 2.13 we can obtain the following.

3.12. THEOREM. Any generic sequence of sets Syy ooy Spy o (0 < 0 < )

is M -independent, where M* = MX(Sy, ..., 8u,...); the same holds true

of the sequence of sets Sy, ..., Sp, ... (0 <0 < ) where Sy = {k: Kk, ny el
6 =1, 8 is generic, and M* = MX(S).

To understand something of the significance of this result in more
usual terrs, we now prove some results relating the notion of JG*-de-
pendence to that of a set being hyperarithmetical in other sets. Following
Kreisel [12], we make the following definition.

3.13. DEFINITION. By an instance of the hyperarithmetic comprehen-
sion axiom we mean any closure of a formula of the form:

AXIVYU(x, Y)or NZB(x, Z)] >V XAR[x e X V YU(x, Y)],

where W(x, Y), B(x,Z) are arithmetical formulas (with possibly other free
unranked variables).

Using 3.10 we now assume throughout the remainder of this section,
that § is a set hyperarithmetical in O such that Soy ey Sy (0 < 8)
is a generic sequence, where each 8 ={k: k,n>el8}). We take
M = MH(Sy, oy S, ). :

3.14 LemMa. Suppose that F(x, Y) has only x,Y free but that
all bound 2nd order wvariables in T are ranked. Suppose also that
Fax AV YF (x, Y). Thne for some a €0y, Egr AXVY*F(x, Y.

Proof. Let D = Diag(8y, ..., Sm,...) and (by 3.6), pick @ C D with
Q-AXVYF(x, Y). Then by 3.8 (iii) and 8.1 (vii)

b

(VE)(VQ') (Te) Q' 2@ = < 0, &(HQ")[Q" D Q' & Q" |- \/ Y*F (K, YOI} .
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The condition inside the brackets is {]i. Hence by Kreisel’s result,
given as (1) in the proof of 2.10, there exists a hyperarithmetical func-
tion e = g(k, Q") which satisfies this condition for all % and Q'20.
The range of g on this set of <%,Q’> is a hyperarithmetic subset of 0,.
But then by Spector [16] this range is bounded above by some a e 0,.
It is seen from 3.1 (vi) that if Q" Y°§(%k, Y°) and e < a then also
Q"I V Y*§(k, Y*). Hence, for such a,

(VE)(VQ){Q' 20 = (HQ)[Q" 2 ¢ &Q"i- V Y F(F, Y]},

so that Q- AxV Y*F(x, ¥%) and =y A\ x V Y (x, Y4.

3.15. THEOREM. Fach instance of the hyperarithmetic comprehension
awiom is true in M*.

Proof. By definition of M*, it is sufficient to show that the
result of substituting any ranked formulas for the free variables of
the scheme in 3.13 gives a true sentence of G*. This is a consequence
of the following: if G, (x, ¥), G,(x,Y) are any two formulas with
just x, Y free, all of whose 2nd order variables are ranked, such
that =g+ A X[V YGy(x, Y) > A ZGy(x, Z)] then iV XAX[X e X
<V Y@,(x, Y)]. To prove this, let §,(x, Y,Z) = [Gy(x, Z) +Gy(x, Y)] and
Bax, Y, Z) = [By(x, Y)>Gy(x, Z)]. Thus =y AXV YV ZF(x,Y,%) and
=a4* AXAYANZE(x, Y,Z). By 314 we can find ae 0, such that
[Fue* AV YV Z%E(x, Y?, Z%). Trivially, |=4*AXA Y*A 7%y (x, Y*, 7%,
It is thus seen that =+ AxX[V Y2E,(x, Y?) = AZ2G,y(x, Z%)]. From this
and the hypothesis, we obtain =y« Ax[V Y6 (x, Y) = VY'®(x, YY1
But, again by definition of H*, =y« VXAX[xeX VY*G,y(x, YY)

It can also be shown that AG* is a model of the X -axiom of choice
(discussed by Kreisel [12]), but the proof is somewhat more involved.

