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Packing closed sets™
by
Raphael M. Robinson (Berkeley, Calif.)

1. Introduction. We consider throughout point sets in a ¢-di-
mensional Buclidean space, where g is a fixed positive integer. We shall
prove the following theorem: Let B be o bounded closed set and G a bounded
open set. Then the mamimum number of disjoint coptes of B which can be
placed in G is either fimite or ¢. (Here ¢ denotes the cardinal number of
the continuum.) This remains true no matter whether we insist that
the copies of E be obtained by translation alone, or whether we allow
both translation and rotation. The result for translation is proved in § 2,
the one for tramslation and rotation, and indeed some more general
rvesults, in § 3. We suppose throughout that the set E is non-empty.

Tf there do not exist arbitrarily small motions which take E into
a set disjoint from B, then clearly only a finite number of disjoint con-
gruent copies of B can be placed in any bounded portion of the space.
What we shall prove is that if there are arbitrarily small motions which
take E into sets disjoint from H, then there are ¢ arbitrarily small mo-
tions which take ¥ into mutually disjoint sets. In this case, we can
place ¢ disjoint copies of B in any open set containing one copy. In par-
ticular, the maximum number of disjoint copies of B which can lie in
a bounded open set is either ¢ or finite. If we consider placing copies
of B in the whole space, then we have an alternative between ¢ copies
when there exist arbitrarily small motions which take E into a disjoint
set, and x, copies otherwise.

We shall use vector addition and subtraction of the points in the
g-dimensional Fuclidean space, and multiplication by real numbers.
The origin will be denoted by 0, and |2| will mean the distance from
x to 0. We also define vector addition and subtraction of point sets,
and multiplication by real numbers, by the formulas

A+B={x+y|l wed, yeB},
A—B={w—y| ved, yeB},
hA ={ho| weA}.
Notice that 24 is not the same as A 4.
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190 R. M. Robinson

In the study of the packing of copies of E obtained by translation
alone, the difference set D = E—F plays a central role. Indeed, trans-
lation by a vector ¢ takes ¥ into a set disjoint from F if and only if
t¢ D. Hence there will be arbitrarily small translations which take B
into sets disjoint from F if and only if 0 is not an inner point of D.

Although the same alternative between packing a finite nnmber
of copies of B and ¢ copies of # into a bounded region exists whether
we allow translation alone, or translation and rotation, the answer
(tinite or ¢) may very well be different for the two cases. We shall give
a simple example in the plane illustrating this. The set B will lie on
& denumerable infinity of rays from 0. It follows that ¢ disjoint copies.
of ¥ can be obtained by rotation about the origin. But we can choose
E so0 that 0 is an inner point of D = E—F, and hence only a finite
number of copies of H obtained by translation can be placed in a bounded
region.

For example, let E consist of all points (®,y) on the infinite se-
quence of segments

2<o<4, y=02" @0=23,..,

and the one additional segment 1 <z < 5, ¥y =0. Then F is a closed
set. We shall verify that D contains the entire square —1<s<1,
—1<y<1. Let (x,y) be any point in the square. If y = 0, we can
obtain this point as the difference of the two points (34, 0) and (3, 0).
Otherwise, because of the Symmetry of D, we may suppose that y > 0.
Choose » so that 2 < 2" < 4. Then (%, y) can be obtained as the dif-
ference of (2%, y) and (2"y—=, 0), which both belong to F.

2. Packing translates of a closed set. Lot # be a bounded
closed set, and D = E—F the difference set. If 0 is an inner point of D,
then we cannot find arbitrarily small translations which take F into
a set disjoint from . Hence there can be only a finite number of dis-
joint copies of ¥ in a bounded region, and only a denumerable infinity
in the whole space.

Suppose now that 0 is not an inner point of D, so that there are
arbitrarily small translations which take B into sets disjoint from E.
We shall show that there are in fact ¢ arbitrarily small translations
which take B into mutually disjoint sets. Hence ¢ disjoint copies of B
can be placed in any neighborhood of E.

