Remarks on \(\omega_\alpha\)-additive spaces

by

Wang Shu-tang (Sian, China)

§ 1. Preliminary notions. According to Sikorski [9], the set \(X\) is called an \(\omega_\alpha\)-additive \(^{(1)}\) space if there is defined (for every subset \(X\)) a closure operation \(X \rightarrow \overline{X}\) satisfying the following axioms:

I. \(\sum_{\alpha \in c_\alpha} X_\alpha = \sum_{\alpha \in c_\alpha} \overline{X}_\alpha\), for every \(\alpha\)-sequence of sets \(\{X_\alpha\}; \alpha < c_\alpha\);

II. \(\overline{X} = X\) for every finite subset \(X\);

III. \(\overline{X} = X\).

If \(\mu = 0\), the axiomatic system I-III coincides with the closure axiomatic system of Kuratowski, but for \(\mu > 0\) it is stronger than that system. Similar spaces were also considered by Parovicenko [8], Cohen, Goffman [1], [2], and others. A regular \(\omega_\mu\)-additive space, for \(\mu > 0\), must be \(0\)-dimensional.

Let \(A\) be an ordered group \(^{(2)}\), and if there exists a decreasing positive \(\omega_\alpha\)-sequence \(\{e_\xi\}; \xi < c_\alpha\) and \(e_\xi \in A\), satisfying the condition that for every positive element \(e \in A\) there exists an ordinal \(\xi_\alpha < c_\alpha\) such that \(e_\xi < e\) for every \(\xi > \xi_\alpha\) \((\xi < c_\alpha)\), then we say that \(A\) is of character \(c_\alpha\).

Suppose \(X\) is a set and with every given pair of points \(p, q \in X\), there is associated an element \(d(p, q) \in A\), where \(A\) is an ordered group of character \(c_\alpha\), such that

a) \(d(p, p) = 0\);

b) \(d(p, q) = d(q, p) > 0\) for \(p \neq q\);

c) \(d(p, q) \leq d(p, r) + d(r, q)\).

Then \(d\) is called an \(A\)-metric on \(X\), and \(X\) is called an \(A\)-metric space.

\(^{(1)}\) \(\omega_\alpha\) denotes a regular initial ordinal number.

\(^{(2)}\) I.e., an ordered set in which with every \(a, b \in A\) there is associated an element \(c \in A\) called the sum of \(a\) and \(b\) \(c = a + b\) and such that: 1) \(a + (b + c) = (a + b) + c\);

2) \(a + 0 = a\), if and only if \(a \leq 0\); 3) for every \(a, b \in A\) there exists an element \(c \in A\) such that \(a + c = b\). The symbol \(0\) denotes the element satisfying \(a + 0 = a\). An element \(a\) is positive if \(a > 0\) (see footnote \(^{(2)}\) of [9], p. 129).

Fundamenta Mathematicae, T. LV
For an \(m \)-additive metric space \(X \), we can introduce the natural topology by setting \(\text{B}^0(p, X) = 0 \), where \(X \) is an arbitrary subset of \(X \) and \(\text{B}(p, X) = 0 \) means that for every positive \(r \in A \) there exists a \(p \in X \) such that \(B(p, r) < e \). And, then, the sets \(E[p; \text{B}(p, r)] \) form a basis of the open sets of \(X \). It can be proved that such spaces are \(m \)-additive spaces.

For this purpose it is only necessary to prove that the intersection of every \(\alpha \)-sequence \((\alpha \leq \alpha_0) \) of open sets \((G_\alpha) \) is open. Let \(p_0 \) be an arbitrary point of \(\prod G_\alpha \); then for each \(G_\alpha \) there exists a positive element \(\epsilon_\alpha \in A \) such that \(\epsilon_\alpha \leq p_0 \), and if \(q(p, p_0) < \epsilon_\alpha \) then \(p \notin G_\alpha \). Let \(x \) be an ordinal which is greater than every \(\epsilon_\alpha \) and \(x < \epsilon_\alpha \); then for \(q(p, p_0) < \epsilon_\alpha \), \(p \in \prod G_\alpha \); whence \(p_0 \) is an interior point of \(\prod G_\alpha \); this proves that \(\prod G_\alpha \) is an open set.

The \(m \)-additive metric spaces were considered by Hausdorff [3], Cohen and Goffman [2], Sikorski [9], and others. As Sikorski had pointed out in [9], many topological theorems about separable metric spaces can be generalized to the present case, but some singularities concerning compactness and completeness may occur.