3.16. THEOREM. Suppose Cy, ..., Ciy e M*, where i > 1. Then every
set B which is hyperarithmetical in Ci, ..., O}_; also belongs to M*.

Proof. By relativization of Kreisel ([11], p. 114), the collection of
sets hyperarithmetical in O, ..., 0;_; is the intersection of all collections
which form w-models of the hyperarithmetic comprehension axiom and
which contain C, ..., 0;_;.

3.17 THEOREM. (i) € At*.

(i) O ¢ M*; O is not hyperarithmetic in any 8o -oey S

Proof. (i) If SeH* then for some ranked F(x,Y,Sq, ..c; Sm)
which contains only the symbols S, vy 8m, we have for every &, n,
yn) eS8 = =+ F(k, 7,84y «.;Sm). But then Fuats A\ 2[@ € Sppy —
=T, m+1, 8y, ..., Sw)], so that Sy, would be A*-dependent on
8oy <oy 8w, contrary to 3.12.

{
§
i
i
!
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(ii) If O e A* then also 8, being hyperarithmetic in 0 by hypothesis,
would be in A*, contrary to (i). We then apply 3.16. )

We can now clarify part of the content of 3..12 as .follows.

3.18 THEOREM. So, vy Sn, ... are hyperarithmetically ’bnGO?Anpafrab.lg, '

Proof. We show, as typical, that .So is not hype?amthmetm- in
8, ..., 8y (i>1). Consider the relativized set of Stl)rdgfl notations
QFrSies, By 3.17 (i) and Spector ([16], p.160), wr™™™" Tgwl' EWS
then by Spector ([16], p. 159) for any set B hypemmthleet-w.m . hl, - ,1 i{-l
there is an e e O; such that B is (S, ..., Si-1)-recursive in ? (lea;
vized) HSwS1 Following Kleene ([10], P 352, we can geft or eack
ee0;, a formula §(x,S;, ..., Si-1) of rank <2° such -that* c()lr ang é
ke H 5 = = 4Tk, Sy, oy Sima). 16 follows thg‘ﬁ B is ,M{ - e};}fn e]i
on 8, ..., Si—1. In particular, if S, were hyperarithmetical in et se"s
84, .-, Si-1 then §, would also be *-dependent on these sets, contrary
N 3%&?11311 a little more work it can be s}'lown that, generally, ﬁ
Cyy -y Ci—r e S* and B is hyperarithmetical in C, ..., C;—, then B is

*- 3 on 0y, ...y Cioy. ‘

* ?E?Jee n;ixeirgzence (1)% h,yperarithmetica]ly incomp:.ama,ble sets was fu'-sit
obtained by Spector [15] using a measur&theor-etle argume‘nt. 3.17 (1113
and 3.18 give a little improvement (via 3.10), since they. pmducfe suck
gets which are of lower hyperdegree than 0. In fact, b]i' using the remar
following 38.10 in a systematic way, we could also fm'd a seq?ence.of
hyperarithmetically incomparable sets Sy, ..., S, WhlG].l are recursive
in O, and hence of lower hyperdegree than 0. Kreisel pomf;ed out to us
that this last statement can also be derived from Spector’s result [15]
by using Gandy’s basis result [5].

4, We conclude with applications of these notions and methods to
set theory. In this case, the basic language L is that o? Z-F (Zermelo-
Fraenkel) set theory. Following Cohen ([2] or [3]), consider a denumer;
able model A of Z-F which is a segment of the constructible sets o
Godel. Let a, be the least ordinal not in 6. L* = L*(Sn,'..., Sp, ...) can
now be taken to be a transfinite ramified type theory, with both types
and ranks ranging over ordinals <a, (so f§, = o). We can tl'ms regard
it as an extension of the language considered at the beginning of the
preceding section. (We continue to use x, 7y, z, ... to range over*w and
X,Y,Z,.. over subsets of w.) Now the members of .-JK:* = M (Soh..;i
Sa,...) 0 < n< 4, are all defined by ranked formulai\,s in t.he ex?:en e
sense. Alternatively, and what is preferable if one is dealing with sgt
theory alone, one can take L* to be a ramified type-free language n;
a way which formally copies the relativization to sets S, ..., S,,,_ e O
the definition of constructibility given in Gédel [7]. In any case, without

