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Everywhere oscillating functions, extension
of the uniformization and homogeneity of the pseudo-arc

by
J. Mioduszewski (Wroclaw)

The purpose of this paper(!) is a further study of the psendo-are,
i.e. the heredetarily indecomposable snake-like continuum (see Kna-
ster [5], Moise [10] and Bing [2]) by using the method of inverse limits.
In my previcus paper [7] the pseudo-arc was defined as the universal
object for all snake-like continua (it was called therefore USC, the uni-
versal smake-like continuum). This paper is devoted to the study of the
homogeneity of the pseudo-arc and of the connexion of this property
with inverse limit expansions of USC. The functions appearing in such
expansions (ealled EO-junctions) ave investigated in Part I. Part IT
contains a more detailed study of uniformizations of functions. The
homogeneity theorem is the object of Part IIL and presents a strength-
ened form of theorems of Bing [2] and Lehner [6].

The author would like to express his thanks to A. Lelek for his
unumerous critical remarks concerning this paper.

I. Approximate symmetry of everywhere oscillating functions

Everywhere oscillating funetions, briefly EO-functions, form a class
of mappings of the closed interval onto itself which occur in the de-
scription of the pseudo-arc in terms of inverse limits (see [7]). These
functions have been defined without topological notions (see also the
definition below) and in this part they will be investigated independently
of their topological applications. What is called here the oscillation
property (OP) of EO-functions corresponds to the crookeduness of chains
in Bing’s description of the pseudoare. The purpose of this part of the
paper is to show that EO-functions are at each point, only approxi-
mately of course, symmetric in the sense-here defined. This approximate
symmetry of BO-functions is, as will be seen in Part I, the reason
for the homogeneity of the pseudo-are.

(*) The present paper was wiitten partly during the author’s stay at the Moscow
State University.
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1. Definition of EO-tunctions. Let {X,}, n=1,2,.., be
a sequence of closed intervals. Consider for every X, a sequence of its
subdivisions {X,,}, # =n—1,%, .., such that for every n

(1) all the simplices (2) of Xpn—1 are congruent,

(2) subdivision Xnri1 48, for every r>n—1, a subdivision of X, such
that each simplex of Xnri1 8 @ half of a simplex of X,,.

Consider for every r=0,1,... a category K, (for the notion of
category, see Godement [3]) whose objects are X,, and whose mor-
phisms are simplicial mappings of X, onto Xu,., where m,n <r-+1.
These simplicial mappings being onto, Map(Xpsy Xny) 7 O is equivalent
to v(Xmy) < #(Xp,), where v is the number of simplices in the sub-
division.

We shall assume that

V( Xpy) <¥(Xny) for m<a<<rdl, e m<e<r 41 <=

3) ,
<= Map (Xpry Xmy) #9.

I K is a category and A, B are objects of K, then a morphism
m: XA is said to be a majorant for Map(4, B) if for each pair
75" e Map (4., B) there exists a morphism a: X—A4 such that

flox=F"ca.

Let X', X" be closed intervals equipped with subdivisions. Let
Map (X", X’) be the set consisting of all simplicial mappings of X'’ onto
X‘. By definition, EO-functions are simplicial mappings m: X' % X"
being majorants for Map (X', X’), where X’ is a closed interval
equipped with a subdivision, whenever the set Map(X'’, X’) is non-
empty and contains a non-isomorphic mapping.

We shall assume that categories K., r =1, 2, ..., have the following
property:

(4) the set Map(Xyiay, Xpp) contains an BO-function =** which is

a majorant for all sets Map(X,,,, X,,), n <7,

It is convenient to form a matrix consisting of objects of all K,:

XI,O
X <‘X2,1
Xio< XKoo Xy

(*) 1-dimensional simplices of course.

Buverywhere oscillating functions 133

The presence of an arrow between objects means that the corres-
ponding set of morphisms is non-empty. This matrix contains a sequence
of BO-functions a"': X,.i,—>X,, the inverse limit of which is the
pseudo-arc. The last fact and the existence of a sequence of categories
K, satisfying conditions (1)-(4) was shown in [7].

2. Vector chains associated to a function. We shall con-
gider vectors P lying on a given closed interval I = (0, 1, which will
occasionally be regarded as a vector I = 01. Given P = p'p”, we set

[P]={z: p'<z<p"}
(for brevity we consider here only the case p’ < p”). When no con-

fusion is likely to result, we shall write briefly P for [P]. Given sub-
sets 4, B of I, we write

A<B (or A<B)

if a<<b (or a<b) for all ae 4, beB. If P, Q are vectors having the
same orientation, we write

P<Q<«>P<@Q and PCQ< PCQ.
An ordered collection
T = {ovey Piy Piy1y 0}

of vectors is said to be a vector chain if for each ¢ the origin of Py
coincides with the end of P;. If for each ¢ we have P;< P, then
we say that § forms a decomposition of P = ;P;. A vector chain is

=[ZP{].

A vector chain is said to be irreducible if it contains no regular
vector subchain consisting of more than one vector.

Let f: I I’ be a function, where I',I” are closed intervals.
Assume I', 1" = <0,1). Given 4 =a'a", f(A) denotes the vector
F@)f(a™). We have for every 4

[HA)]CF(A) .

If equality holds, vector 4 will be called f-admissible. An f-ad-
missible vector 4 is said to be saturated if there exist no vectors B such
that 4CB, 4B and f(4) ={(B).

Bach decomposition # = [..., 4;, Ait1,..} of I” into f-admissible
vectors induces a vector chain {..,7(d:), f(4s1), -..}. The  following

10*

said to be regular if
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procedure associates with f and the right end 1 of I” an irreducible
vector chain, called the »ight chain for f, which is uniquely determined
by f.

Namely, we define a suitable vector chain {4,, 4;, ...} which in-
duces it. At first we define A, as the maximal f-admissible vector for
which f(4,) = f(I") and which is oriented from 0 to 1. Having 4; we
define A;.; as the maximal f-admissible vector whose origin coincides
with the end of 4; and which is adjacent to A4;.

In an analogous way we define the left chain for f.

We have the following invariantness of chains for f, which will be
formulated for right chains only.

(3) Let a: I 281 be given, where I''" = (0,1, If a(l)e A, then [ and
foa have the same right chains wp to vectors which are contained
in f(4,).

To prove this, we define a suitable decomposition of I'"’ inducing
the right chain for f o a. Take 45, the maximal vector on I'” such that
a(dg) = A,. Having A; we define A7, the maximal vector adjacent
to A4; and such that a(diy;) = As;pi. In this way we define a vector
chain {4;, 41, ..., 4;,} inducing that part of the right chain for foa
which coincides with the part of the right chain for 7 induced by
{4,, 4, ..., A,_1}. The remaining vectors of these chains are contained
in 1(4,).