In the above, if \(A \) is the set of all real numbers and \(b \) is replaced by \(b \) then \(q(p, q) = p(q, p) \), then \(q \) is called a pseudo-metric on \(X \). Let \(X \) be an almost-metric space, and \(X \) is called a quasi-metric space. For every \(\alpha \) there exists a \(\beta \) such that \(\alpha < \beta \) and \(\beta < \alpha \).

If \(\text{B} p \) is equal to \(0 \), \(X \) is called an \(m \)-almost metric space.

One can introduce the topology for \(X \) by setting

\[
\text{B}(p, X) = \bigcap_{q \in \mathbb{R}^+} E[p; q(p, X) = 0],
\]

where \(X \subseteq X \), i.e. the family of sets \(E[p; q(p, X) = 0] \), where \(p \in X \), \(d > 0 \), \(q \in A \), is a basis for this topology.

The \(m \)-almost-metric spaces were introduced and investigated by Mrówka [5-7]. In fact, such spaces are equivalent in the sense of uniformity and topological structure to the Hausdorff uniform spaces (for the terminology of Hausdorff uniform spaces, see [4], p. 180) with the basis of power \(m \), i.e. a uniformity has a basis of the power \(m \) if and only if it is generated by a family of pseudo-metrics of power \(m \).

For brevity, in the following sections, the topological space \(X \) is said to be a \((U_{m}\alpha) \)-space if its topology can be derived from a uniformity with a basis of power \(m \), where \(m \) is supposed to be the smallest possible; the topological space \(X \) is said to be \((U_{m}\alpha) \)-metrisable, if it is possible to define an \(m \)-metric \(g \) such that the topology induced by \(g \) agrees with the original topology of \(X \). By the basis of \(X \) we always mean the open basis.

In the following two theorems, given by Mrówka, the original \(X \) is an \(m \)-almost-metrisable space" is replaced by "\(X \) is a \((U_{m}\alpha) \)-space."
we know that the set \(E[p; 0; p; p] = 0 \) is open, and by

\[
\prod_{q \in P} E[p; q(p; p; p) = 0] = (p),
\]

we know that the set \((p) \) is open, and hence, if \(\mu > 0 \), \(X \) must be discrete, which contradicts the hypothesis of our proposition.

Thus, a \((U)_m\)-space is \(\omega_\nu \)-additive (for \(\mu > 0 \)) only when \(m \geq \kappa_1 \).

It is natural to ask under what conditions the \((U)_m\)-space \(X \) would be \(\omega_\nu \)-additive, where \(\nu \geq \kappa_1 \).

Since every topological space (and hence every uniform space) is \(\omega_\nu \)-additive, in the rest of this section \(\mu > 0 \) is assumed.

Let \(X \) be a set and \(P = \{a\} \) a family of pseudo-metrices on \(X \).

In \(P \) the functions \(d_{a1}, \max\{d_{a1}, \ldots, d_{a\nu}\} \) (where \(a \) is an arbitrary positive rational number, \(\nu \) a natural number and \(a(1), \ldots, a(\nu) \) we get a new family \(P^* \), which is called the completion of \(P \); for \(P^* \) we have a, b, c, d, e) and the following:

f) For every positive rational \(d \) and \(a \in P^* \), \(d \in P^* \).

Definition 1. Let \(X, P \) be given as above. If, for every subfamily \(P \subseteq P, \overline{P} < \nu \) and every point \(p \in X \), there exist \(q \in P \) and a neighbourhood \(V(p) \) of \(p \) such that \(q(p, q) \geq \delta(p, q) \) holds for \(q \in P \) and \(q(1, q) \in \overline{P} \), then we say that \(P \) is a \(m \)-locally direct family.

Theorem 1. For a \((U)_m\)-space \(X \) to be \(\omega_\nu \)-additive (where \(\mu > 0 \)), it is necessary and sufficient that \(m \geq \kappa_1 \) and its topology can be derived from a uniformity which is generated by a family of pseudo-metrices \(P = \{d\} \) such that the completion \(P^* \) is an \(\kappa_1 \)-locally direct family.

Proof. Sufficiency. Let \((G_\xi) \), \(\xi < \alpha \) (\(\alpha < \kappa_1 \)) be an \(\alpha \)-sequence of open sets, \(p_0 \) an arbitrary point of \(\prod G_\xi \). Then there exist a positive number \(d \) (by e) one can assume \(d = 1 \) and a subfamily \(\{\alpha_\xi\} \subseteq P^* \) such that \(E[p; \alpha_\xi(p, p) < 1] \subseteq G_\xi \) for \(0 < \xi < \alpha \).

