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Topological analysis of analytic functions
by
K. O. Leland (Baton Rouge)

Introduaction. Our approach is that of Whyburn’s Topological
analysis [8]. In section 1, making no use of the notion of rectifiability,
we develop a topological analogue of the line integral, and by use of
“Joeal” inverses of the exponential function we obtain Whyburn’s topo-
logical (circulation) index. In section 2, adapting a standard proof of
the Riemann Mapping Theorem [6], we obtain a new proof of the power
series expansion independent of the two proofs of Porcelli and Connell
([11, [2], [8])- As corollaries we have the one point removable singularity
theorem and trivially the infinite differentiability and antidifferentiability
of an analytic funetion. Making use of antiderivatives of analytic func-
tions, we obtain close analogues of the classical line integral and the
Cauchy Integral Formula. This enables us to obtain the Laurent ex-
pansion on an annulus.

In section 3 we are concerned with the removable singularity prob-
lem. The setting of this problem consists of having a closed nowhere
dense subset 4 of the closure U of the unit disk U, and a continuous
funetion f defined on U and differentiable on U—A. The problem is
to find conditions on f or A so that f is differentiable on U. Examples
developed by Denjoy [3] show that conditions need be imposed. Our
main results in this direction consist of two sets of conditions which
enable us to conclude that f is differentiable on U. One consequence
of our conditions is a new proof for the case when A is a rectifiable arc
dividing U into two disjoint regions.

0. Notation. Let K denote the complex plane, and « the positive
integers. For » > 0, let U, denote the interior of the circle O, with
center 0 and radius r. We shall generally write U for U, and C for ;.
For ze¢ K, let P,(z) denote the real part of 2, and Py(#) the imaginary
part. Let I denote the interval [0, 1], and let @ denote I xI. If M and N
are subsets of K, we let (M, N) denote the set sup{lz—y| | ze M, ye N}.
We shall call a set R C K, a circular region, if R is the interior of some
circle T. For HC K, m(H) shall denote the planar Lebesgue measure
of H. If J is a simple closed curve, let B(J) denote the exterior of J,
and I(J) the interior of J.
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Let A C B C K and let f be a function defined on B. Then f|4 shall
denote the function g on 4, such that g(2) = f(z) for all ze A. Let f and ¢ be
functions on subsets of K, such that range g lies in domain f. Then fg
shall denote the function h, such that k(z) = f(g(z)) for all z in domain g.
For ze K, let Iy(2) =2. Let f be a function defined on a set § in K,
into K. If f is continuous, we shall call f a map of § into K; f is called
an open map, if f(V) is open in K for all open sets V' S; f is
called a light map, if f is non-constant on all non-degenerate con-
tinua of 8.

1. Line integral analogue. We shall first derive a topological
analogue to the line integral. The analogue is motivated by the notion
of analytic continuation.

DerFNrTION 1.1. Let § be an open set and F a collection of fune-
tions on subsets of K. Then the statement that F is a O, collection shall
mean that for fe#, f is a map defined on an open set Sy ' S, that
8 = Uprer 87, and that f,geF 8y~ 8y 0 implies that there exists
ce K such that f(x) (@)+c for all @ e8;~ §;. Let k be a map of the
interval [a, b] into S and a="1t <t <. <t =20 be a subdivision
of {a, b]. Then we say that %< .. <ty is a Cpy subdivision of [a, b],
if B[t ti+1]) C Sy for some feF, for ¢ =0,1,..,n

THEOREM 1.1. Let 8 be an open set, F a C; collection, and h a map
of I into 8. Then there exists a Cpy subdivision of I; moreover, there ewisis
a unique number J denoted by I F dh, such that if 0 = fy<t; < ... < fpys = 1
is a Cpp subdivision of I, and fo, f1, ...;fn 95 a collection of. elements of F'
such that h([t;, tiri]) C 8y for i=0,1, ..., n, then

T = D filtiss) —feh(ts) .

Proof. Since {Sj}jer is a collection of open sets covering the com-
pact set H = h(I), there exists a finite subcollection @ of F' such that
HCUpea 85 {h(8; n H)lgeq is a finite collection of open sets in T
covering I, and there exists a subdivision T, = {t;}»** of I such that
for ¢ = 0,1, ..., m, h({t;, 241]) C S, for some g e @ Thus 7, is a Oy sub-
division of I.

Let T, = {o:}i"" be a Oy subdivision of I, and gq, g1, -
of F such that h([v;, v:41]) C S, for ¢=0,1
the mesh of T and T,. Trivially

.y gq elements
s ooy @ Lot Ty = {030 be

q

»
o= 3 bl (w0ess) ~Th(w0) = ) gih(vess)—gih (01,
0

[1]
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where for ¢ = 0,1, ...
é_[’ui, rl7:r'-!~3-:| AlSO,

» P, ki = g; and j is the integer such that [w:, ws.s]

D
2 mh (Wig) — Mg T (20;) sz (tee1) —fih (&)
0

where for ¢ = 0,1, ..., p, m; = f; and j is the integer such that [w;, wi41]
C[t;,t21] Let i¢[0,1,...,p]. Then from Definition 1.1, there exists
¢ « K, such that mys) = ki(s) +c for all @ e 8, ~ Sx, D h{[wi, w;41]). Thus
b (Wir1) — M b (w;) = Eh(wie) —kih(w;), and consequently J; must be
equal to J,. Thus IgFdh is uniquely determined.

The following thecrem shows that J is invariant under homotopic
deformation.

THEEOREM 1.2. Let b be a map of @ into an open set 8 such that h
satisfies one of the following: (1) 1(0,0) =7(0,1) and h(1,0)= h(1,1)
for teI; or (2) h(0,1t) = h(1,1) for t e I. Let hy(x) = h(z, t) for all (,1) @,
and let F be a O collection. Then ToFdhy = I;Fdh, .

Proof. If ¢el, then, by Thecrem 1.1, there exists a subdivision
0=2)< ... < ps1 =1 of T and fq, f1, .o, fneF, such that hy((z:, 511])
C 8y for i=0,1,...,n. Thus {h {8y ~2(@))}s is a collection of open
sets in @ covering {t} xI, and hence there exists an open set S8;C I con-
taining ¢, such that 8¢ X [2i, @i41] C Sy A R(Q)) for i =10,1, .., n

Let %, 7 e S;. Then for ¢=0,1, ..., n, there exists ¢; ¢ K such that-
fil?) = fizi(2) +¢; for 2 eS8y, ~ Sy, Hence we have

BF dh,~TF ahy = [2 el (@) — el (@) — [ S fehulaiss)—fehe ()]

= 2 [fehulos) —fihu ()] 4 [FsFons (26501) — Fi o (200)] +

+ [febu(@i1) — Faluu (Bi42)] =+ [FiToo (1) — Fiho (@i41)]
=0.

Since I is compact, and |Jser 8¢ = I, there exists a subdivision 7, <
< tmyr of T such that for 4=0,1,..,m, [t,tw]C S for some tel.
Thus clearly IoPdhy = I3 F dh,.

TEEOREM 1.3. Let S be an open set, F a Cg collection, T a simple
closed curve, P a circle with center z, and radius r lying in I(T), and h
a map of M = I(T)—I(P) into S. Let a and b be distinct points of T and
let A and B be dtstmct subares of T' with endpoints a and b. Then

J = P dh, +IoF dh, = +T,Fdhk,

where hy = hlA, hy, = h{B, and k(i) = rE(2nit) +2, for eI; moreover,
if v is @ map of T o I(T) into 8, then, upon replacing h by v, J = 0.
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Proof. Let 0 <r<1, and g be a homeomorphism of ¥ =TU-T,
onto M. (Cf. [8], pp. 34-35.) For (»,1) €@, let w(x,t) = g[(t+r—rt) x
x B(2wiz)]. Then w(z, 1) = hgB(2rniz) for x ¢ I, and (0, ) = w(1, 1) for
te¢I. Hence from Theorem 1.2, since w, and w; are homeomorphisms,

J = +LFdw, = ItFdw, = +IF dhk .

To handle the case involving », we take w(,1) = hg[t- B (2niz)]
for (z,t) e @. In this caseJ = + TiFdw, = 0, where wy(z) = w (%, 0) = hg(0)
for all zel.

In theorem 1.4 we show to what extent J is independent of the
choice of path. In Theorem 1.5, we apply Theorem 1.4 to obtain an
analogue to the monodromy theorem.

TaeoREM 1.4. Let S be a connected and simply connected open set,
F a Cg collection, and h and k& maps of I imto S, such that h(0) = k(0)
and h(1) = k(1). Then
LiFdh= I, Fdk.

Proof. M = h(I) v k(¥) is a subcontinuum of § and &(M, K—8)
= &> 0. It follows from the Zoretti Theorem (cf. [8], p. 35) that there
exists a simple closed curve 7T such that M C I(T), and é(z, K—8) > ¢2
for #eT. Thus TCS and hence I(T)C S. There exists a homeomor-
phism w of I(T) onto U (cf. [8], p.38). For (a,?)e@, let h(z,t)
= w it wk(z) + (1 —f)wh(z)]. Clearly 7 iz a map of @ into §. Now
(@) = w10 - wk(x) + (1 —0)wh(2)] = w wh (x)] = h(x) for e I. Similarly
hy(x) = k(x) for z ¢ I. Hence from Theorem 1.2,

LiFdh = IsFdhy = Iy Fdh, = To B dk .