We shall choose vectors t1y t, ... 80 that the ¢ series

1= tnts  (8,=0,1)

n=1
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P itrarily small vectors, and the translates of F
%OHZ]?ESZ iﬁtﬁzr;izniﬁrgﬁznz The first em;dition is satisfied if we
.Szppose that |t.| < &/2", where ¢ is an arbitrarily smzf,ll positive n}l)mbel;i
To satisfy the second condition, we need oply require that tnéfr, a,nD
+that |ta] is small enough, compared to the distance 6(tx, D) of #; from
for the various k < m. We shall assume that

tkyln

|t,,|<5< for k<n.
2

.2n—k
We are to show that the ¢ translations above lead to mutually disjoint

opies of H. .
P Equivalently, we may show that the ¢ translations

t=Ddutn  (dn=0, 1)
n=1

all take F into sets disjoint from HE. Consider any such series, and let
d; be the first non-vanishing coefficient. We may suppose that dp =1,
so that
=]
t=tet D, dubn.

n=>k+1

S 8(tx, D)
lt—tl < 2 lta] < =g

n=Kk+1

Then we find that

Hence t¢ D. Thus the translation of B through the vector ¢ yields a set
disjoint from E. . . ‘ '
Remark. The following observation is sometimes useful in com

puting difference sets. Let B = ﬁ A, where the A, are bounded closed
n=1

sets with 4,0 4,0 4,D... Put D =E—F and B, = Ayp—An. Clearly,

DC ﬁ B,. On the other hand, we see that if &> 0, then AsC H(e)

for :b=;u£ﬁcient1y large, where F(e) is the set of all poi.nts2 at ?td;ztﬁ;lﬁi
at most & from H. In this case, By H(s)—H(s) =D(2e)
that ﬁB,.CD, and hence D = (") Bx.

n=1

n=1
3. Some examples on the line. We shall. now eomildere s;)lrlx;:
one-dimensional examples of the result proved in §2.‘t§1:]1})11;05n A
0 < p < 1/2, and construct the set E as follows: Start V;lte Coelar por-
{0,1] and delete the middle portion (¢,1—g). Then de.e
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tions of each of the remaining intervals [0, o] and [1—p,1]. Continue

this process indefinitely. The points remaining ultimately constitute 7.

If o =1/3, then F is the Cantor set.

How many copies of B can be placed on the line? According to § 2,
we must check whether 0 in ‘an inner point of D = F—H. We shall use
the remark at the end of § 2 to compute D.

The set B was obtained as the intersection of a sequence of sets 4,,
where

4, =1[0,1],
4, =[0,0lv[1—0,1],
4, =[0,lvie—e% adw(l—g, 1—p+gvl—g,1],

and so forth. Bach set is obtained from the preceding by replacing each

interval of length % by two subintervals of length ok at its ends. If we

put By = Ap—A,, then we find that

Bu = [”‘1; 1] ’

B, =[~1, ~1+2¢]w[—p, gl w[1—2¢,1],

By =[~1, —1+2¢*]w[~1+o—¢% —1+eo+o]v [—1+20—2¢% —1+20]
vl—g, —e+2@7 v [—d, v le—26% al
w[l—20,1-20+2¢*wl—p—¢, 1—0+e*]w [1-2¢%1],

and so forth. Here we obtain B,y from B, by replacing each interval

of length A by three subintervals of length ph at the left end, center,

and right end.

I p>1/3, then the intervals overlap, so that each B, =[-1,1]
and hence D =[-—1,1]. In this case, two copies of F are disjoint only
when one lies completely to the right of the other.

On the other hand, if o < 1/3, then intervals ave deleted at each
step, and the intersection D, like H, is nowhere dense and of measure 0.
In particular, 0 is not an inner point of D. Thus the set & corresponding
to any ¢ << 1/3 admits ¢ arbitrarily small translations which all produce
disjoint copies of H.

I used the above set with ¢ =1/5 in [2], § 2, as an example of
a bounded closed set B on the line having positive transfinite diameter
and such that ¢ disjoint copies of B could be placed on the line. It should
also be remarked that the set D = F—F was shown to have measure 0
by Piecard [1], p. 92, when g =1/p (p =4, 5, 6, ...); however, she drew
no conclusion about packing copies of E.