icm

©
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going into details about the exact form of the syntax, we take it for
granted that the definitions 2.1 of forcing, 2.2 of generic sequences, and
2.7 of transforms of formulas,-can be extended to L* in such a& way that
2.3-2.6 and 2.8 continue to hold for the L* and M* considered here. We
shall refer to the corresponding definitions and results by 4.1-4.8.

Note that the existence of a generic sequence of sets is established
in 4.5 essentially as in 2.5, using the denumerability of a, to give an
enumeration of the sentences of I.*. Throughout the remainder of this
section we asswme that Sy, ..., S, ... (0<n<d) is a generic sequence,
Mo = M8y, .y Ouy ..) and D = Diag(8,, ey Bny ). In case =1, we
write 8 =8, and take 8% = {k: (&, nd € 8}; the formal counterparts S
and S™ are introduced in a similar way.

By adapting the arguments from Cohen’s ([2] or [3]) to the present
formulation the following can be shown.

4.9 THEOREM. (i) AC* is @ model of Z-F (the Zermelo-Fraenkel axioms).

(ii) If & is findte, it is also a model of AC (the aziom of choice) and
GCH (the generalized continuum hypothesis).

Concerning (ii) here, note that every element of M* is constructible
in less than e, steps from Soy ey S5

Now the definition 3.11 of 4% -dependence and JAG*-independence
can be carried over exactly as it stands to the present context. The

same holds true of the theorem 3.12. This leads to the following con-
clusion.

4.10. THEOREM. Suppose 6 = 1.

(1) For any n, my, ..., m;_y with n = Myy ooy Ms_y, There is no S-free
formula F(X, Yy, ..., Yi,) of L* such that 8™ is the unique X in M*
with =g FX, 8, .., gm0y,

(ii) No 8" is constructible from amy finite number of other 8™.s re-
lative to M*.

In particular, (ii) extends the result in Cohen' [2] that the axiom
of constructibility is false in M#(8) for suitable generic §. (i) is of interest
with respect to the result in Addison ([11, p. 354), according to which
if one assumes the axiom of constructibility, any two sets of natural
numbers have comparable [[; degrees. In contrast, 4.9 (ii) and 4.10 (i)
show that it s consistent with %-F, AC, and GCH that there is a sequence

89, vey 8, -y 10 member of which is set-theoretically definable in terms
of any finite number of other members.

4.11 THEOREM. If 6 =1 there is mo set-theoretically definable well-
ordering of the continuum in M.

Proof. What comes to the same thing, there is no formula (X, Y)
of L which establishes a well-ordering relation in the set of all subsets
Fundamenta Mathematicae, T. LvI 24
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of win J*. Suppose the contrary. We write X <Y instead of FaxF (X, T).
We write X = Y if X, ¥ differ at only finitely many places. According
to hypothesis, the formalization of the following is true in JG*:

(1) 4C Y(ow)& A 74_0=>({E[X)[Xed&(VY)(YeA=>X§Y)]}.
Here X(w) denotes the set of all subsets of w. N ow let
(2) 4 ={X: X =8 jor some n}.

The set A is formally definable in Ls* by use of the symbol S.
By hypothesis, we can find some g, ky and X, such that (Vi > Tey)
[k € X, <> ke S™] and

(3) (VI)(Yed = X,27).