In the case of simplicial functions f: I/ —I' (here 1’,I" denote
intervals as well as their subdivisions; by I’, I” will be denoted, as
before, the corresponding vectors) the irreducible vector chains for 7
are finite.

3. Oscillation property. We consider simplicial functions f: I''—I’
and the following property of these functions.

(OP) For each f-admissible and saturated vector C C I not con-
taining any end of I there exists a deecomposition

C=C+GC+¢C,
into f-admissible vectors such that
f(C) = f(C1) = _f(cz) = f(Cs)

We shall prove (this, in fact, was proved in [7] but for another
definition of oscillation property) that

(6) Every EO-function = being a majorant of Map(I”,I'), where I',1"

are closed intervals equ‘tpped with subdivisions, has (OP) whenever
(I 2y +2217
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To prove this, let m: I'—I", where I'” is a closed interval equip-
ped with a subdivision, be given EO function and let € be a z-admis-
sible and saturated vector on I’’’ not containing any end of I'”. Hence
there exists a vector J on I’ such that C is a component of a—=i(J).
Consider ' e Map(I”,I') such that L =f'(J) is a saturated and f'-ad-
missible vector and ' “(IntL) = IntJ. Such a function exists whenever
»(I') > B. Consider feMap(I”,I') having the following prop erties:
there exists a saturated and f’-admissible vector M for which f“(M)
=L, {"L) =M and which has a decomposition M = M, + M, -+ M,
into /'-admissible vectors such that /(M) = f"(My) = —f"(My) = ["(Ms).
Such a function exists whenever »(I") = »(I’) +2. Funection z is a ma-
jorant for Map(I”, I'), whence there exists a: I'"—I'" such that fom
=" o a. By the definition of /' and f”, € is a component of P A )
= Y YL) = a (M). Furthermore the ends of ¢ are mapped onto
the ends of J and onto the ends of M and then onto the ends of L.
It is easy to see that the decomposition of M induces a decomposition
of G, C= C1+Cz—]—C into f’o a-admissible vectors such that f''e a(C)
= j" o a(Cy) = —f" o a(Cy) = f"' o a(Cy). This decomposition of C has the
last property also for function f oz and in consequence also for =.
Thus (6) is proved.

Tet us observe that EO-functions s~ from the sequence defined
in seetion 1 satisfy the condition of (6) for r =2 (see [7], p. 187).

From (OP) one can easily deduce the following estimation.

7) If o2 A"—A’ is a partial famct'ww, of an BO-function satisfying (OP)
and o(A")=A'; then v(4"")>3“",

4, Symmetry of functions. Let f: I”—1I' be a function (not
necessarily simplicial) and let a e I”. Consider the partial functions

Foa =fI<0,a>  and  fia=7I<d,1>.

and the following vector chains:

(8) the right chain for f—, and the left chain for fiq

Funetion f is said to be symmetric around o if one of the vector
chains (8) is a residual part of the other, excluding perhaps the first
vector, which is assumed to be contained in the first vector of this
residual part. The greatest of chains (8) will be called the oscill ation
pattern of f around a.

Exaweres. Function f: I’ —I’ is symmetric around the ends of I
and around each point a such that 7(a) is an end of I’. In the first case
one of chains (8) is empty, in the second one each of these chains eon-
sists of at most one vector.
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In Fig. 1 an example of a symmetric function is shown.

We say that f is strongly symmetric around a closed interval
A4 =<{a=,a*yCI" if f is symmetric around each end of 4. We say that
1 is symmetric around A if the right chain for f_,- and the left chain
for f.o+ ave such that after the removal from those chains of all vectors
which are contained in 7(4) one of the resulting chains is a residual part

Fig. 1

of the other, excluding perhaps the first vector, which is assumed to be
contained in the first vector of this residual part. According to the
definitions, each strongly Symmetric function around 4 is at the same
time a symmetrie function around A. If f is symmetric around 4, the
greater of two chains:

the right chain for f_,~ and the left chain for Fiat

reduced modf(4) in the way just mentioned, will be called the oscillation
patiern of f around A.

5. Zones of points and intervals. We now introduce some
notions of a rather technical character. Liet f:I">I' aeI” and ¢ >0
be given, where I’, I' are closed intervals, We define the right ¢-zone
of a relatively to j (briefly rel. f) as the closed interval Z**(a) = <a , 8T,
where z;f is the first point such that 2t > a, and such that the distance
from f(277) to the ends of I’ is not greather than s. Similarly we define
the left e-20me of a rel. f. The sum of the right and the left &-zones of
@ will be called the ¢-zome of g.

The once enlarged right &-zone of g is, by definition, the right &-zone
of a augmented by a minimal closed interval Z adjacent to Z°(a) on
the right side and such that the Hausdorff distance between f(Z) and I’
is not greater than e. The fwice enlarged right s-zone of o arises from
the onece enlarged right e-zone of « by an augmentation just described.
We shall denote these zones by Zit(a) and Z:"(a). If &= 0 we omit &
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in these symbols and we write simply zone instead of 0-zone. Similarly
we define once and twice enlarged left e-zones. ‘

Now let 4 CI' be a closed interval. The e-zone of 4 re'l. f is, by
definition, the sum of the left ¢-zone of the le-ft fmd of 4, the mtel‘val.A
and the right e-zone of the right end of A. Similarly the once and twice

- of A are defined.
611131‘%:3 z,gnée;" be closed intervals. We say th.aﬂ.; {1, B are g-separated
by f if their twice enlarged &-zones rel. f are disjoint.

6. Properties of irreducible vector chains for EO-fune-
tions. Let w: 1”—I' be an EO-function and let'a belong to the com(i
plex I". There is a dependence between the the- right chain for m_, an
the left chain for mi,. Namely, as will be seen in Theorem 1, the beha-
viour of & in the e-zone of a is approximately the same as the beha-
viour of a symmetric function around a, for some 3'2 0.

Let a chain consisting of vectors A;= @iy, 4= 0., k1, and
Ay = axa induce the right chain

Py, oy P}y, Pi=pPira, DPi=w(a), Pen=mn(a),

o 7;5;-10te by e the diameter of the simplices in I" (by a,ssumptlon,)
they are congruent). Given p ¢ I', p #* f‘(“)’ we denote by p+e (oﬁr1 pl —-ee(ai
the point whose distance from s(a) is thatb ‘from n(a;? to ]119 enla ﬁeét
(diminished) by ¢ and whose distance from p is e Let » be the smalles
index such that pr e w(<a,1)). By this assumption we have

THEOREM 1. There exists a subsequence S,<< 8y < ...<<S§1 of the se-
quence r <r+1<..<k and a sequence

at >at > .. >ah>a
such that (%) s; = k—mn, where n can be equal T 0, 1, 2, 3 or 4, and
© n(a) =i —e,
(10) [p1— 6 prv1—e1C w((aFa]) C [pe+ 3¢ prsa+e]
for i = 8gy oy 81, and
(*) s =841 or (s%) 831 =8 +3
for each § =0, ...,1. Moreover, in case () we have

Iij-H _Ps,+1| < 2e.