By the \(\kappa_1 \)-local directness of \(P^* \), there exist \(q \in P^* \) and a neighbourhood \(V(p_0) \) such that \(q > \alpha_\xi \) (\(0 < \xi < \alpha \)) holds in \(V(p_0) \). Then

\[
V(p_0; \overline{E}[p; \alpha_\xi(p, p) < 1]) \subseteq V(p_0; \overline{E}[p; q(p, q) < 1]),
\]

this proves that \(p_0 \) is an interior point of \(\prod G_\xi \), whence \(\prod G_\xi \) is an open set.

(\(^*\)) Throughout the rest of the paper, topological spaces always mean non-discrete topological spaces.

Necessity. Let the uniformity of the \((U)_m\)-space \(X \) be generated by a family \(P \) of pseudo-metrices; \(P^* \) is the completion of \(P \). For an arbitrarily given \(P \subseteq P^* \) and if \(\overline{P} < \kappa_1 \), let \(p \) be an arbitrary point of \(X \). Then the set

\[
V(p_0) = \prod_{\alpha_\xi(p, q) < 1} [p; q(p, q) < 1] = \prod_{\alpha_\xi} \prod_{\overline{P}} E[p; q(p, q) < 1]
\]

is an open set containing \(p_0 \), i.e. \(V(p_0) \) is a neighbourhood of \(p_0 \).

DEFINITION 2. Let \(X, P \) be given as in def. 1; if for every subfamily \(P \subseteq P \) with \(\overline{P} < \nu \) and every point \(p_0 \in X \), there exists a neighbourhood \(V(p_0) \) of \(p_0 \) such that \(q(p, q) = 0 \) for \(q \in P^* \) and \(p \), \(q \in V(p_0) \), then we say that \(P \) is an \(\omega \)-locally zero family.

A more convenient test to see if a \((U)_m\)-space \(X \) is \(\omega_\nu \)-additive is the following

Theorem 2. For a \((U)_m\)-space \(X \) to be \(\omega_\nu \)-additive, it is necessary and sufficient that \(m \geq \kappa_1 \) and its topology can be derived from a uniformity which is generated by an \(\kappa_1 \)-locally zero family of pseudo-metricals.

Proof. Sufficiency. We observe that the completion \(P^* \) is also an \(\kappa_1 \)-locally zero family; the sufficient part is a corollary of Theorem 1.

§ 3. The relationship between \(\omega_\nu \)-metrisable spaces and \((U)_m\)-spaces. We now prove

Proposition 2. If \(X \) is an \(\omega_\nu \)-metrisable space and \(\overline{Y} \) is an open covering of \(X \), then there exists an \(\kappa_1 \)-discrete refinement \(\overline{Y} \) of \(\overline{Y} \), i.e. \(\overline{Y} \) is the union of \(\kappa_1 \)-families of discrete open sets, \(\overline{Y} \) is a covering of \(X \) and for every \(U \in \overline{Y} \) there is a \(V \in \overline{Y} \) such that \(U \subseteq V \). Moreover, for \(\mu > 0 \) we can require that \(\overline{Y} \) be formed by sets both open and closed.

Proof. The first part is essentially the same as in the case of \(\mu = 0 \). Order the elements of \(\overline{Y} \) by the relation \(< \). For each \(U \in \overline{Y} \) let \(U_1 = U_{1+1} \cap \overline{Y} \). Then, \(U_1, U_2, \ldots, U_{\nu+1} \). We put \(U_{\nu+1} = \bigcup_{\nu+1} V_f \cap \overline{Y} \). Since one of the relations \(V < U \) and \(V \in \overline{Y} \) must hold, therefore if \(U, V \) are distinct elements of \(\overline{Y} \), we have \(q(U, V) > \kappa_1 \). Choose two elements \(s, t, s' \) of \(A \) such that \(2\kappa_1 > s, t, s', t' < \kappa_1 \) (to verify this possibility is easy), and define

(\(^*\)) The meaning of \(A \) and \(\epsilon \) has been given in § 1.
\[U_1^* = \mathbb{E}_1(p; \varphi(p, V)^c) \setminus \mathcal{E}_1(p; \varphi(p, V)^c), \]
\[U_2^* = \mathbb{E}_2(p; \varphi(p, V)^c). \]

Then \(U_1^* \) (and \(V_1^* \)) is open and \(U_2^* \) (and \(V_2^* \)) is closed, \(U_2^* \subset U_1^* \). If \(\mu > 0 \), then there exists an open-closed set \(\{ \mathcal{G}_3 \} \) such that \(U_2^* \subset \mathcal{G}_3 \subset U_2^* \).