Now the formal definition of X, can also be given explicitly in terms
of S. Thus there is a certain sentence G of L* which formally expresses
(3) and such that ® is true in AG*. But then, since § iy generic, we can
find 9 CD ( = Diag(8)) such that @ |- ®. Now let I be a natural number
such that neither ({,ne> €S) nor (7, ny) ¢ S) belongs to @, and such
that I > k,. We shall define a certain transform = for application of 4.8
(the extension of 2.8). Since ¢ = 1, we need only consider a function 7
of one argument. We take T(m) =1 if m % {, nyd> and 7(<T, 1)) = 0.
By 4.8 and choice of I, Q[ 7(6). Hence 7(®) is true in 40*. Tet S be
such that -
melS = (v(m) =1 &mel)v (r(m) =0&m¢s),

ie. § contains <I, %) if and only if § does not contain it, while
otherwise § agrees with . Similarly, take X, to be such that
heXo e (k#1&k e X)v(k=1&1¢ X,). Let ¥ — {h: (Bynd e 8 and
A={X: X = S for some n}. Then 7(G) expresses that X’o is the least
element of A under =. (Sigee (X, Y) does not contain the symbol S,
. 1t is unaffected by .) But A= 4 and, by choice of L, X ed and X, = X,.

Hence X, X, would be distinet least elements of A under <, whieh is
a contradiction.

Thus, from 4.9 (ii) we obtain: it is consistent with Z-F, AC and GCH,
that there is no set-theoretically definable well-ordering of the continuum.
(That is, it is consistent to adjoin to these axioms the statement, for
each formula § of I, with two free variables, which expresses that §
does not determine g well-ordering of the continuum.) This bears on
questions dealt with by Myhill and Secott [137 (4).

_—

*) _The following result of Seott, which will appear in that paper, is of special
mtez:ast in this connection: it is provable in Z-F that there is a definable ‘well-ordering
4 with field I" a subset of the continnum, such that any other well-ordering 4, of this
Sort has field I C I, A simple explicit definition of this 4 ean be given.
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4.12. THEOREM. If 6 = w, the prime ideal theorem for Boolean alge-
bras is false in Mo*. In particular, every prime ideal in the algebra of all
subsels of o in M* s principal.

Proof. Suppose I' ¢ ¥, and that I' is a non-prineipal prime ideal
in the algebra of subsets of w in JG*. Thus I" contains all finite sets.
By definition of At*, there is a formula (X, Sy, ..., Su) of L*, contain-
ing only X free and only the constant symbols Sq; -e Sny such that for
every A edt* with 4 C o,

(1) A el <= A satisfies F(X, Sp, ooy Su) in M*.

We shall show, by way of contradiction, that S,.,¢ 7" and (0—8pi1)é T,
Suppose Syy1el’ Then |= 4« F(Sus1, Sy, .., Sa), 50 that for some QCD
(= Diag (/SO? wey Sny --'))y

(2) Q”"g(snﬁvh Saa B Sn) .

Let & be chosen so that for all k > ky, neither (% eS,.;) nor (%¢Sn01)
belongs to @. Then let z(k, m) = 1 if m 2 w41 or m = 741 and & < &,
©(k,m)=01if m =n+1 and %k > k,. For any m, the set & correspond-
ing to 8u under v is identical with S, if m # n+1; however 8%, agrees
with Sp41 only for k < %, while it agrees with w—8,,; for k> Ty Triv-
ially, 7 is arithmetically definable. Thus by 4.8 (2.8), and choice of %,,
QI-7(F(Snt1, Sy, -, Su)), 80 the sentence 7(F(Sn+1,Soy -y S)) is true
in M*. But, by (1) and definition of 7, this sentence expresses that
[(8ns1n k) v (0—8pr1) A (0—Fo)] eI Thus (w—8ut1) ~ (@—k,) e I' since
I'is an ideal and then (w—Sy+;) < I since all finite sets belong to I". But
this contradicts Sn41el, since I is supposed to be a prime ideal. Simi-
larly, we can show that w—8,11 € I’ would lead to a contradietion.
By 4.9 (i) we see that the prime ideal theorem for Boolean algebras
w8 independent of Z-F. This implies the result in Cohen’s paper [2] that
AC is independent of Z-F. Cohen’s argument makes use of a special
selection of the generic sets ..., 8n,.. 5o as to introduce suitable
symmetries into Jt*. The preceding shows that this is not necessary.
Even more directly, it is easy to show by the transform arguments given
here that there is no choice set in M selecting reals from the cosets of the
rationals in the veals (of AG*) (°). What comes to much the same thing,
if we take X =¥ (for X, YCw) to mean that X, Y differ at only
a finite number of places, there is no choice set in JAG* selecting an ele-
ment from each member of the collection I' of =-classes (in M*). Let
I, be the collection (in JM*) of pairs of the form {X],[0—X]}, where