() Prea+6 = n(a)+e denotes the point whose distance from 7 (a) is ¢ and which
lies on the opposite side of m(a) to p;.
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Proof. The first step of induction. In order to define

*
asu
we consider two cases.

Case I |p,—prys| > ¢. Denote by a, the first point on <a, 1> such
that (a;) = p,. Such a point exists according to the assumption con-
cerning r. Comnsider two subcases.

1. Function = assumes the value Pri1+2¢ between a and al. De-
note by &1 the first point at which z assumes this value and « < b1 < ay.
By definition of a; and @.., there exists a saturated and m-admissible
vector G such that a ¢ 0, U < @,y and #(C) = pp—e ppyy +e. Take a de-
composition C = C, +G,+C, in virtue of (OP). We see that =|C¢ does
not assume the value p,.;-+¢ on the left of a. Hence vector C, lies on
the right of ¢ and the end of C, satisties (9) and (10) if we substitute
it for a; and 7 for 4.

2. Function z does not assume the value Pri1+2¢ between a and a,.
In this case we shall show the existence of points lying between a and a!
at which value of = is p,.y+e, 4y or Pri1i—e. In fact, suppose that =
does not assume the values Prer+e and pyyq between @ and a!. Then
there exists a saturated and x-admissible vector C such that ¢ ¢ 0 and
%(C) = prii—ep,—e. Let C = C, +C,+C; be a decomposition of ¢ in
virtue of (OP). Since [Pr—Drs2| > ¢, vector C, lies on the right of a.
The value of = at the and of C, is prpg—e.

Take the last point lying before a, at which the value of x is Pr—e.
This point satisfies (9) and (10) for 4 =7

Thus we have proved that in Oase I there exi
{@,1> and satisfying (9) and (10) for ¢ =1,
we take as af, = a¥.

st points lying on
The last of these points

Case II. p,., = pr—e. Consider three essential subcases.

II'. There exists an a/y; such that a < Cri1y ®(Byps) = Pry1—e and
Gy < ay, where al’ is a boint satisfying (9) and (10) for i — .
Since a;' satisfies (9) and (10), we take th

e last such point as
a3 = ar.

II". There exists an @y Such th
satisfying (9) and (10) for
index #.

The last of such points,

at a<ajis and m(ag.) = pr—e
i=74+1 and there exist such a point for

@41, Is the desired point ay =af.;.
II'”. There do not exist points satisfying (9) and (10) for indices
7 and »41. In this case we define a3, = atis as follows.
Letb a;.; be the first point on <@, 1} such that n(a;s) = Dria=Dpr—e.
Consider two subcases, which are analogous o the subcases of the Case I
1. Funetion # admits the valye Dris+2¢ bebween a and a,,,. Let
drys be the first point at which # admits this value and such that

* ©
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@ < @rps < @py2. In virtue of the definition of Gy and Gy thefe exists
a saturated and z-admissible vector C such that e« C, O’ < @pey and
#(C) = Priz— € Pres + 6. Take the decomposition of C according to (QP).
Since z|C does not assume the vah}e Prys+ ¢ on the left of a, vector gz
of this decomposition lies on the right of a. We see that the end of G,
satisfies (9) and (10) for ¢ =7--2.

9. Function = does not assume the value p,.+3—§—2fe betweenv ¢ and
alve. Let a, be the first point on <a,1) such that m{a;) = p,. We have

@< Qyya < Gy .

If = admits the value p,.s-+2¢ between aris and a,, then there
exists a saturated and z-admissible vector C such that

ll;uuz < C < (zr+3 < ar" zmd TE(C) =:p7‘+3_6 ]71--4—3 Jr ¢ ?

where d,.s is (as Dbefore) the first point on <a,1.j>. such tha’g n('&';’;—s}
= pris+26. Let C=C,+GC,+Cy be 2 d.ecomposxtrlon of 01 mj?:. 1;e
of (OP). We see that the end of C, satisfies (9) and (110) for ;L—’) ; _4.‘

e« 1f z does not admit the value p,ys+2¢ before az, we p_wceed a:u
follows (compare subecase 2 of Case I). Nan}ely, we shall show ‘t‘hat thjl:
exist points lying between a and a, at which the value of. 7 tl;l ;prt;me ;
Pris O Priz—e. In fact, suppose that = does no't aldrm‘trt ‘ctxd ues
Prrz-+e€ and P, between a and a;. Then th,ere exists a saturate —g.
z-admissible vector C such that a e €, C < a; a;r'Ld n'(C) = Pris—E€ p%r. .
Let C = C,+C,+C; be a decomposition of C in virtue of- (OP).At» {nge
7|0 does not assume the value p,—e = p,;2 o0 the left‘ of a, vec (,)Il(hu :
lies on the right of a. The value of = at the end of C, is prys—e. L
we have shown that = admits the value p,y3—e¢ between o and a,rf.,_g.
Hence the last point lying before a, at which is p.i2—e the value of @

isfies d (10) for ¢ =7 +2. _ L
satlsfsli;ginznupf W)e have proved that in Oafse IF”’ t.hrere ex1si;hp01lr;’gz
lying on <a,1) satisfying (9) and (10) for ¢ =7 -+2. We take the
of such points as as, = a¥is. ‘
The second step of the induction. Suppose that points
ah > >0k >a, Spa=t-1,

satisfying (9) and (10) are already defined. We shall define (L’;,,,.. s
Consider two cases which are analogous to those of the first step
of the induction. )
Case L. |p;—piss| > 2¢. Denote by af the first point lying on <‘:; ) 1>-
such that m(af) = p;—e. Such a point exists according to the first in
clusion in (10) for ¢ =¢—1. We have

a<a <afy (=a3,)-
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Consider two subcases which are analogous to those of Case I in
the first step of the induction.

1. Function # assumes the value p;.;-2¢ between @ and ai . Let
dy+1 be the first point on <a,1)> such that 7 (@41) = prya+2e. By the
definition of af and @&.., there exists a saturated and z-admissible
vector C such that a € 0, 0 < @43 and #(C) = p;— € proq + 6. Let C = C, +
+ G, +C; be a decomposition of C in virtue of (OP). Since z|C does not
assume the value 9.1 -+¢ on the left of a, vector C, lies on the right
of @ and the end of C, satisfies conditions (9) and (10) for 4 = 1.