In the following we prove that the family \(\{ \mathcal{U}_1^* \} \) (or \(\{ \mathcal{U}_2^* \} \)) for \(\mu > 0 \), where \(\xi < \omega_0 \) and \(U \in \mathcal{G}_3 \), is required.

Firstly, the sets \(U_1^* \) (or \(U_2^* \), if \(\mu > 0 \)) for fixed \(\xi \) are discrete. To prove this, let \(U \neq \emptyset \), \(U \in \mathcal{G}_3 \) and \(p \in U_1^* \). \(g \in V_1^* \) be arbitrary given; then we have \(\varphi(p, U_1) < \xi \) and \(\varphi(p, V_1) < \xi \). From \(\varphi(U_1, V_1) < \xi - \xi_2 + \xi_3 \), it follows that \(\varphi(p, g) > (\xi_2 - \xi_3) - 2\xi > 0 \), i.e. \(p \neq g \). Therefore \(U_1^* \cap V_1^* = \emptyset \).

Secondly, let \(p \in X \) be an arbitrary point and let \(U \) be the first member of \(\mathcal{G}_3 \) to which \(p \) belongs. Then surely \(p \in U_2^* \) for some \(\xi_2 \), that is \(p \in U_3 \) (for \(\mu > 0 \) and \(U_1 \)). Finally, it is evident that \(U_2^* \subset U \) (and \(U_1 \subset U \) for \(\mu > 0 \)), hence the family \(\{ \mathcal{U}_1^* \} \) (or \(\{ \mathcal{U}_2^* \} \)) for \(\mu > 0 \), is the required family.

Theorem 3. Every \(w_0 \)-metrizable space \(X \) is a \((U_2^*)_w\)-space.

Proof. By proposition 2, Theorem 3 follows from Theorem M, immediately. (By theorem (viii) of [9], \(X \) is a normal space.

It will be observed that Theorem 3 can be proved in a direct way.

Theorem 4. Every \(w_0 \)-additive \((U_2^*)_w\)-space is \(w_0 \)-metrizable.

Proof. Let \(X \) be an \(w_0 \)-additive \((U_2^*)_w\)-space. Then its topology can be derived from a family \(\mathcal{P} = \{ q \} \) of pseudo-metrics of power \(n \).

If \(\mu = 0 \), then \(P = \{ q \} \). Put
\[
\phi(p, q) = \sum_{n=1}^{\infty} \frac{1}{n^2} \min \{ 1, \phi(p, q_n) \};
\]
then \(\phi \) is a metric on \(X \), whence \(X \) is \(w_0 \)-metrizable. We now prove the case of \(\mu > 0 \) as follows. Let \(A \) be the set of all \(w_0 \)-sequences of real numbers. For every pair of elements \(a, b \in A \), where
\[
a = (a_0, a_1, a_2, ...),
\]
\[
b = (b_0, b_1, b_2, ...),
\]
\(\xi < \omega_0 \), if there exists \(\xi_2 < \omega_0 \) such that \(a_\xi < b_\xi \) but \(a_\xi < b_\xi \), then we say that \(a \) is smaller than \(b \), \(a < b \). The sum and the difference are defined by \(a \pm b = (a_0 \pm b_0, a_1 \pm b_1, ...) \).

It is not difficult to verify that \(A \) is an ordered group of character \(w_0 \); to see this we only take \(a_\xi = (a_0, a_1, a_2, ...), \) where \(a_\xi = 1 \) for \(\eta < \xi \) and \(a_\xi = 0 \) for \(\eta \geq \xi \) (\(\eta < \omega_0 \)).

If \(P = \{ q \} \), \(\xi < \omega_0 \), we put
\[
\phi(p, q) = (\phi(p, q_0), \phi(p, q_1), ...).
\]

\(X \) is now an \(w_0 \)-metric space, and we have to prove that its topology \(T^a \) agrees with the original topology \(T \). For brevity, by \(T \) (or \(T \)-open), we always mean a set which is open with respect to the topology \(T \) (or \(T \)); the same applies to \(T^a \) (or \(T^a \)-closed).

(1) The set \(E[p; \varphi(p, p_0) < \xi] \) is \(T^a \)-open for \(\varepsilon \in \mathbb{A} \), where \(p_0 \) is \(\mathbb{A} \) is arbitrarily given.