(°) Thus, one of the standard methods for obtaining the existence of Lebesgue
on-measurable sets is not available in AG*. Of course, ' this is hardly informative with
respect to the interesting question whether the hypothesis that all sets of real numbers
are Lebesgue measurable is consistent with ‘“‘positive’” measure theory.

24*


GUEST


344 S. Feferman

[X] is the =-class of X. Dana Scott pointed out to us that the trans-
form arguments can also be used to show that there is no choice st
in AG* which selects an element from each member of Iy. Thus the axiom
of choice for unordered pairs is false in A6* (as also obtained in Cohen [2)),
and hence the ordering theorem is false in A*; Seott’s observation also
implies 4.12. Of course, the hypothesis 6 = w is needed for all these
results.

The arguments of this paper suggest that the properties of (S, ...y
8y, ...) have little to do with the particular choice of 8oy ey Spy ... other
than to insure that the sequence is generic. In fact, the following theo-
rem (°) shows that any two such models which are determined by generic
sequences of the same length 6 share exactly the same true S-free
L#*-statements, and hence are L-equivalent; this further emphasizes the
‘““genericity” of generic sequences.

4.13. TEwOREM. Suppose that § is an S-free sentence of L* Then
Far§ == O ~~F.

Proof. If @-~~§F then, since GCD (=Diag(8o; ..y S, ...)),
[Eax ~~F and henee | 4+F. Suppose [Fao*¥. Pick @ C D with Q|-§.
To show @~~~F we must show (2.1 (iv)) that there does not exist
Q' with Q'|~~%. Suppose the contrary. We can then define a function
= which is 0 for only finitely many arguments and is sueh that (@) C D.
Then (@)~ ~z(F) by 4.8. But, by hypothesis ¥ contains no S,, so
7(F) =& Hence 7(@')\~~F. Let Q" =¢Q vr(@’). Then @”C D (and
hence is consistent) and Q”|-§ and @Q"|-~. This is impossible, so
O -~~F.

It is also not difficult to see that for any two generic sequences of
finite length the corresponding models J* have exactly the same true
S-free L* sentences. The striking difference in properties comes, as we
have seen in this section, when we pass from 6 finite to 6 = w. 4.13 i really
a result of general character about the motion of foreing. We did not
present it in § 2, where it would have been trivial, or in § 3, where it
would have been more trouble to show that different properties are
actually obtained for & finite and 6 = o, for the special case studied
there. :
We conclude with several disparate remarks. First of all, while the
main results of this section were phrased in model-theoretic terms, they
can systematically be recast into finitist proofs of relative consistency
of certain extensions of Z-F to 7-F, for example by the method out-
lined by Cohen in his paper [2] or [3], Part IT. Second, it would be nat-
ural to expeet that the gap between the work of § 3 on hyperarithmetic

(°) This result was realized after the Symposium mentioned in footnote *. About

the same time Azriel Lévy independently found the same result, as well as an extre-
mely useful generalization of it. The latter will appear in some forthcoming work of his.
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analysis and that of § 4 on set theory should be filled with applecations
to the full system of classical analysis of both 2nd and higher orders.
While some applications can be found by extracting models of analysis
from models of Z-F, we do not know what direct approach would be
most successful. Finally, we have not given any consideration here to
applications which involve imposing certain relationships in advance on
a generic sequence or which involve introduetion of constants of higher
type—such as was done by Cohen [3] in his proof of the independence
of GCH from Z-F and AC. Even without this, we feel the work here
gives further indication of the great range of applicability and fruit-
fulness of the notions of forcing and generic sets.
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