THEOREM 1.5. Let S be a connected and simply connected open set
and F a Cs collection. Then there exists a map g of S into K such that if
feF and R is a component of 8;, then there ewists ¢ ¢ K such that f(x)
=g{®)+c for all zeR. ]

Proof. Let & ¢S, g(s) = 0, and z ¢ §—{z}. Since § is connected,
there exists an arc 4,C S with endpoints #, and #. Let %, be a homeo-
morphism of T onto 4. such that 7.(0) =z, and h(l) =2 Set g(z)
= LiF dh..

Let x5 ¢ 8. There exists f ¢ F such that a,e 8;. Let ¥ be a point of
the component R of §; containing x,. There exists an are B CR with
endpoints #, and y. If % is a homeomorphism of I onto B such that
%(0) = o, and k(1) =y, then from Theorem 1.4,

9(y) = LF ahy = IoF sy + I P dk = IsF dhay +[7(y) — (2] -

e =I$Fdhz,,-—f(mo), then for all ¥y ¢ B, we have ¢(y) = f(y)-+c. Thus
g is the desired funection.
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So far strictly speaking we have been dealing with an analogue
of the Stieltjes integral. We shall now show that an analogue to the
integral along an arc falls out of our initial definition.

THEOREM 1.6. Suppose that S is an open set, F a Cs collection, and
A an arc in 8 with endpoints o and b. Then there exists a unique number
2 Fdz such that if b is a map of I onto A satisfying h(0) = a and k(1) =b,
then

I Fdz = LFdh.

Proof. If # € w, then from the Zoretti Theorem, there exists a simple
closed curve O, such that A4 C(Cn) and dé(z, 4) <1/n for all ze Oy
Suppose © ¢ K —A. Since K —A is connected (cf. [8], p. 29), there exists an
are B with endpoints # and ¥, such that B~ 4 =@ and |y| > §u£)1tj +2.

€.

Hence y € Hp = O w I(Cy) for all new. For o> d(a, b)‘l, new, We

have d(z, d)<1lm < é(4,B) for all 2¢Cy, and hence C, nB=0;
consequently zé H,. Thus (i Hy =4. Now

(STHn ~ (K —8)] = (K —8) A [THa] = (E—8) ~n A C(E—8) ~ 8 =0;

also Hyp1 ~ (K—8)C Hy ~ (K—8) for new. Hence there exists 5 ¢
such that Hy ~ (K—8) =@, and consequently H,, CS. Let % and %
be maps of I onto 4 such that k(0) = %(0) = ¢ and k(1) = k(1) = b.
Then from Theorem 1.4, LFdh = I};de, and hence % Fdz is uniquely
defined.

DreriNTION 1.2. Let S be an open set, 2 ¢ K, and F a collection
of functions on subsets of K. Then the statement that # is an Lg,, col-
lection means that F is a Cs_g, collection such that Bf(s) = z2—# for
jeF and z eSSy, where E(3) = ¢ for z e K.

THEOREM 1.7. If S is an open set in K and z, « K, then there exists
an Lg,, collection. Moreover if h is a map of I into K and 2 e K—h(I),
then there ewists a unigque number J, such that if S is an open set contwin-
ing h(I) and F is an Lg., collection, then

J = IiF dh = 2wipz(h, 2)

where u denotes Whyburn’s topological index (cf. [8], p. 58). Finally, &f
R{0) = Rh(1) then

J =2nxi  for some integer n.

Proof. For ze K, let P(2) =2—=z, and y ¢ 8§ —{z}. Then P(y) # 0,
and there exists z e K such that H(z) = P(y). Now there exists an open
set ¥ containing #, such that ¥ is a homeomorphism on V. Since F is
an open map, E(V) is an open set containing P(y), so there exists
a circular region R, containing y and lying in § ~ P H(S). Hence there
exists a map f of P(R,) into K, such that Ef(z) =2z for all ze P(Ry).
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Let f, denote the function fP. Then FEf,(2) = BfP(z)=
for all z e R,.

Let fu,, ve S and 2 e B, ~ R,. Then Ef,(2) = Efy(2) = #—2,, and thus
Blfu(2) 2)] = (F—%)/(2—2) = 1,and consequently fu(®) = fu(#) +2nn(2)i
where z) is an integer. Then » = (2w8) " (fy—/») is a continuous function
on the connected set By ~ R, and hence is constant. Thus F' = {f,| y ¢ §}
is an Lg,, collection.

Let F and & be Lg,, collections and for # e, set v(f) = IiFan and
w(t) = I;Gdh. Then clearly v and w are continuous. Now for ¢ e I, there
exists a collection fy, fi, ..., f, and a subdivision 0 =z < ... < Bpyy =1

P(z) =2—z,

of [0,1] such that ILFdh = _Sj‘ Fih (#141) —Fs b (%), and hence
= B[ X (fih(@in)) —fih(@))| = [ | Bfb (@0} Bfih ()

—H (@1 —2) (s —2)~

Similarly for teI,

= [h(t) 4] [h(0)—2]

Bw(t) = [h(t A

)—~o]‘[h(0

and hence E[v(t)—w(t)] = 1. Since v—w is continuous, there exists an
integer # such that v(f)—w(t) = 2nmi for all t¢I. Now v(0) =0 and
w(0) =0, and hence n = 0. Thus » = w and J is uniquely defined.
Suppose h(0) =h(1). Then E(J)= Ev(l) = [h(1)—2]- [}1,(0)—201'1
=1 and J = 2nnt for some integer n.
Let ¢ be a number such that H(c) =
4 (1) = v(t) +¢. Then

EQ() = Ev(t)+¢]
= [h{t) —2o]- [1(0) — 2] - [ (0) —

Thus J = 2niur(h, %) (cf. [8], pp. 56-58).

THEOREM 1.8. Let 2z, ¢ K, and let 8 be a connected and simply con-
nected open set emcluding z,. Then there exists o map ¢ of 8 into K, such

that Bg(z) = z—2, for all &eS. Furthermore there exists a map k of S
nto K, such that k(20 =2—z, for all z ¢§.

h(0)—2,. Then for feI, let

= Ev(t)-E(c)

Proof. From Theorem 1.7, there exists an Lg,, collection. Since

#y¢ 8, the existence of the desired function g follows from Theorem 1.5.
Let k(2) = B[27%g(2)] for all z¢S. Then

k(z)

=B[2 (¢ W =EBgz) =2—2 for zel.
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THEOREM 1.9. Suppose that T is a simple closed curve, a and b
distinet points of T, and A and B distinct subares of T with endpoints
a and b. Then there exists n = 41, such that for z,eI(T),

J = pea(#, %) + #85(2, %) = —pan(z, %) — ua(z, 2) =0,

where pba(z, %) denotes the unigue number IbsLdz, where L is an Lg,,
collection.

Proof. Let L be an Lg, collection. Then from Theorem 1.3,
J = IbaALdz— oo Ldz = nIoLdk = nuz(k,2,), where k(1) = »B( (2nét) + 2, for
some r> 0, # = =1, for all tel. Let p(t) = logr 4 2xit for ¢ e I. Then
Ep(t) = E(logr+2nit) = rE(2nit) = k(f) —2, for t e I. Thus J = n[p(1l)—
—p(0)] = 2nmi.

Let 2z, e I(T), # # %, and let W be an arc in I(I) with endpoints
3 and 2;. Let 7 be a homeomorphism of I onto W such that w(0) = 7
and w(l) = 2, and v a continuous function on I onto T such that
2(0) = a, ©v(1/4) ¢ 4, v(1/2) = b, and v is one-to-one on [0, 1). Set w(z, t)
= v(x)—h(t)+2 for (#,%)e@. Now 2 ¢w(Q), since W~ T =@, and
w(z, 0) = v(x), and w(x,1) =v(®)+2—=2 for zel. Then from Theo-
vem 1.2, J = IiLdw, = TeLdw, = pr(v+2—2, 2) = ur(v,2). Thus J is
uniquely determined.

TeEEOREM 1.10. Let S be an open set, F a Cg collection, T a simple
closed curve, and h a map of I into 8. Then there exists a unigue number
J = IrFdh such that if a and b are distinet points of T, and A and B
are distinet subarcs of T with endpoinis a and b, then

LFPah, - Fdh, = J [ 15, Lde +Iip Ldz]
for all Ly, collections L, where z,eI(T), and hy; = hlA and h, = h|B.

Prooif. The proof follows readily from Theorem 1.9.

Remark. Let L be an Lg, collection and 2 and k¥ maps of I into
K —{0}. Then for tel,

B(ILLdh- %) = [h(t)k(£)][R(0)k(0)] ™ = [h(£)/h(0)]- [k(2)/k(0)]
= B(I{Ldr) - B(IeLadk) = E(IsLah+IsLak),
and thus
LLdk-% = ILLah +ILLdk + 2nmi

for some integer n. Now I'oLdp =0, when t=0 for p =h, %, h- k& and
hence # must equal zero. With this observation we have completed the
derivation of the machinery of Whyburn’s topological index u.
TaEoREM 1.11. Let A be a closed and mowhere demse subset of U,
and | a map of U, such that f is differentiable on U—A and f(4) s no-
where dense in K. Then if f is light, f is an open map on U. Moreover if f is
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light and p < f(T)—F(C), then 7 (p) has at most m = po(f, p) elements.