2. Function n does not assume the value Pi+1+2¢ in the interval
between & and af. We shall show that if assumes there one of the
values piy1-+-e, Py OF Doy —e.

In fact, suppose that = does not admit the values Pry1te and piyg
between a and a;'. Then there exists a saturated and 7 - admissible
vector € such that ae 0, €< af and #(C) = pr1—ep;—2e. Taking
the decomposition C = C,+C,+C, in virtue of (OP), we see that =
assumes the value pi1—e at the end of C,, the vector lying on the
right of a (the last assertion follows from the fact that #jC does not
assume the value p;—2¢ on the left of a, because Pi—2¢ iy greater than
P42 In the case considered here).

Thus af satisfies (9) and (10) for 4 =t

Summing up subeases 1 and 2 we see that there exist points lying
between a and af, for which conditions (9) and (10) are satisfied for
4 = 1. The last of such points we take as as, = af.

Case IL. |p;—psis) <2 In this case, in virtue of the induection
hypothesis contained in the first inclusion of (10) for 4= t, there exists
a point lying between @ and af ; at which the value of 7 1S Pir2. Denote

by ai:s the first such point. In order to define a3, = 0}5, consider two
subcases.

1. Function = assumes the value Pirs+2¢ between a and aj.e; leb
@43 be the first point on <a » 1> where it assumes this value. Tn virtue
of the definition of /., and di+5 there exists a saturated and m-ad-
missible veetor € such that ¢« 0, ¢ < iy and 7(C) = Pyog— 6 Pris +e.
Since =|C does not assume the value Pirs+e on the left of a, vector C,,
of the decomposition of C according to (OP), lies on the right of a.
The end of C, satisfies conditions (9) and (10) for i =1¢+2.

2. Function = does not assume the value p;45--2¢ in the interval
between a and af.s. Then, if it assumes there the value Ptrs -+ €, Diys OT
Piys—e, the last point in the interval <@, 6i1s> at which the value of z
18 pria—e satisfies conditions (9) and (10) for ¢ =t+42. If that point
does not satisfy conditions (9) and (10) examine the behaviour of = in
the interval between afis and af,. It may happen that (a) & assumes

icm
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first the value Pi4s+¢€ and then the value pis or (b) m assumes first
the value py4s and then (perhaps) the value piio-te.

(a) In this case there exists a saturated and z-admissible vector. C
such that @ € C, 0 < af-y and #(C) = Prr3—e Prio. Take a decomposition
C = C,;+ C, +C; according to (OP). Since z|C does not assume the value
P42 on the left of a, the vectors C, and G, lie on the rig}}t -of a. Th.e .1a,st
point lying on C; at which the value of o i p.ro—e satisfies conditions
{9) and (10) for & =t +2. N

(b) Since |pi41—DPi+sl > e, there exists a saturated and s-admissible
veetor C such that ajys < O < pi: and =(C) = pPyo—epirs—e. In ad-
dition, let C be the first such vector. Let C = G, +C;+C;y be a 'decom-
position of € in virtue of (OP). We see that the end of C, satisfies con-
ditions (9) and (10) for ¢ =1t+2. . - '

Sun(lming up, in all subeasese of Case IL there exist pon.}ts lying
between a and af, , = af; and satisfying (9) and (10) for ¢ =1{+2.
We take the last such point as a¥, = afis. . ‘

The end of the induction. The procedure dgscrlbed in the
second step of the induction, which leads to the definition of the next
point af,, fails if

(i) pi—n(a) =€ or

() [pr—pere] < 26 )

In case (i) we have ¢t =k or ¢t = k—1 and we regard ti:xe 1nd1jct10n
as finished: the last member in the sequence {af} is af = ai"1 = @1 OT
a3 = af1 = Gk

) In case (ii) we have i =k—mn, where # may be equal to 2 or 3.
In this case we also regard the induction as finished: the last member
in the desired sequence f{a¥} is af_s or af-s. _

and pireo—m(a) =e.

7. Approximation theorem for EO-functi_ons. W?, shalll deduce
from Theorem 1 the existence, for any EO-function a: I”—I" and 'for
any closed interval 4 CI”, of an approximation of :u-* by a f?mct%on
a*: I'" =I' symmetric around 4, the accurancy ¢ of this a.ppromma.mt(in
depending only upon mesh I’. The last fact .Wﬂl be expressed shzrty
by @ =,n*, and this notation will be used in the sequel. The § ate-
ment formulated above is an immediate consequence of the following
theorem.

TEEOREM 2. Lét an BO-funclion m: I'—I', a point a « Ij’ and & > 6e
be given. Then there ewists a function =*: I'"—I' symmetric ar.o'und a;
equal to = at point a as well as outside the e/2-zome of o m‘ul O'Ifts’bde 80M
intervals U™ and U+ containing the ends of this &/2-zone with diam=z(U ),
diamn(T+) <'s, a function which is furthermore such that


GUEST


142 J. Mioduszewski

Al

(i) a* =g 7T, »
(ii) the ends of the zome of a rel.w* lie in U and U+,

(iii) s* is comstant in some neighbourhood of a.

Proof. We define =* by a modification of . We shall do this in
four steps.

1st step. Consider nl<ay, ad, j =0,...,1. We modify this function
by cutting with the value p,,,; this means that we replace = on the
interval (a,, af> by a simplicial function =; defined in the division
points of I by

() = Poa I w(@) =pg,+ne, n=1,2 or 3,
’ a(x) for other .

In virtue of Theorem 1 we have m; =30 |{@s;, O3 .
We also make analogous modification of = in the interval between
tgy—1 and as,. The function which arises is denoted by nr.

2nd step. Let § be such that s, lies in the interior of the &/2-zone
of a and

(11) [ps;— (@)} > 3e.

We now modify z; in some neighbourhoods of a3. Namely, con-
sider the component of =y 1((paj, Ps;—3e)) containing point a¥. Denote
this eomponent by C;. If function 7p assumes on C; the value p,, we
do not change 7y on €. If @; does not assume that value we construct
on O; a function a; which is equal to =; at the ends of 0; and assumes
on (; the value Dss- Furthermore a; is simplicial with respect to sub-
divisions I' and I". Such a function exists if C; consists of at least six
simplices. An easy evaluation by making use of (OP), based on the fact
that the set of values of a;|C; consists of at least two simplices, shows
that O; consists of at least eight simplices.

According to (11), these improvements of m; at several a; satisty-
ing this condition are independent. The resulting function will be de-
noted by syy.

