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On boundedness in uniform spaces

by
D. Bushaw (Pullman, Wash.)

Introduction. If P is a property defined for sets in uniform
spaces, one can raise the question: under what conditions on s uniform
space (§, W) does there exist a ¥ U such that V(X) has the property P
whenever X has the property P? Such an entourage ¥ might be called
P-conserving, and such a space P-conservative. Depending on P, ques-
tions of this kind may range from the trivial (e.g. when P is openmess)
to the rather deep. Certain potential applications to topological dyna-
mies suggest that questions of this nature may be especially interesting
when P is a concept of boundedness. The purpose of this note is to pres-
ent two simple answers to the above question in the particular case
in which P is boundedness as defined by Bourbaki ([2], p. 166).

The following general observation, which is easily proved, will be
used later: If P is a hereditary property (i.e., any subset of a set with
property P has property P) and (8,9U) is a P-conservative space, them
the collection of P-conserving members of W is a base of the filter .

Boundedness. A set X in the uniform space (8§, W) is bounded
if for every V U there holds one of the following equivalent conditions:

(1) X C V™) for some ¢S and some positive integer =;
(2) X xXCV" for some integer n.
When X @, the # in (1) may be assumed to be any point of X. If §

_Is bounded in (8, U), the space itself will be said to be bounded.

When U is a metrie uniformity, boundedness in this sense implies,
but is not implied by, the usual metric concept of boundedness (finite
diameters). It may be shown, however, that the two concepts of bounded-
ness are equivalent for normed linear spaces and continua.

Elementary facts about boundedness include: it is hereditary; the
closure of any bounded set is bounded; the union of two nondisjoint
bounded sets is bounded; boundedness is preserved by uniformly con-
tinuous maps.
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Lmwnra 1. Let (T, Ur) be a uniform subspace of the uniform space
(8,°W). If X CT is bounded in (T, Usp), then it is bounded in (8, U).
If also T' is dense in (S, W), then the converse holds. .

Proof. The first assertion is immediate. To prove the second, let
T be dense, let X C T be bounded in (S, W), and let ¥V eU be given.
Take W to be a symmetric member of U such that W2 C V. There exists
a positive integer # such that X xX C W". This means that for any
@,y e X, there exists a sequence

&=L Byy ey Tn=1Y,
where
(-1, ) e W (k=1,2,..,n).

Because T' is dense, there exists for each k¥ (0 <k <n) a & e W(m) ~ T.
Let & =, & =y; then :

SeVilp1)nT (k=1,2,..,m).
Thus (z,9) e (VA (I'x T))", whence XxXC(Vn (I'xT)" and this

shows that X is bounded in (7, Ur).
Simple examples may be constructed to show that when 7' is not

‘dense, a set X C T may be bounded in (8,9U) without being bounded )

in (7, Ur).

LemMa 2. Any totally bounded, connected uniform space is bounded.

Proof. Let (8, W) be totally bounded and connected, and let ¥ €U
be given. Let W %U be open, symmetrie, and contained in V. Then by
the assumed total boundedness there exists a finite set 4 C 8 such that
W(d)= 8. If {4,, 4,} is any partition of A (4, =0 , Ay # ), it follows
from the assumed connectedness that W(d,) ~ W(d,) #©O. This im-
plies that

(3)

where  is the number of elements of A. In fact, let ;¥ edl, and let
@ € W(x,), where 2, e A. If also y « W (a,), let m = 1 and stop. If y ¢ W (2,),
choose @, € A (2, % m) so that W(x)~ W (@) #@. Choose & e W(z,)
A W(z). It y e W(z,), seb m =2 and stop; if y¢ W (w,), choose @ ¢ A
(3 # @1, w3 # @,) s0 that W({z,, 3:}) W(xs) =@, and let & be any
point in this intersection. Proceeding in this way, one ultimately obtains
a Sequence

8x8C W CVen,

B, Ty, &y By &y ey Tmyy (M <)

where each point is W-close to its predecessor. Thus (2, y) e W2m C Win,
whence (3).
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Examples show that total boundedness alone does not imply bounded-
ness, even for metrizable uniform spaces. In this respect the terminology
is unfortunate.

Leama 3. A set in a compact (*) wniform space is bounded if and
only if it is a subset of some component.

Proof. Let X be bounded in the compact uniform space (S s W),
and let z ¢ X. For any ¥V W, X CV"(z) for some #. Therefore
" XCAs=[{4op: VeW}, where dop=U{"2):n=1,2,..}.
But according to [2], p. 163, A is precisely the component of x in (8 , W);
hence X is contained in a component.