Finally if f is light on U—A, then suplf(@)| < s&g[f(t)b and if f is light
zeU
If ()] < siug|f(t)| for all zeU.

Proof. Suppose that f is light on U—A4 and 7' is a simple closed
curve in U. Let ¢ ¢ f(H)—F(T), where H =T v I(I), and let S be the
component of K —f(T) containing ¢. We shall show that 8¢ f(H). Set
Q =f(H) ~ 8. Then @ is open in the relative topology of f(H), and
hence (@) is open in H. Since f (@)~ T =@, /(@) is open in K.
Now Q, =1 1Q)—A4 is a non-empty open set in U—4, and hence f(Q,)
is open in K. Let G be the set of all points @ e U —A such that f'(2) = 0.
Then (cf. [8], pp. 72-73) m(G) = 0 and since f(4) is nowhere dense in K,
we have Q; = f(@,) —G@—f{4) # @. Let y € Q,. Then paralleling Whyburn
(cf. [8], pp. 67-68 and 72-74, and cf. Theorem 1.9) we see that F 4y
has a finite number m, of elements, where wuz(f,y) = n = 0. Hence
ur(f; #) = ny for all 2 € 8. It follows now from Theorem 1.9 that S C f(H).

Let 8 be the unbounded component of K—f(C) and suppose
8 ~ f(T) + @. Then from the above argument, §Cf(T). Bubt f(T) is
compact. Thus

suplf (x)] < suplf ()l .
xell teC

Suppose that f is light. We shall show that f is an open map on U.
Let @y« U and R be a circular region with center x, lying in U. From
the Zoretti Theorem, there exists a simple closed curve T'C R, such
that @, e I(T) and T ~f 'f(m) =O. Let S denote the component of
E—f({T) coutaining f(#,) and lying in f(I(T))C f(R). Thus if V is an
open set in U, f(V) must be open. In particular f(U) is open, and hence
If (@)} < S;lglf(i)i for all z e U.

Suppose that f(p) ~ I(T) contains more than m elements. Let
By, Ly, ey By be distinet points of 7p) ~ I(T), and Ry, By, ...y Bnss be
a collection of mutually disjoint circular regionsin U, such that E; has cen-
ter; fori =1, 2, ..., m+1. Then f(Ri) isopenin K for¢ =1, 2, ..., m+1,
and hence V = § ~ (NT7(R;) is a non-empty open set in K lying in f(U),
and containing p, where § is the component of K —j7(0) containing p.
Suppose that ¢ eV —jf(4)—@. Paralleling Whyburn, as above, we find

that pe(f, @) = m+1. Bub uolf, ) = polf, ») = m. Thus  (p) has m or
fewer elements.

TrEEOREM 1.12. Let T be a simple closed curve, R =1I(T), S a set
containing B, @ a finite subset of R, w, e R— @&, and | a map of 8 such that
f 4s differentiable on R—@. For @ e 8, let Qs (@) = [f (@) —f(ao)]- [ —ap] "
for @ # @y, and Qpz(x) = f'(%,) for x = m,. Set Q = Qp. Then Q s con-
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teT
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for all © e R, if @ s non-constant.

Proof. By definition of derivative, @ is continuous on 8. Suppose
that @ is non-constant. Then, since @ is differentiable on R—@&— {z,},
and @ is finite, Q|R is light. Hence, from Theorem 1.11, @ is an open
map on R, and |@ ()] < St'lzlg @ ()] for all w eR.

TeEoREM 1.13. Let A be a finite subset of U and 0 <r<1. If f is
a map of U such that | is differentiable on U—A, then there ewists p > 0

such that the function g(2) = p-f(2)+=z for 2¢e U is one-to-one on U,.
Proof. Let r<r,<1, M=suplf(?), and p = (ry—r)/2(M +1).
2€ Uy
For t e I, set v(t) = 1, B(2nts) and for (s, t) € Q, set h(s, t) = sp- fo(f) + v(1).
Then h is continuous, hy(t) = v(t), and h(f) = p-fo(t) for all teI. Now
for (s,1t) €@,

[h(s, ) = lo(t) +sp- fo(d)] Z=ro—splfo ()] = 1o — (ro—7)[2 = (ro+7)/2..
Thus 0¢ h(Q), and hence from Theorems 1.2 and 1.9,
1= pu(,0) = plhy 0) = ulhy, 0) = u(p-fo+v,0)

Now g is continuous and differentiable- on U—A. Since g is not
constant and A is finite, g must be light. Suppose that § is the com-
ponent of K—g(C,) containing 0. Now for ze Oy, g(z) = [z+p-f(%)]
= r—(1,—1)/2 = (r,+7)/2, and thus Upene C 8. For 2eT,, |g(2)
= |p - f(2)+2| < (ro—7)/2 +7 = (ry+7)/2, so that f(TU,)CS, and hence
U, C§U(8). For ze8, u(gv,®) = u(gv,0) =1, and hence, from Theo-
rem 1.11, f '(z) has exactly one element. Consequently ¢ is one-to-one
on ;748) D U,.

TurorEM 1.14. Let A be an are, f a map of K such that f is non-
constant and differentiable on K—A, and s =lim f(x) ewists. Then

00

f(4) = f(K).
Proof. Suppose that p ef(K)—f(4) and p s s. Let P be a circle
with center s such that p « E(P). There exists 7, > 0 such that 4 u f (p)
C U, for r > 7,. Since lim f(z) = s, there exists 7, > 0 such that » > r,

implies f(C,)C I(P). Let 7> sup[ry, 7] and B be an arc in U, with
endpoints ¢ and b, such that B~ 0, = {a} v {#}, and AC B. Let D,
and D, be the components of U—B, and T; = D¢—D; for ¢ =1, 2. Then
from Theorem 111, polf,P) = pry(f, p)+ zlf, p) > mo, Where ng 0
is the number of elements of f '(p). But 7(C;) C I(P), and hence, from
Theorem 1.9, uc(f,p) =0. Thus f(K)—{s} Cf(4) and f(4) =f(K).

12%
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2. Polynomial approximations. This section shall center around
the problem of obtaining polynomial approximations to differentiable
functions; in particular power series expansions.

Lemma 2.1. Let f and g be polynomials such that ¢(z) # 0 for all
2 eU, 8 an open set in U, and h(z) = f(2)/g(2) for z € U. Then if Py, P
is a sequence of polynomials converging umiformly on compact subsets of
h(8) to a limit function F, there ewists a sequence of polynomials Qy, Q,, ...
converging uniformly on compact subsets of 8 to Fh.

Proof. Clearly for n ¢ w there exist polynomials fa and g, such
that ga(2) == 0 for all ze U, and Pph(2) = fu(2)/ga(z) for all z e U. Let
7 € w. There exists a finite collection of numbers ay, 2, %, ..., %, such
that ga(2) = @g(2,—2)(2,—2) ... (2,—2) for all z ¢ K. (Note: for the Funda-
mental Theorem of Algebra, cf. Whyburn [8], p. 77). Since g(2) % 0 for
all ze U, we have |s3]>1 for k=1, 2,...,p. Hence for k=1,2,...,p
the sequence of polynomials {Timlm=1 converges uniformly on U to

m

=,2 (s/exy for k=1,2,..,p,

mew, and ze K. For mew, let Qun(s) = ao Tn(2) Tun(2) Tem(?) ... Tym(?)
for all 2 e K. Then {@umim=: is a sequence of polynomials convergmg
uniformly on U to0 fu/gn-

Suppose that p, < p, < ... is an increasing sequence in « such that
[Qupa(2) —Prh(2)] < 1jn for new, 2e U, M a compact subset of §, and
> 0. Since % is continuous on 8, A(M) is compact, and there exists
N > 0 such that n > N, n ¢ w, implies 1/n < ¢/2 and |F(z) —Pa(z)| < /2
for all # e h(M). Thus for ze¢ M and # > N, % ¢ o, we have

1Eh (%) — Qupa(8)] < |FB(2) —Puh(2)] + | Pl (2) ~ Qup,(2)] <1/n+e/2 <.

Levma 2.2. Let F be a uniformly bounded collection of differentiable
functions on an open set S. Then F is an equicontinuous family of functions.

Proof. Let p eS8 and T be a circle with radius » and center p such
that H =T o I(T)C 8. There exists M > 0 such that |f(2)] < M for
all 2¢S and feF. If feF and # e H, then from Theorem 1.12, |@s4(2)|
<suplQ“, lwsuplf 1) —f(p)lr—*< 2M/r and thus |f (2) —f (p) < |¢—p|2Mr—L
Consequently F must be an equicontinuous family of functions.

Remark. Lemma 2.2 immediately enables us to obtain the Vitali-
Porter-Stieltjes Theorem. Hurwitz’s Theorem and the standard Maximum

Modtlus Theorem follow immediately from the open mapping theorem
for differentiable functions. (Cf. Whyburn (8], pp. 72-76.)

Levwma 2.3. Suppose that f., fs, ... is @ sequence of differentiable func-
tion defined on an open set S, converging uniformly on compact subsels
of 8 to a Vmit funciion F. Then F is differentiable and {ful2))per con-
verges to F'(2) for all z € 8.