3rd step. Let j, be the greatest index such that (11) holds. Con-
sider ”ni(“sm a3‘50> and cut this function with the value n(a), ie. form
a new funetion wy; by the formula

(@) for z such that m(z) lies on the opposite
%) = side of n(a) to Des,»
ar(®)  for other z.

We then improve the function in a small neighbourhood of a in
such a way that (iif) is satisfied (the possibility of the last improvement
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is obvious). For the resulting function mmr we have s =g %, accord-
ing to the second inclusion of (10).

4th step. Let #~, #* be the ends of ¢/2-zone of a rel‘. 7. If the value
of @ at #~ (which is equal to the value of sy at #7) is equal 0 or 1,
we leave mr unchanged. Otherwise, we prqceed as follows. E.g. let’
w(z)=p and 1—p =ne < &/2. Consider an mte_rval J = <1——2pe>C I
and the component U~ of am(J) containing &, If U contanl{s the
end of I, we leave myy unchanged on U~ It U (lioes not eont'anm the
end of I'", we replace m|U~ by a simplicial fu}letmn B: U —I’ whose
values at the ends of U are 1—2ne and which assume on U the

Psj1 A

) / \ N 'A—ﬁf— /V i
\\\ AR VAV ___\ /'/ at(a)
/ \\ // \ // \n/ —

1y

6e

[ ) APOURRNE S,

Psj, ] \ /

Dg; 7
! Fig. 2

value 1. Such a function p exists whenever the number of simplifes in
U~ is at least 4n. From (7) it follows that this number is at least 3", and
therefore the construction is possible if » > 3. Then we do the same
at the end z+. ) ]

The resulting function is the desired function z*. Tt is symme:t_rlc
around a with pattern py =0 or 1, ..., Psy .r) Py %(a). Figure 2 illu-
strates the construction of =*.

II. Uniformization of symmetric functions

Let K be a category and f, y morphisms of K.‘A pair a, f of mor-
phisms of K is said to be a wuniformization of f, g if

foa=gof.
We shall consider the category S of the simplicial mappings of the

closed interval T onto itself and its subcategory S, cons‘isti.ng. ?f map-
pings which map ends onto ends. The possibility of uniformizing any
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pair of mappings was proved for category S, in the papers of Homma, [41
and of Sikorski and Zarankiewicz [11], and then the result was extended
to category § in [8]. The purpose of this part is a further study of uni-
formization, namely connected with the following question: given a uni-
formization a, f of partial functions 7|4, g|B, where 4, B are closed
intervals, what are the conditions under which the uniformization « , B
admits an extension to a uniformization of f,g. We shall see that the
required conditions are closely related to the symmetry of f, g around 4, B.

In the construection of uniformizations we shall utilize the so-called
bigraphs of two functions (see [11] and [8]) which are the subsets of
IxI given by

9] ==, 9): fl&)=g(y)}.

In order to find a uniformization of f,g it is sufficient to find
a eurve » = a(f), y = B(¢), tel, with projections into # and y axes
being onto, which lies in the bigraph. We shall call such a curve a wni-
formization curve. Therefore the problem of the extension of uniformi-
zations is equivalent to that of prolongations of uniformization curves.

Let us observe that the bigraph [f, g] is, in fact, the inverse limit
of the system consisting of two mappings f, ¢ having the same range.

1. Similarity of symmetric functions. Let f,g: I”, II"" - I"
be simplicial functions symmetric around closed intervals A, BCII".
We say that f, g are similar around A, B if the oscillation patterns of f
around A4 and of g around B are the same.

It follows from (5) that

(12) If f, g are symmetric and similar around A. y B, then for each pair
of functions a, p: I'Y, IV—>I”, I"" and each pair of closed intervals
C, D IV, IV such that a(C)=A, B(D) = B functions foa, gof
are symmetric and similar around C, D.

2. Extension of uniformizations to the zones of points
and intervals. At first we consider the case when A, B are single
points a, b. The ends of the once enlarged zones Zy(a), Z,(b) of a, b wilk
be denoted briefly by 27, 27, s and &

TEEOREM 3. Let f,g: I, I''=I' be symmetric and similar around
a,b. Let % be an end of Z,(b) such that f(25) = g(21). Then there emists
a pair of functions .

a, B: T =t t'>><a, 25y, I'
for which foa=gopB and which satisfy the following initial conditions

Bt) =5, B =2 .

If, in addition, f is tonstant in some netghbourhood of a, then a may
be chosen in such a way that ata(t) =1.

a(t) =a, a(t’) =z,
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Proof. Let {4;} and {4{}, 4=0,...,%, be vector chains inducing
the oscillation pattern of f around a. Let A7 = a;a;,y, where ap = 25
and ags, = a. Similarly, Af = afafi., where af =27 and aiy: = a. Note
that some first members of sequences {4;} or {4} may be empty.
Note that vectors Aj, Al are f-admissible. Assume analogous notation
for function ¢. By symmetry and similarity, f(d7)= f(4F)=g(B7)
= g(Bi") for each 4, whenever the vectors exist. - .

According to the uniformization theorem for §,, there exist uni-
formizations ai, fit titia— Af, B of fl4f, g|B: (the sign ’_should I?e
changed into -+ or — acecording to whether 2 = 2 or 8= 25ty Wil
be denoted also by ?). Note that if there exists a neighbourhood of a
on which f is constant, function ex may be chosen in.such a way tha:t
aitax(t) = 1. The last fact is a conseguence of th.e ex1stence‘ in the bi-
graph of flA¥, g|B% of a horizontal segment having ome of its ends at
points a, b.

These partial uniformizations az, f; having eon.lmon values .at cor-
responding ends may be joined to a pair of functions a, f having the
desired properties. :

THEOREM 4. Let f,g: I, I'"—I' be symmetric and similar around
dlosed intervals A, B and therefore let | be strongly symmetric around A.
Let a,p: T =, tty—>4, B be a uniformization of fl4,g|B such thft
a(t™) = a™ (the right end of A). Let 2 be an end of Zy(B) such that f(za)
= g(2). Then there exisis a pair of functions

aty B TT =T, e, ), I
for which foa® =gopT and which satisfy the initial conditions
ottty = a*, oty =4, pHE)=2.

grEt) = (),

If, in addition, there emists a neighbourhood of z’ ff” :uhﬁoh f is con-
stant, then o may be chosen in such & way that (a7) o ) =1".