When o< 1/3, we can find quite explicitly ¢ translations which
give disjoint copies of E. It is easily seen that B is similar to the set

E1={§an@“] an=0,1}.
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Tndeed, B = [(1—g)/elB,;. Also, introduce the set f, = 2K, that is,

7, ={§bn9“! by =0,2].

n=1

We see that

s

I Y ner| en=0,1,2,3),

n

B, +H,

I

Il
-

and each number in , -+, is obtained just once in this form. Now if
o < 1/4, then these numbers are all distinet. Thus the copies of F, ob-
tained using translations through distances in I, or the copies of E,
using translations from H,, are all disjoint. In other words, for the set
we can use as translation numbers the elements of E either halved or
doubled.

The situation is not quite so simple if 1/4 < o <1/3, but we can
proceed as follows. Let

B = {E o™ ‘ =0, 1}.

n=1
Then EM™ +H, consists of all numbers of the form

3 . tn=0,1,2,8 if min,
nZ:;GnQﬂ with tn— 0,2 otherwise,

each number being obtained just once in this form. A simple argument
shows that these numbers are all distinet if

20/(1—g) +em/(1—¢™M) <1.

Indeed, this inequality prevents a “carry” into the nth position W]}en
min; for other values of n, we need only prevent a “oarry” of 2 unifs,
which is a weaker condition. The inequality is satistied when ¢ <1/3
and m is sufficiently large. We find in this way c translations which
give disjoint copies of F,, corresponding to the elements of E™, Thus
the elements of [(1—p)/20]B™ furnish suitable translations for the
set H.

Remark. In some cases, it may be simpler to exhibit ¢ tra@lations
which give disjoint copies of a set B than to caleulate the (}ﬁerenee
set D and verify that 0 is not an inner point. For example, if

il v
E={Z:;—:

n=

a, =0,1,4,b(,
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then the ¢ translations chogen from

oo bn
F:{Zg—n b =0,2)

are seen at once to give disjoint copies of E. The computation of
D =E—F is more complicated.

4. Affine transformations. In this section, we derive some
elementary properties of affine tramsformations which are needed in § 5.

Let T be an affine transformation. Then for any point # and any
real h, we have

I'(he)—T(0) = [T (z)—-T(0)].
For ]z,==.—1, this yields T'(z)+T (—#) = 2T(0). Solving for T(0) and
substituting in the previous equation, we see that
I'(hw) = $(h+1) T (x)— 3(h—1) T (~=x) .
In particular, for A >1 we have
[T (ha)| < max[|T(@)|, | T(—w)|].

We now introduce the norm of an affine transformation by the

equation
N(T) = max [T(z)| .
lej<1
In terms of this norm, we can estimate T'(x) in general:
[T (@)] <N (I)max (1, |a]).

This 1;} e{lé?r if |#|<1. Now suppose that |#|>1. Let h = |@| and
2, = afh. Then & = ha, where h > 1 and |#;| = 1. Applying the precedin,
inequality yields the desired conclusion. ' e i ¢

If U and V are affine transformations, wi i

L y we define U4V by the

equanqns (ULV) @) = U{z)+V (x). Then U4V arve also affine trans-
formations. Clearly N(U4+V)< N (O)+N (V).

We say that a sequence Ty, of affine transformations converges if
Tn(#) converges uniformly on bounded sets. Since

| Tm(@) —Tn(@)] < N (To— w) m0ax (1, ||},

we see that a necessary and sufficient condition for convergence is that

N(Tp— ,1)‘—>0 a8 m-—>co and n->oco. (Actually, convergence of Tn(w)

ab g-+1 points which span the space is already sufficient to insure con-

vergence of T,.) If the sequence 7, converges, let T (®) = lim Ty(z).
n—00

Then T is algo affine, and we say that 7' = lim T,.
700
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For a difference of the form T'(z)—T(y), we can find a better sort
of estimate than for 7'(x) itself. Let # and y be any points. Put b = |2 —y|-
Then 2—y = hs with |#| =1. We see that

[T (x)—T(y)] = T(e—y)—T(y—x) = T(ha) —T(—hs) = L[ T(2) - T(—2)],

and hence v |
(@) —T(y) < N(T)jz—y].

The product UV of two affine transformations U and V will be
defined by the equation UV ()= U(V(x)), so that the multiplication
iz from right to left. Then

|TT () — TV (2)] < N(T) U (@) =V (@)},
N(IU-IV) < N(T\N(U-V).