(B—2)"" =25 (L —2fex)™", where Tyn(?)
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Proof. The proof of this lemma is due to Porcelli and Connell
(cf. [1] and [5]). Let p € S and let T be a circle with center p and ra-
dins » such that D=ToI(TYCRHR. Set Q(z) =[f(z)—f(p)](z—p)™*
for z « K—{p}, and for % ¢ o, let Qn= @y, . Then f01 2 e D—{p}, {Qu(e)}nzn
converges to Q(z2). From Theorem 1.12, we have

IQn(z)th(z)i SHP [Qa(?) — @u(?)| < St1€1¥ [fn() —fm(®)ir1

for z e D. Since {fo}ar: converges uniformly on 7', we see that {Qnlne:
converges uniformly on D to a limit function @,. Clearly @y(2) = @(2)
for all s e D—{p}. Hence F is differentiable at p and F'(p) = Qyp)-
Moreover F'(p) = lim Qu(p) = Lim fu(p).

N—>00 MN->00

LevmA 2.4. Suppose that fi, fa, ... 95 @ sequence of one-to-one differ-
enttable funclions on a simply connected bounded open set 8 into U, con-
verging uniformly on compact subsets of S to a limit function F non-con-
stant on each component of S. Then F is a one-to-one differentiable funclion
such that F(S) C U. Moreover if M is a compact subset of (8), there ewisis
N> 0 such that n> N, new, implies M C f.(S). Furthermore Ve
converges uniformly to ™' on M.

Proof. Let ¥V be a simple closed curve in §, and let W be the com-
ponent of K—F(V) containing H = F[I(V)]. Since 8 is simply connected,
I(V)C 8. By Lemma 2.3, F is differentiable and hence an open map,
and consequently H is open in W. Now H=H A W=[HVF{V)]~nW
=F[V A I(V)]~ W, and hence H is closed in W. Since W is connected,
H = W. Then since H is bounded, H = I[F(V)]. Thus F(8) is simply
connected.

Since F is non-constant on each component of §, by Hurwitz’s
Theorem, F must be one-to-one. The differentiability of #™* now follows
readily from the fact that F'(z) % 0 for all z¢S. Let 2 ¢S and T be
a circle with eenter z, lying in S. Suppose F'(z,) = 0 and set w, = F(%)
and @ = Qr.,. Then Q(z) = 0, and hence from Theorem 1.11, ur(@,0)
> 0. Now F(2)—w, = (v—29)Q(2) for ze S, and hence from the remark
preceeding Theorem 1.11, wup(F, w,) = ur(2, 2o) + pr(@, 0) = 1+ ur(Q, 0)
> 1. But since F is a homeomorphism, ur(¥, w,) = +1 (cf. [8], pp- 74-75
and 84-85).

Let y e F(S), e> 0, and R, a circular region with center Fy)
and radius e. Let T be a circle in F(S) with center y and radius » such
that FT)C R,. For n € 0, let ys = [P (y) and Jn = foF(T). Since
the sequence fy, fz, ... converges uniformly on F [T u I(T)], there exists
Ny, > 0, such that for n > Ny, n € o, |falz)—y| > 7/2 for all x e T v I(T),
and thus |fa(z)—y|> /2 for all 2 € T, and 6(L,) < 7/2, where L, is the
line segment with endpoints ¥ and y,. Then for #> N, new, Lnn Js
=@, and hence L, lies in the same component, namely I(Js), of E—Jn
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that contains 4,. Thus for # > Ny, n € 0, ¥, and indeed a circular region
T, of radius #/2 and center y lie in

I(Jn) = I[faF ™ (Ta)] = fuFL(L)) C [uFF(8) = fu(8
Since ¥ ¢ I(Jn),
) e falI )] = fa fa I (0] = FUI(Jw)] C B,
for n > Ny, n € w. Since ¢ is arbitrary, fat ) =F N (y), a8 n—>oo.
Let 1M’ be an open set containing M such that its closure M, C 8.
Then M,C |J Ty, and hence there exists a finite collection of points
yeM

» P
Ya, Yay ey Yp OF My such that M,CJTy. Thus for o> N =D N,,
1 1

new, MyC @T,,,g fa(S). Sinee § is bounded, by the Vitali-Porter-
1

Stieltjes theorem, {f; }nm1 converges uniformly on compact subsets of M,
in particular M.

LEvwma 2.5. (Cf. [6], pp. 225-230.) Let S be o connected and simply
connected open set in U, such that 0 « 8 and 8 = U. Then there exist poly-
nomials f and g, such that g(z) # 0 for all z ¢ U, and one-to-one differen-
tiable function b on S into U such that k'(0) > 1, 1(0) = 0, and fh(z)/gh(z)
=z for all ze8.

Proof. If teU—8, then for 2e¢U, 1—f2] =1—|k|=1—]t|>0.
For z¢ U, let A(2) = [t—2] [1—T]". Then by direct computation 44 (2)
=z for-all z e U. Thus 4 is one-to-one and 4(U) = U. Trivially 4(0) =
and A(¢) = 0, and hence 0 ¢ A(S). Since A4 is differentiable on U, 4 is
an open map on 8, and consequently A(S) is a connected and simply
connected open set in U not containing 0.

From Theorem 1.8, there exists a one-to-one differentiable function
H on A(8) into K such that H(2)2 = 2 for z ¢ A(S). Then [H ()2 = |t| <1,
and hence |H(f)] <1. Then for 2 ¢ U, 1—H({)z 5= 0. Define

B(z) =[H(t)— Tt
for all z ¢ T. (&) =[H()—#[1-H{)2]

For se 8, let P(s) = BHA(z). P is one-to-one and differentiable
and P(8)C U. Now P(0) = BHA(0) = BH(t) = 0. For zeU, let K(2)
=2?. Then for 2 ¢ U, let @(2) = AKB(z); @ is differentiable and QP(z)
= AKBBHA (35) = AKHA(2) = A4 () =2 for 2« U. Then P’(O)Q'(O) =

For ze U, set Qq42) = Q(2)fz for 2 # 0 and Qyz) = Q'(2) for z = 0.
Then @, is continucus on U and @ is differentiable on U—{0}. @ is not
one-to-one on U and hence @, can not be constant on U. From Theo-
rem 111 (ef. also Theorem 1.12), |@(2) |<sup [@o(?)] for all z¢ U. In

particular, [@’(0)] = |@q(0)] < 1. Thus [P’(0)] >1 and if s = P(0)|P'(0)| %,
then sP(z) is the desived function.
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The procf of the fcllowing theorem is adapted from a proof of the
Riemann Mapping Thecrem given by Saks and Zygmund (cf. [6],
pp. 225-230).

TeEoREM 2.1. Let 8 be a bounded conmnected and simply connected,
open set and z e S. Then there ewisis a one-to-one differentiable map F
of 8 onto U such that F(z) = 0, F'(z) > 0, and a sequence of polﬂw')mals
Py, P,, ... converging uniformly on compact subsets of U o Pt

Proof. Let K be the set of all one-to-one differentiable maps f of §
into U such that f(z) =0, J'(%)> 0 and such that there exists a se-
quence of polynomials @y, @, ... converging uniformly on compact sub-
sets of £(8) to /. K is a non-empty set.

If s = sup f'(%), then there exists a sequence f;,f,, ... in K such
€K

7 . .
that lim fi(z,) = s. From the Vitali-Porter-Stieltjes Theorem there exist

NI
Pr < Py < ... iD @, such that {fp,}n: converges uniformly on compact
subsets of § to a limit function F. From Lemma 2.3, F is differentiable
and F'(s,) = s, and hence ¥ is non-constant. From the Hurwitz Theorem,
F is one-to-one.

For neo, let O = {2 eF(8)] 8z, E—F(S)) =

= U Ca.

1
exist p; < Py < ... in o, such that if % € w, then m = Pa, M€ 0, implies
that On C fm(S). If # € w, there exist a sequence of polynomlals Pty Py oo
converging uniformly on compact subsets of fp,(8) to ]‘p,,

There exist ¢, < ¢, << ... in w, such that for 7 e, |Png,(?)—/pa(2)|
< 1/n for z € Cy. If D is a compact subset of F(S), then there exists an
integer n,, such that D C Cy,. Let e> 0. Then from Lemma 2.4, there
exists M > ny, such that m> M, mew, implies [fom(@) —F_l(z < e
for all 2 € Cp,. Hence for 3¢ DC 0,,., and m > M, m ¢ w, we have

(%) —Praga(#)] < 1F7(2) — fom(®)] -+ fom(#) —Prmgn(2)] < &+1/m ..
From Lemma 2.4, F(8) C U and we have F ¢ K.

Suppese F(8) 5= U. Then clearly F'(S) is a connected and simply
ccnnected open set. From Lemma 2.5, there exist polynomials f and g
such that g(z) % 0 for all 2« U, and a one-to-one differentiable function
B on F(S) into U such that fh(z)/gh(z) =2 for all ze¢F(8), and
such that R'(0)>1. Then (k) (2) = b'F ()  F'(%) = h'(0)s > 8. Now
W = hF(S) is an open set in U. Then F(S) = h™(W). Since F ¢ K, there
exists a sequence of polynomials Py, P,,... converging uniformly on
compact subsets of A7 (W) to F'. From Lemma 2.1, there exists a se-
quence of polynomials @, @,, ... converging uniformly on compact sub-

sets of W to F'A"'. Thus hF ¢ K, which is a contradiction. Hence
F(8)=T.