Proof. Assume without loss of generality that & = z,,+ . As.before
for the point a, let {4y, ..., 4¢} be the left chain for /iq+ inducing the
irreducible vector chain for f at point a*. Assume similar mita,tlon for
function g. Note that the origin ai of 47 coincides with #; and the
origin bf of By with . Let k, be the first index such that f,(,A"")C f(4):
Denote the origin aji, of A7, by @. Consider a point y e I"” such that
g(y) = f(#) and an interval <, ") C T such that () =y. By (+5), and
the fact that f is symmetric around a*, functions }“o alt, T &ild
fl<a™, x> are similar around a%, #". We have, by aJJsrsumptm-n,. foaldt, 1)
= gop|<t, t*>. Hence fanctions f|<a™, z), go fI<t,t"> are similar around
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a, ©°. According to Theorem 3, we may uniformize the last pair of
functions by functions

yy 81 T D a0, < 1,
which satisfy the initial conditions: y(f7) = a*, 6(t%) =17, y(t) = ,
(1) =1. Hence we have a pair of functions

gﬁF"V: Bod: <t+y{>'_)<a+7w)a I

such that foa = gof and satisfying the initial conditions:

BTy =B, B =y.

Then we take a uniformization ai,—;, ﬁ?fo_l of the pair f|<z, af, 1D,
1<y, b¥,—1), according to the uniformization theorem for S, and next,
in virtue of the same theorem, the uniformizations o, gF of pair
14T, g|BF for all i < k,.

All the partial uniformizations defined above have the same values
at corresponding ends, and they may be joined to a pair of functions
a®, B* having the desired properties including (a*) o™ (t+) = ¢* if f is
constant in some neighhourhood of a*.

At =a*, o)==z,

3. Global extension of uniformizations. We shall extend the
results of the preceding section to the case where 4, B consists of a finite
number of components which are separated from each other in the sense
of section 3 of Part I. We start with two lemimas.

Let a,cel”, a < ¢, be separated by f. Consider the uniformization
curve for f|<z, %), ¢, where #7 and #; denote the suitable ends of the
once enlarged zones of & and c. '

Lexna 1. Zet b and d be such that f(sf) = g(b) and flze) = ¢g(d).
T?Ize're exisls a uniformization curve O for flad, 47>, g joining points
{22, ) and (27, d).

Proof. At first we construet a curve ¢ C [f|<z, % », g] joining the
Points mentioned above (with projection into y- axis being not necessarily
-onto the whole of I'”’). We distingunish two cases in the construction of ¢'.

1. f(27) # }(25). In this case functions f|¢s!, 27> and g<b, @) belong
to 8, and the uniformization eurve for this pair is the desired curve ¢’

2. f(z2) = f(&). Yu this case take a point 2, 25 < #< &, such that
J(2) is the end of I’ opposite to f(23). Then take b*<I’’ such that
g(b*) =f(2). Consider the uniformization curves ¢, and C, for pairs
FliKzz , 25, g|<b, b*> and 1<, % ), gI<b*, d> resulting from the uniformi-
zation theorem for S,. The curve C, u 0, is the desired curve O'.

Now we take an arbitvary. uniformization curve ('’ for the pair
JIKeE, 45, g. The sum ¢ U 0" is the desired curve G,
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Luvma 2. There ewists a curve C C [fi<er , 15, g] joining a given point
(25, b), where b is such that g(b) = F(2Y), with o point of the form (1,d).

Proof. Let {4y, ..., 4z} be a vector chain inducing the irreducible
vector chain for f|<z&,1)> at the end 1. Define the following vector chain
{By, ..., Bx} on I'”. Let b be the origin of B,. Suppose that the origin
of B; is already defined; we define the end of B; in such a way as to get
an admissible vector for which ¢(Bi) = f(4:). Thus the end of By is
a point d such that g(d) =7(1).

Then for each pair of partial functions f|4,, g|Bs we take uniformi-
zations according to the uniformization theorem for §,. These uniformi-
zations may be joined to a pair of functions

a, B 1> da, 15, I

such that foa = go f and satisfying the conditions: a(') = &1, B(¢') = b,
a(t’) =1, B(t'") = d. The desired curve C is given by the equations:
@=alt), y=p(1), e, 1. .

Ccmbining Theorem 4 and Lemmas 1 and 2 we get the following

TaROREM 5. -Let Al < ..< A° and B, ..., B® be dlosed subintervals
of I' and I respectively and let f,g be symmetric and similar around
each pair A%, B'. Let oll A be separated from each other by ]: and ilet if be
strongly symmetric around each A'. Let ai, fir Ti= i, 87 >—~A" B be
uniformizations of flA°, g|B® such that a; map ends onto ends. Then .there
exists a uniformization a, f: T—I",I'" of {, g, where T is o closed inter-
val containing each T in such a manner that Ti< Tiyy for the ¢ in ques-
tion, a uniformization such that a|Ts= ai, 1T = pi- :

If, in addition, f is constant in some neighbourhoods of each efr.»d of A,
then o« may be taken in such a way that o*a(Ts) = T's for each 1.

Proof. Extend uniformizations i, fi of fld', g}{B* to uniformiza-
tions of, BF of 7|Z,(A%), g|Z(B’) according to Theorem 4. Z.Det the cor-
responding wuniformization curves O} gobthroug}‘l the given corners
(4, %) and (a4, %) of rectangles Zi(4%)xZy(B'). Assume also that
the additional assertion of Theorem 4 holds for if f is constant in
neighbourhoods of the ends of A" )

Consider also for each 4 the uniformization curves for p:aaxs
fiK#a, #gind, g resulting from Lemma 1 and going through the pom};lfi
(¢, 2) and (dgs, #fe). Oonsider finally the eurves lying in <0,4a)> xI
and in <z$, 1y xI'” resulting from Lemma 2.

The curve C which is the sum of all the curves mentioned'a,bc.)ve
is the desired uniformization curve for f, ¢: it admits a pa,rametl.tlza.tlon
a, f: T satisfying all the assertions of the Theorem inc}udmg the
last one if f is constant in neighbourhoods of the ends of A’

Fundamenta Mathematicae, T. LVI 11
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IIl. A homogeneity theorem for the pseudo-are

We base ourselves on the definition of the pseudo-are, according
to whieh it is an inverse limit

(14) X =lim {Xp, wn} ,

where X, m = 1,2, ..., are closed intervals provided with subdivisions
X, ¥ >>m—1, which are defined in section 1 of Part I, and where
A Xpyin—Xna are BO-functions from the sequence defined there
(for details see [7]).

Bing showed in [2] that the pseudo-arc is m-homogeneous in the.

following sense: if py,..,Ps and ¢, .., ¢s are points of X such that
X is irreducible between each pair of points p;, p; and ¢i, ¢; then each
homeomorphism (i, h"): {p1; ..., Pu} 2 {4, -, gu} May be extended to
a homeomorphism (h’ %'’): X 2 X. Recently, Lehner [6] stated a more
general result, where instead of points p¢, g; continua Pi, Q; may
be taken.