It should be noticed that in general TU—TV = T(U-V).
We also define the deviation A(T) of an affine transformation 7'
from the identity transformation I by the equation

A(T) = N(T—I) =

and S0

max |7 (x)—x|.
[E3ES
Clearly N(T) <1+4(T). Also, we see that the inequality A(T)<1
insures that T is one-to-one. Indeed, if 7' is not one-to-one, then it maps
the whole space onto a space of lower dimension, and so we must have
A(T) = 1.

We shall now prove a basic inequality which shows that a product
of several transformations near the identity is also near the identity,
and gives an explicit estimate for the deviation. We see that

N(OV-TU) < N(HN(V —I) < [L+A4(T)]A (V).

Adding the equation N(U—I)= 4(U), we find that
A(UV) = N(OV-I) <[1+4(0)14(7)+4(U),

1+A(TV) <[1+4(D)I[L+4(V)].

and S0
We can then obtain by induction the general inequality

K3
1AL T, Ta) < [ [ 11 +4(T0).
k=1
Applying the above estimate for N(UV—U) with U= T, T,... Tn
and ¥V = Tpi1 o Thip, and using the product inequality just proved,
we see that
n+p n

N(T, Ty o Ty =T Ty oo T) < [ [ (1+4(T001— [ [ L+4(T5)]).

k=1 k=1

Fundamenta Mathematicae, T. LVI 14
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Thus the sequence of products 77T, ... T will certainly converge when-
ever the infinite product [][1+4(T%)] converges.
E=1

Whenever the sequence T,7),... T converges, we say that the in-
finite product T,7,T;... exists, and define it by the formula

T,T,T, ... = Bm T, T, ... T .
N—0

However, we shall not say that the infinite product converges unless
a stronger condition is satisfied, namely that for some m the product
- exists and is one-to-one. With this definition, a convergent
infinite product of affine transformations is one-to-one whenever all the
factors are one-to-one.

The product inequality proved above can be extended to infinite
produets:

Tm+1 Tm+2 .

LA T, oy < [ 1L+ a(T).
k=1

If the product on the right converges, then we see that A(Tomys Tie o)
<1 for m sufficiently large. This insures that the transformation
Tns1Timss ... IS one-to-one. Hence the infinite product T,T,T,... con-
verges in the sense of the above definition.

We should keep in mind that multiplieation is from right to left,
so that T, is the last transformation to be carried out in the infinite
product T4, 7,7, ...

5. Packing affine transforms of a closed set. Let & be
a family of one-to-one affine transformations which is a semigroup with
identity and which is closed in the space of all such transformations.
Thus we assume that (1) I <, (2) it T e§ and U e then TU ¢, and
(8)if T e for n=1,2, ... and Ty—T as n-~>co, where 7' is one-to-one,
then T'e§. In particular, if the factors of a convergent infinite product
lie in §, then the product does also. Some examples of possible families
& are the following, each of which includes the preceding: all trans-
lations; all translations and rotations; all similarity transformations with
magnification at least 1; all similarity transformations; all one-to-one
affine transformations.

Let B be a bounded closed set. Suppose that there exist trans-
formations 7'e® arbitrarily near I such that T(B) is disjoint from BE.
We shall then prove that there are ¢ transformations T ¥ arbitrarily
near I which produce mutually disjoint sets T ().

We may suppose that E lies in the sphere |#| <1. Given any e with
0 <e< 1, we shall choose g sequence of transformations 7T, < such
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that 4(Ty) < £/2™. Then, using the fact that ¢’ <142z for 0 <z <1,
we see thab
[ (=]
H[1+A(Tn)] < exp ZA(Tn) <expie<l+te.
n=1

n=1
Thus any product of the form
T = TPTeTS ...

converges, and we have 4(T)<e We obtain in this way ¢ transforma-
tions T ¢ which are arbitrarily near to L.