1/n}. Cn is closed and

hence compact for new, and F(S) From Lemma 2.4, there
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THEOREM 2.2. Let 8 be a bounded comnected and simply connected
open set in K, 2 €8, and x,e U—{0}. Then there ewists a unique differ-
entiable one-to-one function f on U onto 8 such that (1) f_l is differentiable,
1(0) = 2z, '(0) > 0, and there ewists a sequence of polynomials Py, P,, ...
converging uniformly on compact subsets of U to f, and such that (2) if g
s a one-to-one map of U onto 8, such that g is differentiable on U— {z,},
g(0) =2, and ¢'(0) > 0, then g =f.

Proof. The existence of at least one function f satisfying (1) is
assured by Theorem 2.1. Let g be a function satisfying (2) and set Q(z)
= f'g(z) for all z e U. Then @ is a one-to-one map of U onto U, such
that @ is differentiable on U — {z,}, @ (0) = 0, and ©'(0) > 0. Let T' = Qq,.

Then from Theorem 1.12,

sup [T'(#)] < sup sup |[T(H)| < sup 1fr =1.

zelU 0<r<l teCy 0<r<l
Thus |T'(z)] < 1 for all z ¢ U. Since @ is one-to-one, @(z) 7 0 for z ¢ U —{0}
and, since @'(0) > 0, we have T'(z) ¢ 0 for all z e U. Thus we also have
from Theorem 1.12, that |T'(2)| > 1 for all #z ¢ U. Consequently |T'(z)| =1
for all ze U. From Theorem 1.11, since @'(0) > 0, T(2) = @'(0) =1 for
all z¢ U, and thus f'g(s) =2 for all 2z ¢ U, and consequently f = g.

THEOREM 2.3. Leét @y e U, z, 5 0, and | be a continuous function on U
such that f is differentiable on U—{z,). Then f is differentiable and there
eists @ sequence of polynomials Py, P,, ... which converges uniformly on
compact subsets of U fo f.

Proof. If ¢>0 and »=1—¢, then, from Theorem 1.13, there
exists p > 0 such that the function g(2) = f(2) +p# for 2 ¢ U, is one-to-one
on U,. From Theorem 2.2, g is differentiable and there exists a sequence
of polynomials P, P,, ... which converges uniformly on compact subsets
of U, to g. Hence {P;—pI,)i: converges uniformly on compact sub-
sets of U, and, in particular, Ui-s., to f. By a diagonal process we
obtain a sequence of polynomials @, Q,, ..., such that [Qn(z)— f(2)] < 1/2"
for 2 ¢ Ui_y» and n e w. Clearly @, Q,, ... is the desired sequence.

n
LeMMA 2.6. If P(2) =D apa® for ze K and P(z)<1 for zel,
0
then |a;] <1, for 1 =0,1, ..., n.
Proof. This theorem and proof are due to Porcelli and Connell [2].

Trivially the theorem holds for polynomials of degree zero. Suppose
that, for n e w, it holds for polynomials of degree n or less and P(z)

n+1
=§ ap?” is a polynomial of degree n+1 such that [P(=)] <1 for
gel. Let 6¢[0,27] and Q(z2) = 27 [P(2) —PE(i0)] for z¢ K. Then @

has no constant term and Q/I, is a . polynomial of degree # or less. From
Theorem 1.11, |Q(2)/z| <1 for 2 ¢ U—{0}. By the inductive hypothesis,
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|2 apa[L —B((p +1)i6)]| <1, for p=0,1,..,n Upon setting 6 = =/p
we have |ay] <1, for p =1,2,...,n+1. Finally e} = |P(0}j <1.
TEEOREM 2.4. If | is a differentiable function on U, then there exists

(=<}
a power series > apet which converges wuniformly on compact subsets
o

of U to].

Proof. From Theorem 2.3, there exists a sequence of polynomials.
P,, P,, ..., such that for new, |Piz) —Pyz)] < 1/2", for s Ul_l,,,,"and
i,i=n, t,jcw. Let neo. Then from Lemma 2.6, 13;-1,——.41-,,[ < [2"(1—
—1yPrY, for i,j=m, i,ico, and p e o, where {ai}i,j-1 18 a sequence

3 -
in K, such that Pj(z) = 2 a;p?® for j e w. Thus for p e o, there exists
o

ap € K such that for n € o, [ap—ip| < 2[2"1—1/n)?’]"" for all i > n, b€ -
Let new, and let n, denote the degree of P,. Then fjorlp > Ny

an —
pew, @yp=0 and hence lap| = |ap—tnp| < 2[27(1 ‘—1/‘71,) i .”T‘Tin;s
ﬁ];l-)solclp ;up}”” < (1L—1/n)"". Since n is arbitrary, we have hﬁiup lap| ™ < 1.

o0
Thus the power series T'(z) = > a,e® converges uniformly on compact
0

subsets of U. Let ze U. Then for n €, such that |2| < 1—2/n, we have

o0
< Z Iafp‘_anp" |z\p
p=0

|T () —Pu(2)| = t Z(‘l‘p_‘-"rm)zn
p=0

< Mopprena—1m T <2t -0

=0
where 7 = (1—2/n)- (1—1/n)"". Thus lim Py(2) = T(z). Since by hypo-
N=>oC
thesis lim P (3) = /(2), we have T'(z) =f(z) for all zeU.

THEOREM 2.5. Let 8 be a connected open set, %€ 8, fi,fay - @ S€-
quence of maps of S into K converging uniformly on compa,o't subsets tff s
to a limit function fo, and gy, s, ... & Sequence of differentuﬁ)le functions
on § such that for new, go =fn and gu(z) = 0. Then {gnln=1 CONVErges
uniformly on compact subsets of 8 to a limit function gy, such that g, 45
differentiable and go = f,-

Proof. Let H be a compaet subset of §. Since § is connected, there
exists a collection of squares @y, Q,, ... such that HCQC 8, % <@, and

@ is connected, where @ = C)I(Qi). Then there exists M > 0 such that
1

for @ e H, there exists a polygonal arc P with endpoints 4 and %, having
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length L(P) and lying in @. By the mean value theorem for real valued
functions, for n,m ¢ o,

[9n(®) — gm(@)| <2M sup 192(2) — gm(2)] = 2 M e, ,

Where eqm = Sup |fa(t) —fu(t)]. Since {fn} converges uniformly on @ to fos
teq
Um ey =0, and thus {gula

N0

{gntn=1 converges uniformly on compact subsets of § to a limit fune-
tion gy. From Lemma 9.3,

converges uniformly on . Hence

fo(®@) = im fu() = lim gy(a) = go(w) for all ze S.

DEFINITION 2.1. Let S be an open set, g a map of § into K, and
F a collection of functions on subsets of K. Then the statement that
is an I, collection means that F' is a Cg collection such that, for f ¢ F,
F(@) =g(2) for all ¢S,

TEEOREM 2.6. Let S be an open set, b a map of I into 8, f and g
differentiable functions on 8, and o and b < K. Then there ewisis an Igy
collection. Moreover if 8 is connected and simply connecied, therve exists
a differentiable function % on S, such that & — fy and a unique number
I = Lifdh, such that if F is an Is, collection, then I = IiFdh. Finally

To{af +bg)dh = a-Tafdh+b-Iogdh .

Proof. Let z¢8 and B be a circular region with center z lying
in 8. From Theorem 2.3, there exists a sequence of polynomials P;, P,, ...
converging uniformly on compact subsets of R, to f. Trivially there
exists a sequence of polynomials @1, @, ... such that, for n e o, Qn(z) =0,
and @, = P,. From Theorem 2.5, {@n}ucs converges uniformly on com-
Dact subsets of R, to a differentiable limit function f;, such that fy(y)
=f(y) for all y ¢ R,.

Let 2,y e 8 and F(z) = fa(8)—fy(2) for all 2 e Ry A Ry. Suppose that
F(u) == F(v) for some u,v ¢ R, A R,. By the mean value theorem for
real valued functions, there exists w in the line segment with endpoints
% and o, such that F'(w)=£0. But F(w) = folw) —fpw) = f(w) = 0.
Thus {frlzes is an Isy collection. Now if § is connected and simply

<onnected, then the existence of a differentiable function % such that
&' =§, follows from Theorem 1.5.

Let 7 and & be Ig; collections and zef. There exist f,eF and
gz € @ such that z <8, and = €8;,. Let B, be a circular region with
center z lying in 8~ 8y, and let f, = f,|R, and Jz = gz|Ry. Then F,
= {fz}ees a0d Gy= {J,}scs are Iy, collections such that LiFdh=I.F,dh and
To@dh = Iy Godh. Clearly H =Fyw G, 18 an Igy collection, and, from
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Theorem 1.1, IiFydh = IsGodh. Then I;Fdh = I Gdh, and consequently
Tifdh is uniquely defined. .

! We can obtain Igy collections (vide supra) M and N such that
{Sttwenr = {Suren. It follows readily that

a-Lifdh+b-Isgdh = Iy (af +bg) dh .