A homogeneity theorem for the pseudo-arc which will be proved
here is a generalization of Lehner’s result to infinitely many continua
satisfying some conditions concerning their position in X. In the proof
we shall use: general theorems on mappings of inverse limits analogous
to that of Alexandroff [1] (see my paper [9]), the approximate symmetry
of BO-functions and theorems on the extension of uniformization from
the preceding parts of this paper.

1. Non-dense position of subsets of the pseudo-are. Let 4
be a closed subset of pseudo-arc X given by (14). We have

4 ZH}E{A;)H T}

where 45 = am(4) and mp = 7|4y,
complex X, ,. We have

Let A, be the star of 4, in the

A :I}m{Am, Tem}
where Toy, = | An.

We say that 4 is in a non-dense position in X if for each m and
each &> 0 there exists an » such that the components of 4, are e-se-
parated by mn and all the functions wj, of (14) map components of An
onto components of 4,. Note that

(18) If the set A consists of finitely many components such thai X is
irreducible between each of them, then A is in a non-dense position in X.

It is obvious that in this case =y, map components onto compo-
nents. for sufficiently large indices n. Therefore we must only prove
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(16) Fm' each m and each &> 0 there ewists an n such that if On and
ot O < O, are components of Ay then olwn(In), Xm] < &, where

J,, = {m On <2< 0.}, o denoting the Hausdorff distance.

Suppose that (16) is not true. Then there exists a continuum of
the form llm{Jk, :rzk} contained in X and different form X (because of
the fact that its projections into each Xy dlffels from Xz by a gwen
&> 0) joing two given components ¢’ = hm{O'L, ny} and 0 = hm[O’k, e}
of the set A. This contradicts the fa,ct that X is meduclble between
¢ and C"'.

The non-dense position of A follows from (16) in virtue of (OP)
of EO-functions.

2. Homogeneity theorem. Let X,Y be pseudo-ares given by
their inverse expansions (14).

THrorEM 6. If A =ACX, B=BCY are in non-dense positions
in X,Y and (W', 1"): A== B is a homeomorphism, then there exisis an
extension of (B', h'') to & homeomorphism (B, 37 X= Y.

We begin with some reductions of the proof of the theorem. Assume
that the inverse expansion of Y is

Y=lim{Ym,aZZ}.
Let (B, B'): A==B be given by a diagram
Ay —— Ap, <

ry NI B N

Bam <~ Bms ¢ Bm, h

an

such that there exist sequence {&}}, {&/}, ¢ =1, 2, ..., of positive numbers
tending to 0 and satisfying the following conditions:

(i) each subdiagram of (17) consisting of finitely many arrows, i.e. each
subdiagram of one of the following four forms

N m
ek
(18) o i lT ,
Gkt
msg 97744.1

is & or &f-commutative,
(ii) if all the subdiagrams of the form (18) contained in the diagram

Xpy - e —— X
< N 4
Ym; (_‘—‘szé e <= Ymk

11*
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are of- 4 or of- de} - commutative, then the analogous subdiagrams of the
augmented diagram

b APIENHNPER A

N YN

Yo, <— Ymg e X Ymk A Ymk-l-l

are o 4s; or af-4&f-commutative, where the adjoined iriangle diagram
s 4e%-commutative and : ,
l<a<a <os<..

is a given sequence tending to 2.

The possibility of representing any homeomorphism by a diagram
(17) which satisfies property (i) was proved in [9]. That (17) may be
chosen in such a way that (ii) is satisfied is a consequence of Theorem 2
of [9], according to which a diagram (17) with property (i) may be made
for each sequence &, &7, &, ... tending to 0. Hence it may be made, in
particular, for a sequence satisfying recurrence relations (if).

Let us remark that since diagram (17) represents a homeomor-
phism, then

(19) for each ¥ there ewists am v such that if Dy, Dy, are distinct com-
ponent of By, then for each component Cp, of A, we have

G, C 171{0m0) ™ (D) = B[ (0g) (Dip)] €, =B .
The proof of Theorem 6 reduces to the extension of diagram (17)
to a diagrams of pairs
Xnjy Any — gy Apy—>---
VAN
&N K

Yol Bmi< Yoy By <

(20)

where {mi}, {n;} are subsequences of {mg}, {nx}, and which iz nearly
commutative with respect to some sequences {4}, {¢x} tending to 0.

3. A lemma. We shall now prove a lemma which is of a rather
technical character and which will be used in the construction of func-
tions k% and A% in diagram (20).

Let #: I"—I' be an EO-function with » = »(I') sufficiently large.
Let B, < ... < Ex be closec} subintervals of I'’ separated from each other
by x. Suppose Bi= {6, €1 ), i=1, ..., k. Let 97, 97, ..., §%, T& be given
decreasing vector chains in I’ (a vector chain is decreasing if each vector
is contained as a set in the preceding one).

Levuma 3. Given simplicial functions g Fy—1I', there ewists a fune-
tion o: I"—>I', such that ¢|B: = @i, whose oscillation patterns on the left
of € and on the right of ¢ are 97 and §7, respectively.
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Proof. Let us remark that

(21) if ACI" is a closed interval and v(A)>=n(n+1) then there ewists
a function p: A—I' having the given oscillation patiern at one of the
ends of A.

Then we construet ¢ as follows.
Let H; be the component of I""— LijEi lying between ¥; and Bji:.

Let Hf = Z,(B;) ~ Hy and HY = Z,(E;j11) ~ H;. Since B; and By, are
separated, we have
z(H;) =n(Hj)=1".

Then, by (7), we have »(Hj),»(H;)> 3" Assume that n is so

large that 3™ >n(n-+1). Hence, by (21), there exist functions

pir Hi=>I',  ¢f: Hf>T'
which coincide with g;, @11 at the ends ¢, 651 of By, Byy; and having
at those ends the oscillation patterns 7, 97::.

Denote by Hf the sets H;—H;—Hj. Since H; and H;;; have the
twice enlarged zones disjoint, we have m(Hf) = I’. Therefore the number
of simplices in HF is sufficiently large to construct a function ¢f: Hy 1’
having at the ends of H} the values which coincide with those of g7, ¢f.

Consider for each § a function w; = p; w ¢f v @i and join all those
functions and functions @; on E; to a function defined on the whole
of I"”. This is the desired function ¢.

4. Proof of the homogeneity theorem. We shall construct
diagram (20) by induction. Let m; = m, and z = 4e;. Choose an index
my, miy > mi, such that

(a) components of By are & -separated by a:,’:,f,

(b) 6 mesh Ym;,m; <e.