On the other hand, any component C of the compact space (S, U)
is bounded in itself, by Lemma 2, and hence in (8, W), by Lemms 1.
Thus any subset of € is bounded in (8, UU).

Conservative uniform spaces. In the rest of this note “bounded-
ness-conservative’” will be abbreviated to comservative. Let (S8,9h) be
a conservative uniform space; then U has a base U, consisting of
(boundedness-) conserving entourages; indeed, U, can be further re-
stricted to open, closed, or symmetric conserving entourages.

TEEOREM 1. If Uy contains a mazimal element, (8,W) is either dis-
connected or bounded.

Proof. Suppose that V, is maximal in Us,; then in faet V, is an
upper bound for U, (if there existed a V e, such that V ¢ V,, then
V « ¥, would be a conserving entourage strictly containing V). Moreover,
V, is symmetric. [Proof: Vs =V, V5" is symmetric, conserving, and
(hence) contained in ¥,. Thus the same is true of V7 for n =1 32y 0y
and of ¥, = J V5. Let x € 8. Since {#} is bounded and V, is conserving,

V(@) CVs(w) for some n, whence Vi(x)C Viy(x). The opposite inclusion
follows from the maximality of Vy; thus V() = Vy(=) for all w», and the
symmetry of ¥, follows from that of ¥,.] Similarly, V5 = V,. Since also
¥V, containg the diagonal 4 = {(z, #): © ¢ 8}, V, is an equivalence relation
on §. There are two cages:

(i) Vo = 8 x8. Then for any « ¢S, Vy(z) = . Since {#} is bounded
and V, is conserving, § is bounded.

(ii) ¥y # 8 x 8. Then for any # 8, Vy(z) is a proper closed-open
subset of 8, so the space is disconnected. This completes the proof of
Theorem 1.

(*) Here “compact” means ““possessing the Heine-Borel property, not necessarily
Hausdorff”,
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Conservative® precompact spaces. The next theorem charac-
terizes those conservative uniform spaces that happen to be precom-
pact, i.e., totally bounded and Hausdorff.

THEOREM 2. A precompact uniform space is conservative if and only
if its (Hausdorff) completion has e finite number of components.

Proof. Let (§,U) be precompact and let the completion (§, k)
of (8, W) have a finite number of components. As is well known, (8, )
is compact. Because conservativeness is preserved by uniform isomor-
phisms, and because (as follows easily from Lemma 1) any dense sub-
gpace of a conservative space is conservative, it will suffice to show that
(S ‘1L) is conservative. Let C be the (finite) collection of components
of (8,%U); then C consists of open sets and V,=J{CxC: CeC} is
a neighborhood of the diagonal and therefore, because of-the compact-
ness, belongs to . If X is a bounded set in (S’ ,‘ﬂ;), X is contained in
some member C of C, by Lemma 3. Then V(X) =0 or ¢ according as X is
or is not empty. In either case, Vo(X) is bounded and V, is conserving.

Now we shall show that every completion (;§ ‘11:) of a conservative
totally bounded space (8, W) has a finite number of components. Again,
we observe that (§,9l) is compact, and as is customary we identify
(8,9) with that dense subspace of (S, %) to which it is, by the defi-
nition of a completion, uniformly isomorphic. We shall need the follow-
ing fact: for any @ eS8, there emists a V eUs such that V(w) is bounded
in (§,0). In the proof of this fact all entourages mentioned will be
taken to be symmetric. First, let Vi =V’ ~ (8x8), where V' W%, be
any conserving member of the relative umfonmty U. Let ¥ eUs satisfy
VECV'. For a given W ek, let W, eU satisfty W, CV ~ W. Because
8 is dense in (8, 4l), there exists a point @, e Wi(z) ~ 8. Because V, is
conserving and {2} is bounded in (8, W), there exists a positive integer
n such that

#) o Vi) X V(@) CW".

Now let y « V(2). Again because § is dense, there exists a y, € Wy(y) ~ X.
Then

Y1 Wi(y) CV (y) CV2(z) CV2Wy(2,) CV¥a,) C V' () .
Since ;€8 tod, it follows from (4) that
(mly Y1) € wr.
At the same time, (, ;) ¢ W,C W and, similarly, (4, y) ¢ W. Hence
(w,9) € Wn+2:

from which it is clear that V(=) is bounded m (S ‘IL This proves the
asgertion in italics.
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Suppose now that (@ ,‘\l) has infinitely many components. Sinee
it is & compact space, at least one component, say C, must be nonopen.
Let # « C— (% where (° is the interior of €, and let ¥ €% be such that

V(z) is bounded, as above. By Lemma 3, ¥ (2) C ¢, whence « ¢ C°. This
contradiets the choiee of z, so (S U) must have a finite number of com-
ponents. The proof of Theorem 2 is complete.