TamoREM 2.7. Let S be a simply connected open set, T a simple closed
curve i 8, 2 ¢ I(T), and | a differentiable function on 8. Then

1(20) = (2nd) " Inf(2)] (s —20) da (1) .

Proof. From Theorem 2.3, if @ =@y, then @ is differentiab;ﬁ

on S. From Theorem 2.6, ITf(z)/(z——ﬁ(,)dz—llﬁ(zo)/(z—z,,)dz= I7Q(z)ds
— F —zY Tdz.
=0, and thus Irf(=)/(z—2)ds = () I(z—2)

,If L is an Lg,, collection, then for feL, Ef(s)=2—2 for z¢ .S;,
and hence 1 = Ef(2)-f'(2) for z e S;. Thus L is a;n Is—ttite—z0) c.ollectwn
and therefore from Theorem 1.10, Ip(z—2) = IzLds = 2ni. Hence
Irf (@)/(2— =) dz = 2mif (2). . N

Remark. We can readily show that if T is rectifiable, then
l‘]'(z)/(z—zu)dz is defined and equal to Irj(2)/(#—#%)dzs, and hence (1)
T
reduces to the Cauchy Integral Formula.

TeEoREM 2.8. Let 0<ro<1 and f a differentiable funciion on

—+co

= . X . n . i
8 =U-—U,,. Then there exisls a power series D cnet comverging um

—00

formly on compact subsets of S to f.

Proof. For #eK, set Faifz) = (2ni)_1f(z)(z—w)“f for all & eS——{m}:
From Theorem 1.3, for #e U, y ¢ K—U,,, there exist unique numbers
g(x) and h(y), such that g(z)= I F.des for all 1?r> jz}, and ;:Eyg
= Tp Fydz for all 7, < 7 < |y|. Then from Theorem 2.7, f(2) = g(x)—h{z

all ze8. ) .

o Suppose e 8, 1> r> ||, and #,, #, ... a sequence of points in U,é
distinet from , converging to . For ze M, = U_—1 Upy neo, fe
1u(2) = [Fr(2) —Fo(2)] (n—2)"" and w(s) = Fy(z)(z—2) . Then .{”n}fﬂl
converges uniformly on compact subsets of M, to w. Expressing é
as the union of two connected and simply connected open sets anc L
applying Theorems 2.5 and 2.6, we see that [g(z:)—g(®)] (wn——m% R
= I (Fey—Fo)(@n—2) "ds = Ioade converges to Igwdz as m-—>oo, 00
1>¢>r. Similarly % is differentiable on K—U,,. Clearly h{z)—>

For 2 € Uyrey Set k(2) = h(1/2) if # == 0, and k(z) = 0 if 2 = 0. Then
% is continuous on Uyr, and differentiable on Uys,—{0}. Then from
Theorem 2.3, k is differentiable on Uyy,. Then from Theorerm 2.4, there
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o =

exist power series D 4,2 and D, b,e" converging uniformly on compact
0 4]

subsets of U and Uy, to f and k respectively. Setting ¢, = a, if n > 0,

~+o00
and ¢, =b_, if n <0, for new, we have that D enen converges uni-

formly on eompact subsets of 8 to f=g—nh.

3. Removable singularities. In this section we are concerned
with the removable singularity problem. Our approach is motivated by
the argument for the case when the singularity is a single point, given
by Poreelli and Connell [1, 5], using differences of difference quotients.

DerFNTION 3.1. Let 4 CK, and let T = {I;}2; be a sequence of
subsets of A. Then T is called a partition of A, if A =1JT; and

1
TinTi=0 for i #4, ¢,jew. If V= {V;}iz, is a partition of 4, then
V is called a refinement of T, if for every i e w, there exists § e w such
that V;C T;. A collection X of partitions of 4 is called a family, if for

every T and V in %, there exists a common refinement W of T' and
¥ in 2. We shall call X an M family, if for every > 0, there exists 7 ¢ X

such that if V = {V;}2; is a refinement of 7' in X, then 2 SV < e

Let f be a function on a subset B of K containing 4. Then f shali
be called a X function, if for every > 0, there exists 7 ¢ X, such that

it ¥ = {Vi}i=, is a refinement of T e X, then Y 8[f(Vy)J < e. We shall
1

call { a Py function, if for each © e .4, there exists M;,> 0 such that
fy)—Fa) < Myoly —a| for all ye A. If there exists M > 0, such that
[f{y)—f(x)] < Mly—a| for all #, y ¢ A, then we shall call f a P* function.

THEOREM 3.1. Lot ACBCK, and let X be a family of partitions
of A. If f and g are X functions defined on B, such that fl4 and g|4d are
bounded, then f-+g and f-g are X functions. If h is a P% function on B
and X is an M family, then h is a X function.

Proof. There exists A >0 such that [f(z)+|g(@)| < M for all

zed. Let e> 0. There exists Te X such that if V = {V;}2; is a re-
Lo

finement of T' in X, then J 8[k(V)]® < int{e/dM? e/4} for % =g and
1

k=h. Let W= {Wi}Z, be a refinement of T'in %, i e w, and z,y ¢ Wi.
Then

I +9) ) —(F + 9) @) < [I(F () —F (@) + g (y) — g (@)]*
<2lf (y) — () 1+2|g( —g(m)ﬁ.

SL(f +9) (Wa)I* < 28[f (W) +28[g (W),

Thus

[l
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and hence

SL(F+ ) (WoF < 2(c/4) +2(e/4) = .

HMZ

Thus f+¢ is a £ funetion.
Shnilarly for iew, and %,y ¢ Wy,

- ) ) — (- @ = T g@)—F g @]+ ()9 —f (@) g ()]

<2MIf () —f (@) +ly(?/)—g(w)! 1.
Thus

S‘a[f 9 (W) <2M® 25[; P +6[g (W) < 2M*. 2. [e/AM*] = .

Thus f-¢ is a Z funection.
Now there exists M > 0 such that [h(2)—h(y)| < Miz—y| for all
x,y ¢ A. Suppose &> 0. Then thele exists T'e X such that for every

vefinement ¥V = {V;}ie; of T in %, Z 8(V:)? < ¢/ M, and hence Z(S[f Var©

<2M 6[(V,~)]‘ < M(¢g/M) = e. Thus k is a X function.
1

TaroREM 3.2. If ACBCK and | and g are P4 functions on B that
are bounded on A, then f+g and f-g are P4 funclions. If b is a P4 func-
tion on B and m(A) = 0, then m[h(4)] = 0. If 8 is an open set, H a com-
pact subset of 8, and f is a differentiable function on 8, then f is o Pk
function.

Proof. There exists M >0 such that [f(z)+|g(z) < M for all
red. Let xeA. Then for all y e 4,

W+ W) —(f+9) (@) <If@) —f@)]+1lg)—g @)

< Myl —y| +Mpplo—y| = [Myo-+Moe)- l5—Yyl 5
also, :

-0 — (- 9)w)l = I @) —g () ()] +[g @) (m)— (@) g ()]
< gl Ii( y)—f(w)l+ [f (@)} 1g(y)—g (@)
<[ My +Mys) lo—yl- M

Thus f+—g¢ and f-g arve P4 functions.
Suppose m(A) =0 and > 0. For n e w, set Ay = {r e A| Mpo<n}.

Then UAn =4, and m(4,)= 0. There exists a collection {Ruidni=1

of circular regions such that for n ew, AnC UsZiRni, and 2;5 (Bui)®

< g/nn2". Then
f(A) .C_ Ur.i=lf(Rni) ?
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and

o0

D) mlf (R <

n,g=1 [

o0
e ), 0(Ru)?< Z'm g2™ =¢.

oo
i=1 n=1

De

|
-

Thus m[f(4)] <e. Since ¢ is arbitrary, m[f(4)] = 0.

Let r = 6(K— 8, H)[2, M=sup {|f(t)| ! e K, (, H) <7}, and @,y e H.
Then as in the proof of Lemma 2.2,

i [fy)—f(@)| < 2Mr |y — ),
if ly—o| < r. Trivially (1) holds if |y— | > r.

TesoREM 3.3. If A is a closed subset of U and f a map of U such
that f s differentiable on U—A, then f is differentiable on U, if either:

1. 4g=A—C (0 =U-—U) possesses an M family of partitions X
and | is a X function; or

2. m(do) =0, and f is a P4, function.

Proof. For s e U—4, let by = Q. Fora,y ¢ U—A4, let by = Fiz—hy,
and C be the set of all numbers ¢, such that there exists a com-
ponent § of U—B, where B= 4 v {#,y}, such that hey(2) = a4-c2
for z ¢ 8, for some a ¢ K. Clearly  is empty or countable. Hence there
exists a sequence of positive numbers ¢, > ¢, > ... converging to 0, each
lying in K—C. For ze U, iecw, seb Wi(8) = hgy(2) — 2. From our con-
struetion w; is non-constant on each component of U~—B, and thus
wq is light on U—B, for ¢ ¢ w. .