Define #; =m, to be an index chosen for mj in virtue of (19).
Consider an auxiliary function

m
O’*mi : Ymi” Bm;l %—Ym; ’ Bm;

which is a 2¢-approximation of a:‘}' such that
1

(e) the zones as well the once and twice enlarged zomnes of com-
ponents of Bm:l: rel. o*z; coincide with the corresponding s;-zones, of the
1

three kinds mentioned above, rel. azi',
1

(d) a*z} is symmetric around each component of Bm';-
1
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The existence is a consequence of Theorem 2 in virtue of (a) and (b).
We define %{ as a function which is symmetric around each component
A,,; in the following manner:

(e) if Oyp; is a component of 4,; such that the inclusion

Cry C B[ (™)~} D))

Ol
holds for a component D,,.; of 3,,,; then the oscillation pattern of ﬂ{
around C,, is the same as that of ¢*7% around Dy
1

This pattern is well defined because n; is chosen for my in virtue
of (19).

Besides, function 7. is such that 7»{|A”i is equal to the funection
A,,;-+Bm; resulting from diagram (17). The existence of ki follows from

Lemma 3 if n; is sufficiently large.
Assume that the following part

“'Xn;g -An,’,
AN
< Ym"_, Bm;‘(—- Ym"l, Bm,l_l
of the diagram (20) is aheady defined as well as the positive numbers

&,8 for i=1,..,7, j=1,..,7r—1 such that the following conditions
are satisfied:

(22) m;

=g e M}, 0 =mnyefm}, 4,j<r,
(23) §=depy, i<y, &f=def, j<r—1,
(24) subdiagrams of the form
ng ng Ny
. f— PR R —
. Ty
e f—_ :, . < ,
m; My Mir1 My

are ap- def, or o dej;-commutative, where ar, dn are defined in (ii)

in section 2.

The remaining induction hypotheses are as follows:

(a’) components of B, v Bre ef,-separated by a::;",

(b’) 6 mesh ¥, my K ey
and #, is chosen for m, in virtue of (19).

Finally assume that 7. is defined as symmetric and similar to
O ™ around corresponding components of Ay and of By (in virtue of

(19)), and coineides with the map Ay ~>Bp resulting from diagram (17).
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,7 : ’ . . m" o

Here a*:,' ¢ Ty By =Yy, By 18 an 2er,-approximation of o7 satis
fying the conditions:

(¢/) the zones as well as the once and twice enlarged zones of com-

ponents of Bu: rel. a*m' coincide with the corresponding ej,-zones, of

the three kinds menhoned above, rel. o] 7,
(d/) 0*17!«'.
Now we shall define myy1, &7, % and ny and we shall reconstruct

for them the induction hypotheses.

Tet & = 4&j. Choose an index ny, ny > n,, such that

(') components of Any are &-separated by n:::,

(b") 6 mesh X,y < &1,

Define m,’ = ms as an index chosen for ny in virtue of (19). Assume

' >=m,. Define an auxiliary function

71:',": Ym"‘lr, Bm;” —%Xn‘ ’ An‘

is symmetric around each component of Byy.

as a function which is symmetric around each component of Bpyr in
the following manner:
(e") if Dy is a component of By guch that the inclusion
L]

Dy C B[ (2) ™ (Cui)]

Ty
.then the oscillation pattern of &,
and, moreover,

holds for a component Cnn of Ay
around Dy~ is the same as that of :n*::‘" around Cny,
By is on Bmm equal to the function resulting from dmgram 17) Fune-
tion #*f mentioned in (e”) is a 2e;- approximation of :n . satisfying
condltm{n (¢”’) and (d') analogous to (c) and (d). The existence of this
function follows from Theorem 2 in virtue of (a”) and (b").

The existence of &/ follows from Lemma 3 if mj’ is sufficiently large.

In this way the following part of the next triangle of diagram (20)
is defined:

Xn;, A"# <= -Xn;!, -A'n,’,’
| ,
P
! Yongrry Bur
Yoy By <= Yoy By
The similar functions are denoted by similar arrows. e shall close

the bottom part of (25). To this end, we uniformize the followmg
functions:

@ Yo,y By < Xmy, Bmy < Ym’"7 B’”‘r",
(g) Ym,.: B'm;. <_Xn,7 Aﬂq’-é‘ Ym;" B”";"

(25)
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where f, g will be only defined with the use of the corresponding func-
tions of (25).
Function f is a modification of function
(26) oedlt .
Namely, we modify (26) in virtue of Theorem 2 on components
D of (cr"" )7 Bm) 50 as to get a function symmetric around the
ends of Dm;u, the component of By which is contained in Df. The
function which results is strongly symmetnc around each component
of B,. In addition, take an f which is constant in neighbourhood s
of the ends of components of B,-. These modifications are independent
of the modification leading from azf'" to function (26). According to (b'),
we have '

(27) f =sg, o -

Function ¢ is a modification of Ao %. Namely we define g as equal
to function (28) on By . Then we modify 7?, o by outside By s0 as to
get a continuous simplicial function from Y.~ into Y, being, in ad-
dition, such that

(28) g=ag e

The possibility of constructing such an approximation depends only
on the quotient »(¥uwm)v(¥mymy) which is sufficiently large if
my' is so.

Let a, p: T>Byy, where T' is a complex isomorphic to B, be
canonical isomorphisms. They form a uniformization for f|Bmg, g|Bmy-
By the definition of f, ¢ all the hypotheses of Theorem 5 are satisfied
for these functions. Hence there exists a uniformization

Oyy Bt Ty _>Ymm mru,

T, being a simplicial interval,
as an extension of a, f such that
(29) ata (U)=TU

As usual, we suppose an imbedding T —T,.
By (27) and (28), we have

Bro o

for each component U of T.

4

— m,
B S O'm;'_' © Oy

We may assume that 7, is isomorphic to a complex Y v, where

my’ is an index greater than m.”. By the majorization property of
EO-functions, there exists a function

Vi I'm}'v+1 + Ym];V

icm
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such that a,ey = U-va According to (29),
morphism. Hence the composite mapping
o Byo 7’!-Bm¥v+1

o |az; (Bwy) I8 & homeo-

is identical with the mapping BIvi: >4, resulting from diagram (17).
We take miy, = mY 41 and B =Ko Bsoy. In this way the de-
gired next triangle of (20), i.e. the diagram

’Ilr
ey

™
Ve

Mps ——|—="* Myt1

is constructed. Accoldmg to the construetion of %, and by (5), function
h’,’ is similar to n*:’,'. The constructed trla,ngle is 4ez, - commutative.

Therefore the adjoining of this triangle to the diagram given by the
induction hypotheses does not destroy the approximate commutatlvmy,
in the sense of (24), of the augmented diagram. Funection w , index n;
and % = 4¢, form a basis for the construction of the next triangle.
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