Since every compact Hausdorff space is precompact and is a eom-
pletion of itself, there is the following immediate consequence of Theo-
rem 2

CoROLLARY. A compact Hausdorff uniform space is conservative if
and only if it has a finite number of components.

Lemma 2 may also be regarded as a special consequence of Theo-
rem 2

Conservative nonarchimedean spaces. Another, and quite
different type of uniform spaces for which a simple characterization
of conservativeness exists is that of the nonarchimedean spaces, intro-
duced by A. F. Monna [3]. A space (8,<W) is defined to be nonarchi-
medean if U has a base consisting of equivalence relations on §. It has
been pointed out by B. Banaschewski [1] that a topological space is
zero-dimensional if and only if it admits a mnonarchimedean uniform
structure. )

THEOREM 3. A nonarchimedean uniform space (S, W) is conservative
if and only if U has a smallest member; i.e., [ W e W,

Proof. Let (8, W) be nonarchimedean. Then according to (2) and
the fact that if ¥ is an equivalence relation V" = ¥ for all n, a set XC 8§
is bounded if and only if

: XxXCV

for every equivalence relation V e U. This means that X is contained
in one of the equivalence classes determined by V.

Now let (S, U) be conservative, and let ¥V be a conserving member,
which may be taken to be an equivalence relation, of W. Let ¢ be any
one of the corresponding equivalence classes and let # e C. Let W e
be given and choose W, to be an equivalence relation belonging to U
and contained in W. Then

OxC =TV (@)XV(@)C W,C W,

because V¥ (z) is bounded. Hence, since V- is the union of all such sets
Cx 0, VCW,; that is, V is the smallest member of Ab.

Conversely, if V is the smallest member of U, it must be an
equivalence relation. If X is bounded, it is contained in some equiv-
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alence class of V, say 0. But then, except in the trivial case X =g,
V(X)=0, so
V(X)xV(X)=CxCOCV.

Hence, for any WeW, V(X)xV(X)C W, V(X) is bounded, and V ig
conserving.

CoroLLARY. A Hausdorff nonarchimedean wuniform space (8,9U) is
conservative f and only of W is discrete, i.e. 4 eU.

Proof. (§,U) is Hausdorff if and only if M W = 4.
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The inversion of Peano continua by analytic functions *

by
G. S. Young (New Orleans, La.)

1. Introduction. Suppose that f is a function analytic, or even
schlicht, in the open disk |z| < 1. Suppose that A.is an are which has
one end point, p, on the unit circle, but which otherwise lies in the open
unit disk. Despite the fact that A itself is locally connected at every
point, it may very well happen that the image of A—p, f(A—p), will
have a closure that is not locally connected. This will oceur, for example,
for any such arc that leads to a point of |#| = 1 which corresponds under
a conformal map to a prime end of the fourth kind [4]. If the map is
not schlicht, /(4 —p) may even be a cloged set, but fail to be locally
connected. Thus it is nof true of analytic functions that, given a Peano
continuum (*) P in the plane, and a component ¢ of the intersection
of P and the open disk, then the closure of f(0) is always a Peano con-
finoum. In this sense, analytic' functions are not “Peano-continuum
preserving”. They do, of course, preserve local connectedness for Peano
continua lying entirely in |2| < 1, since any continuous map on a Peano
continuum preserves this property.

This paper is concerned with the opposite problem: Given a func-
tion f into the plane or the extended plane, defined in |2 < 1, when is
such a function Peano-continuum reversing? By this I mean the follow-
ing: The map f(2), |2| <1, is Peano-continuum reversing provided that
if P is any Peano continuum in the extended plane, and C is a compo-
nent of f(P), then the closure of C, 0, is a Peano continuum.

In this paper, I show that bounded analytic or quasiconformal
functions, the elliptical modular functions, and some meromorphic func-
tions of bounded characteristic are all Peano-continuum-reversing. These
functions are all special cases of the interior light functions of Stoilow,
and, actually, the theorems of this paper follow by purely topological
methods-from topological hypotheses. Thus the results are quite general,
but that was not an aim of the paper. The fact is that I do not know

* The work on this paper was supported by the National Science Foundation
(U84), Grant GP-1634.
(*) A Peano continuum is a compact, metric, connected and locally connected space.
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