Suppose that 1 holds. Let 0<r<1, and set 4, =A ~ T, and
By =B—0. For ze U—{z}, let p(2) = (¢—)"" Then P is differentiable,
and hence from Theorem 3.2, p is a P%, function. Since X, is 3 M family,
from Theorem 3.1, p must be a Z, function, where %, is the collection
of all partitions of 4, of the form {4, ~ Ty ie o} u {z} v {y} for some
T ¢ Z. Then since f is a bounded X, function, and p is bounded on A,
we have from Theorem 3.1, that fsp is a Z, function, where f, = f|T — {z}.
Continuing in this manner, we deduce that Wi is a X, function for i e w.
Then by Definition 3.1, we have m[wi(4,)]= 0, and hence m[wi(B,)] <
k,f_,zlm[w.;(A,)] =0, and thus wy(B,) is nowhere dense in K. Then from
Theorem 1.11, for 2z ¢ U,

(@) — el < ha(2) + 2] = |if2)] < §u§lwf(t)! < Tyt
where Tpy = stug |hey(t)|, and hence
€

Vhzy(8)] < Loy + 2{es] .

Since lime; =0, we have |hy(2)| < Ty for 2 e U.
00
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Suppose that 2 holds. Then m(B;) = 0. Since f and P are PA‘,, func
tions, from Theorem 3.2, fo-p is & P4, function. Continuing in this
manner we deduce that w; is a P4, function for ¢ ¢ w. Then from Theo-
rem 3.2, since m(4,) = 0, we have gn[w.;(Bo)] = 0. Then, as above, we
have |huy(z)| < Tay for 2z U. .

Hence in the case where 1 or 2 holds, letting #, e 4 —C, and ay, 2, ...
be a sequence of points of U—A4 converging to a,, we have |hsl(a)—
Basf(@)] = Vgy(@0)] < Loy, for €, € 0. Clearly 11,1_]3100 Tom; = 0 and hence

{ha(@))ioy is a Cauchy sequence. If Yus Yas - is a sequence in
U—A converging to a,, then (o) Yimr 18 @ Cauchy sequence. Now
@y, Yy Lyy Yay - i5 @ sequence in U-—A converging to %, and
hence Rz (@) s Byy(@s) s hay(®a) 5 Fn(@y)y - 1S also a Cauchy sequence. Thus
1im hy,(2,) must equal 11:& By (). Since

hai@o) = [F @) —F (@)l [mi—w] T for  deow.
i must be differentiable at a,. Thus f is differentiable on T.

Levma 3.1. If T s a rectifiable simple closed curve, H a compact
subset of K—T, A a subarc of T with endpoints © and ¥, and s> 0, then
there emists an are B in T o I(T) and an arc T,C T, with common end-
points u and v such that AC Ty, B T = {u} v {v}, lu—a|,p—y|<s,
L(B) < 8L(4), where L(A) denotes the length of A, and HC E(B v Ty).

Proof. Let W be a subarc of T with endpoints p and ¢ and f(f)
= L([p,t]) for te W, where [p,?] denotes the suba.rc. of W with end-
points p and t. Then clearly f is one-to-one and continuous, and hence

is a homeomorphism.

! Let 4, be ;psuba,rc of T with endpoints @ and b such that 4 C 4,
z ¢ [y, b], and such that L([a,«]), L((y, b]) < inf[s, |#—y|/6]. Let >0,
and 2 =2 < @ < ..<Tps1 =1y be a subdivision 0# A4, such that
L([#:, 2isa]) < 270 inf[8[4, T—(a, b)], &, [ —y|/6]. For i= 0,1,y m let
Q; be the square with side 2L([;, #:11]) and center x; with sides par-
allel to the » and y axis. If Q = UpI(Q:), then @ ~TC 4,. IEP = B(Q),
then P is a simple closed curve such that A C I(P), and d(p, 4) <s,
for all p e P. From the proof of Theorem 1.6, we may choose & s0 thab
H v [T—(a, b)]C E(P). Then since #,y ¢ I(P), we have (a,z) n P # O
and (y,0) P #@.

There exists an arc M C P, with endpoints 2, and ¥, such that
Agn M= fw}v {1}, vyela, ] and y; e[y, b]. Thus Py=P "[M".Ao}
is a subarc of P, intersecting [a, #] and [y, b], and hence there exists
an arc N C P,, with endpoints @, and y,, such that N ~ 4, = {@:} v {¥a},
@y ela, ], and ¥, €[y, bl. i

Suppose that both of M —A4, and N —4, lie in the same compo-
nent D of K—A. Let My—= My [5,,y,] and Ny = N v [y, y:]. Since
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MnAN-4,=0, M—A4,C E(M,) (ct. [8], p. 31). N—4,C B(M,), |5,—a|
< |l@—yl/3, ly.—yl < lw—y|/3, and henee there existy w e N, such that
fw—a] > lo—y|/3 and |w—y| > |s—y|/3. By our construction of P, there
exists a polygonal arc W C @ with endpoints w and 2, such that W~ P
= {w}, and W ~ 4, = {2}, and such that L(W) < le—yif6. If z e[z, y],
then since w e B(M,), W—{z} CD, and we must have W ~ M+£0.
But then [W—{w}]~P#0. Thus ze [a, 2] or ze[y,b], and thus
fw—u| <|z—y|38 or |[w—y|< |w—y|/3, which is impossible. Hence
MCT(T) or NCI(T), lei—a| <s, and |y;—az| < 8, for i =1, 2. Finally

L(H) and L(X) < 3 8L (s, arur]) = 8L (A).

We now give a new proof of a classical theorem (ef. TMitus and
Young [7]).

TEEOREM 3.4. If A is a rectifiable ave in T with endpoints a and b
Such that 4 ~ C ={a} v (b}, and { & map of U such that 1 is differentiable
on U—A, then f is differentiable on U.

Proof. Let D, and D, denote the components of U —A. Then for
%=1, 2, there exists from Theorem 2.6, a differentiable function g; on Dy,
such that gi(z) = f(2) for z ¢ D;. For i =1,2 we set T; — D;—D;. Sup-
Ppose p e I and 6 > 0. Let B be a subarc of T with endpoints @ and b,
such that p e(a,b) and L(B) < §/24, and B be a circular region with
<enter p and radius less than 6/6, such that T;~ RC (a, b). Then there
©xist line segments P and @ lying in R with endpoints respectively p,
and p,, and ¢; and ¢,, such that P~ T; = P}y @ ~ T = {g,}). Hence
<each of L(P) and L(Q) is less than é/3.

From Lemma 3.1, there exists a polygonal arc W, with endpoints
@ and y such that [p,, ¢] C (2,y) and p,, g, ¢ I(W,), where Wy = W U [, y]
and such that L([z, y]) < 8L(B). Then WA P #0@ and W~ Q +09,
and there exists an arc W, CPu@u W with endpoints P and g.
Hence L(W,) < §/3+6/3 +8L(B) < and

19:(P1) —9i(¢1)| < 2L(Wy)- sup [gi(#)] < 26 sup [f(2)] .
teWy tel7
Thus g; may be continuous extended to D; for i =1, 2.

For >0, there exists 6> 0, such that 2,yeU and jop—y| <6
implies |f(x)—F(y) < & Let P and g be points of 4 such that L([p, q)
< 68, and set g = eL([p, q1)/8. Let i< {1,2}. Then from Lemmas 3.1,
there exists a polygonal arc P; C D, with endpoints py, g5 € A, such that
LP) < 8L([p, 41) < &, Pi~ Te= {ps, gs}, and [ (p)|- [p —pe], f (p)i- lg—gil,
94(p3) — gilp)l, |g3lgr) — g@)| < &,. For ze K, lot hiz) = gu(2) — f(p)e
Then M = [4:(p) ~gx(q)] — [¢2(0) — 9u(g)] = [Tu(p) —hi(@)]—[he(p) —ho( )], and
a(p) —a(pe)] < 19:(D8) = gup)l + 1f ()] [p —pil < eo-+280 = 26 Similarly
1hi(g0) — u(g)] < 2¢.

Topological, analysis of analytio functions 179

Let ¥ = [hy(p1) = hu(61)]—[ha(p2) — hy(g5)]. Then |[M—N|< 8 =eL([p, q1).
Now for i =1, 2,

[he(pa) — halgo)l < 2L(Pq)- sup [Ri(?)]

< 16L([p, q])- sup I1{8) = (p)| < 16eL([p, q1) -
Thus |N| < 32¢L([p, q1),
M| < |M—N|+|N| <eL([p, q]) +32L([p, q]) = 33:L([p, ¢}).

Let u,v e A. Then taking a suitable subdivision of [, v], we see that
My =[g:(w) — ga(0)]— [ga(%) — ga(v)] < 33eL{[w, v]) < 33sL(4).

Since ¢ is arbitrary, M, = 0. Thus there exists 0 ¢ K, such that gi(z)+e¢
= gy(s) for zed. Let g(z)=gu(e)+ec, for zeD; and g(g) = gi(2) for
zeDy—A.

Let X be the family of all partitions of A4, consisting of finitely
many connected sets. Since 4 is rectifiable, X is an M family. Using
above methods, we deduce that for u,ved, |g(u)—g(»)| < 8L([w, v]).
Thus g is of bounded variation on A and hence g is a 2 function. Then
from Theorem 3.3, g is differentiable on U. Since ¢'(2) = f(z) for z ¢ U—A4,
and g’ is continuous, we have f(2) = ¢'(2) for all #e U. Thus f is differ-
entiable on U.

