Thus each homeomorphism type in 2^X is the inverse image under U of an isomorphism type in S_X, which implies that the homeomorphism types are Borel.

The major reason why the author cannot extend his method beyond the closed subspaces of 2^X is that for more general compact metric spaces (even the unit interval $[0, 1]$), he does not know how to associate a canonical countable relational structure with the space in such a way that the isomorphism type of the structure determines the homeomorphism type of the space. Maybe a new method is required for this more general question.

References

Reçu par la Rédaction le 5. 5. 1964

On Borel measurability of orbits

by

C. Ryll-Nardzewski (Wroclaw)

The aim of this note is to extend, using an alternative method, the result of D. Scott [3] concerning groups of permutations to a large class of topological groups. This has also permitted us to solve in the whole generality a problem of Freedman partially solved in [3].

Let (F_x) be a decomposition of a topological space G, i.e. for every $g \in G$ we have $g \in F_x$ and $F_x \subseteq F_{x'}$ or $F_x \cap F_{x'} = 0$ and F_x is closed. We say that such a decomposition is open if $(g : F_x \cap U \neq 0)$ is an open set provided U is open. The distance function of G is denoted by d.

Lemma. Every open decomposition (F_x) of a complete and separable metric space G has a Borel selector, i.e. there exists a Borel set $S \subseteq G$ such that $\lambda(S \cap F_x) = 1$ for $g \in G$.

Proof. Let r_0, r_1, r_2, \ldots be a fixed sequence dense in G. Now we define some functions: $\varphi_n(g) = r_i$ where $i = \min \{k : g(\varphi_{i-1}(g)) < 1/2^k \}$ and, if $n > 0$, then $q(\varphi_{n-1}(g)) < 1/2^{n-1}$. In view of our assumption all sets $(g : \varphi(g) < 1/2^n)$ are open and hence φ_n are Borel functions. Moreover, we have the inequality $\varphi_n(g) = \varphi_{n-1}(g)$ is Borel, constant on F_x and $\varphi_n(g) < 1/2^n$. Consequently the limit function $\varphi(g) = \lim \varphi_n(g)$ is Borel, constant on F_x, and $g(\varphi(g)) < 1/2^n$, which clearly implies that the set $(g : \varphi(g) = g)$ is a Borel selector.

Theorem 1. If a topological group G admits a complete and separable metrisation and G acts transitively on a metric space X in such a way that, for some $x \in X$, x_g is a continuous function of $g \in G$, then X is a Borel space (i.e. X is a Borel set in any metrisable extension of X).

Proof. Put $F = (g : x_g = x)$. F is a closed subgroup of G. Obviously the decomposition of G given by $F_g = F_{x_g}$ $(g \in G)$ is open. Let S be a Borel selector given by Lemma. The continuous mapping of S into X defined by the formula x_s is the one-to-one and onto $(S$ is a selector); hence X is a Borel space (cf. [1], p. 390).
Now Scott's Theorem of [3] (see p. 123) clearly is included in Theorem 1. Look there to see several applications of this result, especially Scott's beautiful solution of Kuratowski's problem on the Borellian character of ordered types.

THEOREM 2 (*). If G is the group of all automorphisms of a compact and metrizable space X and $Z \in 2^X$ (the space of all closed subsets of X with the Vietoris topology) then the set $Z^* = \{Zg: g \in G\}$ is Borel in 2^X.

Proof. Since G acts transitively on Z^*, and the usual topology in G (the topology of the uniform convergence) satisfies the conditions of Theorem 1.

Added in proof. Using methods similar to those of this paper, the author has recently solved completely Freedman's problem on homeomorphisms. This solution will be published in the next volume of Fundamenta Mathematicae.

(*) Conjectured by D. Freedman and partially proved in [2]; see p. 10.

References

Institute of Mathematics of the Polish Academy of Sciences

Reçu par la Rédaction le 11. 7. 1964