We shall now show that the transformations T, can be chosen so
that all ¢ of these products produce disjoint transforms of Z. Indeeq,
we need only insure that Tw(E) is disjoint from F, and that A(T,) is
small enough, compared to the distance é(ik(E){ E) of T;f(J‘E') from H
for the various k< . The following inequality will be sufficient:

(@, =0,1)

8(TW(B), B)
<——=— for k<n.
A(Ty) 5"
From this inequality, it follows that if U is any product of the form
U =TT .. (am=0,1);

then

0

144 < ] Q+4(T]1 <1418 (TuD), B).

n=k+1
It is now easy to see that all ¢ of the transformations
T = TPT8TS ... (@, =0,1)

produce disjoint transforms T'(E) of H. Indeed, let any two of these
transformations be given. Suppose that the first place that the exponents
disagree is for T%. Then the two transformations have the form

T =8TU, T'=8V,
where
8 =TT ... TPt (an=0,1),
U = TESTES ... (@n =0,1),
V = T9RTS .. (bn=0,1).

Thus we have
A(0) <33(T(®), B), A(V) < 10 (Tu(B), B).
We want T'(H) and T”(E) to be disjoint. This is equivalent to
saying that TRU(E) and V(E) are disjoint. Now

N(T%U—Tr) < N(Tw) A(U) <24(T) < 36 (T B), B) .
14*
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Thus for # ¢E and y ¢ E, we have
| T2 U (2) —Talw)| < 36 (T0(B), B), 1V (y)—yl < 13(T(B), B).

On the other hand,
[Tw(@)—y| > 6(Tw(E), B) .
Hence
1T% U(@) -V ()l > 16(Tw(B), B),

and therefore the sets T U (E) and V (E) are disjoint, as was to be shown.

Remark. If § is a closed group of rigid motions, and Z is a bounded
closed set, then (as we have just proved) we can place ¢ disjoint trans-
forms of  in any neighborhood of ¥ if § contains arbitrarily small
motions taking B into sets disjoint from E, and we see that otherwise
only a finite number of disjoint transforms of E can be placed in any
bounded region.

For other closed semigroups of affine transformations, this result
can fail in various ways. On the one hand, if § is the family of all trans-
Iations of the form 7'(z) = okt with ¢ fixed and % =0 or & > 1, then
we may be able to place ¢ transforms of ¥ in a bounded region even
though { eontains no small motions. On the other hand, if § is the group
of all similarity transformations, then we can always place at least %o
disjoint transforms of B in any open set; the maximum number is ¢
0r %, aceording as there do or do not exist similarities arbitrarily near
the identity which take B into sets disjoint from E.

Finally, we mention one additional case where the result is correct.
It § is the family of all similarity transformations with magnification
ab least 1, then the maximum number of copies of ¥ which can be placed
in a bounded neighborhood of E is ¢ or finite according as § does or
does not contain similarities arbitrarily near the identity which take B
into sets disjoint from E. Notice that allowing enlargement may help
in packing; we can place ¢ disjoint enlarged copies of a spherical surface

in a bounded region, whereas there is room for only a finite number
of congruent copies.
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Correction to ““On classes of abelian groups”

(Fundamenta Mathematicae 51(1962), pp. 149-178)
by

S. Balcerzyk (Torun)

The purpose of the present paper is to correct the relations betwefen
invariants of a p-primary group of bounded order, its subgroup a,nd. its
factor group that were stated in Lemmas 1 and 2 of [1]. These 1‘e1?,t10ns
do not determine all factor groups involved. Elements ¢;, a; considered
in the proof of Lemma 1 (p.157) were erroneously assumed to form
bases of groups G and A. This fact was pointed out by Dr. E. James
Peake, Jr., I wish to thank Dr. Peake for his comments.

Lemmas 1, 2, 4, Definition 3 and Remark on P 165 of [1] should
be replaced by the following Lemmas 1’, 2’, 4, Definition 3’ and Re-
mark’. )

Let @ be any p-primary group of bounded order, i.e., pMG' = 0
for some natural number M. Then there exists a direct decomposition

¢ =G +Gt..+ G

such that the groups G, are direct sums of groups Z(p”.), n = }, 2, ...y M.
We denote by g the invariant of @, which is a funection defined by

dim@, for n=1,2,..,M,

g(n)z{ 0 for a>M.

Levwa 1. If A, G are p-primary groups p¥G =p¥4 =0 and a9
are invariants of A and @ respectively, then A é; @ iff there ewist cardinal
numbers ho(k), n=1,2,..., M, k=0,1, ..., n, such that

@) g(n) = D bulk),
k=0
M

2) an) = kZbk(n)

for n=1,2,.., M.
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