Remark 3.1. Theorem 3.4 gives a necessary but not sufficient
condition for f to be differentiable on U. The following example, due
to Denjoy (cf. [3], p. 33), is analogous to functions met in potential
theory. Let H be a compact set such that m(H)> 0. For s e K, let
Fo(z) = (2—a2)™ for se KE—{z}, and let Fy(2) =0 for » = . Let R be
a circular region containing H. Then for o ¢ R,

a(R) 2

[1Pdam < [|Fojam = [ 8(o, &) dm(z) = [ o[ [ 1ra6]ar = 2ms(R) .
H Rax Rz 0 0

Thus f Fdm exists for # e H. For # ¢ K—H, the existence of 1! Fpdm
b4

is obvious. For # ¢ K, let f(x) =Hf Fodm.

Suppose #;, e K—H, and @, %, ... is a sequence of pomts distinet
from #,, converging to ,. Then the sequence of funct.lons G13 Jay ooey
where gn(z) = (2n—2)/(%—2) for n e w, 2 ¢ H, converges uniformly to the
funetion ¢,, where go(2) = (w,—2) * for z e H. Then ﬂ h[ gndm = 4 Jodm.
Now
U @)1 (@0)]- (] * = (@a—20) ™ [ [(wn—z)‘h(wrzﬂ““"m‘! Pt

H
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Thus
lm [f (z) — (@)] (@ —a) ™ = [ godm.
—+00 H

Thus f is differentiable at %, and hence f is differentiable on K —H.

Let weH, ¢> 0, R the circular region with center & and rading
816w, f,(y) = R ﬁf _ Fudm, and fy(y) = . !R Fydm for y ¢ K. Then f =, +7,,
and |f1(y)| < 2m8(R) = &/4 for all y ¢ R. Since 12 is differentiable on B and
hence continuous on R, there exists an open set S CR, such that z 8
and |f(y)—f(z)] < /2 for 4 eS. Then for yel,

@) —7 @) = 1f29) +Fly) —Fu(@) —Fal)] < Fu0)] + [Fol@)] - aly) I ECI
<efd+sfd-g2=c¢.

Thus f is continuous on K.
Now for #< KE—H, |f(s)| < m(H)/5(w, H), and hence lim f(z) = 0.

For v ¢ K, f(x) =Lj; of(z—z)dm :J(l —2/z)"dm, and hence lim @f ()

= m(H) > 0. Thus f is non-constant on K —H. Since 4 can be readily
taken so that m(4) > 0, we have the desired example.

We note t]:Ea,t Denjoy (cf. [3], p. 60) has also given an example
of such a non-differentiable function, in the ease when m(A) = 0.

THEOREM 3.5, Let A be an are in T with endpoints o and b such
that 4 ~ 0 = {a, b}, and f a map of U such that f s differentiable on U—A.
Then if f is of bounded variation on 4, f is differentiable on U, and there
exisis a discrete set G C U, such that A—G—0 is the union of @ couniable
collection of rectifiable open subarcs of A.

.. Proof. Since j is of bounded variati»n on A, fis an M, function
Henee m[f(4)] =0, and F(4) is nowhere dense in K. Omitting the
trivial case when j is constant, we have that f is Hght (ef. [8], pp. 93-95)
so that, from Theorem 1.11, / is an open map on U. Tet p e U. Then
from the pro:)f of Theorem 1.11, there exists gz simple closed curve TC U
such that f7/(p) n T =0, and f7(p) A I(1) is finite. Thus f|U Las
the “s.cattere.d inverse property” (ef. (8], p- 83). Making use of results
of.Stoﬂow (ef. [8], pp. 86-88) concerning light open maps, we see that
f is “loea..lly equivalent to a power mapping” on U, and hence there
enf.ts a diserete set ¢ C U, such that if 2 ¢ U@, there exists a circular
region R, C U, with center @, such that f|R, is one-to-one.

Let D, and D, be the components of U—4. The lightness and
openness of f|U can also be deduced from g theorem of Titus and Young
(cf. .[7]) which malkes use only of the fach that fIDs is light and open
for i =1, 2, and that f(4) is nowhere dense in K.

icm
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Let # e A — (' —@. Then since D; is homeomorphic to U for 4 = 1, 2,
there exists a simple closed curve I'C U, such that setting § = I(7),
we have that B= S~ 4 is an arc in § with endpoints a and b, such
that B~ T = {a, b}, and that f; = f|§ is a homeomorphism. Then from
Theorem 2.2, fo© is differentiable on f(8)—F(B). Since clearly f(B) is
a rectifiable arc, from Theorem 3.4, fo" is differentiable on f(8), and
hence from Theorem 2.2, f, is differentiable on S. Thus f is differentiable
on U—@. Then from Theorem 2.3, f is differentiable on U.

Let e A—C—@, and define 7, S, B as above. Then from Theo-
rem 3.2, fo© is a Pg function. Paralleling the arguments in the proof
of Theorem 3.1, we see that each subarc of B—T' is rectifiable. In par-
ticular, there exists an open subare 4, containing # sueh that 4, C B,
and A is rectifiable. Thus {4;}ze4-0-¢ is the desired collection of open
subarcs. We note that if f is a continuouns function on U, and f is differ-
entiable on U—A4, then from Theorem 3.4, f is differentiable on U—@,
and, from Theorem 2.3, f is differentiable on U.

Remark 3.2. Let A be an arc and f a map of K such that f is non-
constant and differentiable on K—4, and s = limf(x) exists. Then

N0

from Theorem 1.14, f(4)=j(K). Now f|[K—A is an open map and
hence f(K—A4) is open in K. Thus f(4) is not nowhere dense in XK.
If instead of the hypothesis of Theorem 3.5, we require that f(4) be
nowhere dense, then as in the proof of Theorem 3.5, we are reduced
to the case where f is & homeomorphism. It is not yet known whether
this latter condition is sufficient to insure that f is differentiable on U
(ef. [7]).

Remark 3.3. Functions of the form discussed in Remark 3.1 may
be obtained in a natural manner from consideration of functions discussed
in Theorems 3.4 and 3.5. Suppose that 4 is a compact subset of U,
and f is a map of U, such that f is differentiable on U—A. Now there
exists 0 <7, <1, such that 4 C U,,. From the proof of Theorem 2.8,
there exist differentiable functions f on U and » on K —1U,,, such that
Jz) = g(2) +h(z) for 2¢ U~TU,, and lim h(z) = 0. Let fo(z) = h(z) for

X200

ze K—U,, and fo(2) = f(s)—g(2) for 2 ¢ U,,. Then f, is continuous on K,
lim f(x) = 0, f, is differentiable on K—4, and 7(s) = fi(z)+9g(z)

for z¢ U.

We now take 4 to be an are. If f, is differentiable on K, then, from
the proof of Theorem 3.5, f(4) is the union of a countable collection
of ares and points, and hence fy(4) is a first category set in &, and thus
is nowhere dense in K. From Theorem 3.2, f, must be constant, and
hence f, = 0. Thus a necessary and sufficient condition that 7 be dif-
ferentiable on U, is that f, =0.

13*
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Sur les demi-groupes compacts et connexes

par
R.P. Hunter * et L. W. Anderson* (University Park, Penn.)

Nous nsioorodnsé certains aspects de la structure des demi-groupes
compacts et connexes, c’est-a-dire, nous étudions la question de l'exi-
stence de divers types de sous continus. Nous avons recours & la notion
suivante (voir [2]). On dit qu'un tel demi-groupe S est algébriquement
irréductible entre les points o et b lorsque ces deux points ne se laissent
unir par aucun sous-demi-groupe compact et connexe qui soit différent
de 8. Il s’ensuit d’aprés la maniére classique qu’un demi-groupe com-
pact et connexe contient un sous-demi-groupe compact, connexe et algé-
briquement irréductible entre chaque couple de ses points. La termi-
nologie suit généralement cela de [13].

TafhorEME 1. Soit 8 un demi-groupe compact et commewe algébrigque-
ment irréductible entre son identité e et son zéro 2. Alors H , le sous-groupe
mazimal contenant e, est un continu.

Démonstration. Soit ¢ le composant de H, qui contient e. Nous
supposons, au contraire, que O # H,. Puisque le quotient H,/C est un
groupe compact et dim(H./C) =0, il existe des petits sous-groupes de
H contenant ¢ qui sont ouverts et fermés. Done, il existe des ouverts
Vet O tels que VAaH, #9, CCO, 2¢V* L 0% T'=H.n 0 est un
sous-groupe, V* ~ 0* =@, et H,CV u O. Puisque TT = T, il existe un
ouvert W tel que 7'C W C O et WW C 0. Soit 8, I’idéal bilatére engendré
par ensemble fermé 8 —V —W. Donec 8, est un idéal fermé, et puisque
H,CV v W, l'on a aussi, §; ~ H,=0. Il découle que §—8,=V'v W’
ol V' et W' sont des ouverts contenus dans V et W respectivement.
En particulier, §, = 8§ —V'—W’ est un idéal et W W' ~ V' =. On sait,
[3], qu'il existe un sous-continu M tel que e¢eH,~ M, MC W et
M—H,+@. Soit X le demi-groupe compact et connexe engendré par M.

X=(Mo Mo M. ).

Nous démontrons d’adorq queV’~X=0.

* Avec Lappui de The National Science Foundation NSF GP 237 et NSF GP 610.
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