In fact, if \(\varepsilon = (\varepsilon_0, \varepsilon_1, ... \varepsilon, ...) \) then (1) follows from the equations
\[
E[p; \varphi(p, p_0) < \xi] = \sum_{a_0, a_1, ..., a_n, ...} E[p; \varphi(p, p_0) = a_0] \cdot E[p; \varphi(p, p_0) = a_0] \cdot E[p; \varphi(p, p_0) = a_0]
\]
and
\[
E[p; \varphi(p, p_0) = a_k] = \prod_{n=1}^{\infty} E[p; \varphi(p, p_0) = a_k - \frac{1}{n}] \cdot E[p; \varphi(p, p_0) = a_k + \frac{1}{n}]
\]

(I) The sets \(E[p; \varphi(p, p_0) < \xi] \) are \(T^a \)-open, where \(p_0 \in X \), \(a_0 \) is a positive real number \(\eta < \omega_0 \) and \(\phi(\varepsilon) \).

From
\[
E[p; \varphi(p, p_0) < a_0] = \sum_{a_0, a_1, ..., a_n, ...} E[p; \varphi(p, p_0) = a_0] \cdot E[p; \varphi(p, p_0) = a_0]
\]
it is evident that (I) follows from

(II) For every \(\eta < \omega_0 \) and an arbitrary \(\eta \)-sequence \((a_k), \xi < \eta \), the sets
\[
(a) = \prod_{n=1}^{\infty} E[p; \varphi(p, p_0) = a_0] \cdot E[p; \varphi(p, p_0) < a_0]
\]
and
\[
(b) = \prod_{n=1}^{\infty} E[p; \varphi(p, p_0) = a_0] \cdot E[p; \varphi(p, p_0) > a_0]
\]
are both \(T_0 \)-open and \(T^a \)-closed sets.

We prove it by the following two steps:

(a) The sets \(E[p; \varphi(p, p_0) < a_0] \) and \(E[p; \varphi(p, p_0) > a_0] \) are both \(T_0 \)-open-closed sets.

In fact, let \(\varphi(\varepsilon) = (\varepsilon_0, \varepsilon_1, ... \varepsilon, ...) \), where \(\xi < \omega_0 \), and \(a_0, ... a_2, ... \) are fixed as \(\xi \) varies; then
\[
E[p; \varphi(p, p_0) < a_0] = \sum_{a_0, a_1, ..., a_n, ...} E[p; \varphi(p, p_0) < a_0]
\]
which implies the T^α-openness of the set $E[p; \varrho(p, p_a) < a_a]$. (Similarly, the T^α-openness of $E[p; \varrho(p, p_a) > a_a]$ can be proved.) To prove that they are T^α-closed it suffices to take the complements, for example

$$E[p; \varrho(p, p_a) < a_a] = \mathcal{X} - \prod_{n=1}^{\infty} E[p; \varrho(p, p_a) > a_a - \frac{1}{n}].$$

(b) By the principle of transfinite induction, assume that (II') holds for all ordinals $\xi < \alpha$, to prove the case of $\alpha = \alpha_\xi$.

(i) If α is a limit ordinal, let $\alpha(\xi) = (\alpha^{(\xi)})$, where $\xi < \alpha_\xi$ and $\alpha^{(\xi)} = \alpha_\xi$ for $\xi \neq \alpha$ and $\alpha^{(\alpha)} = a_a - \frac{1}{n}$; then

$$E[p; \varrho(p, p_a) < \alpha^{(\xi)}] = \sum_{\xi < \alpha_\xi} \prod E[p; \varrho(p, p_a) = \alpha^{(\xi)}] E[p; \varrho(p, p_a) < \alpha^{(\xi)}].$$

Subtracting from the above set the following T^α-closed set (hypothesis of (b))

$$\sum_{\alpha < \alpha_\xi} \prod E[p; \varrho(p, p_a) = \alpha^{(\xi)}] E[p; \varrho(p, p_a) < \alpha^{(\xi)}]$$

one obtains the following T^α-open set:

$$\sum_{\alpha < \alpha_\xi} \prod E[p; \varrho(p, p_a) = \alpha^{(\xi)}] E[p; \varrho(p, p_a) < \alpha^{(\xi)}];$$

its union with respect to $n_1, a_{n_1}, ..., a_{n_i} ... (i < \alpha_\xi)$, is the T^α-open set (Δ). In a similar way one can prove that $(\Delta)^\alpha$ is T^α-open.

By taking the complements we can prove that the sets (Δ) and $(\Delta)^\alpha$ are T^α-closed, e.g.

$$\prod_{\alpha < \alpha_\xi} E[p; \varrho(p, p_a) = \alpha] E[p; \varrho(p, p_a) > \alpha_a]$$

$$= \prod_{n=1}^{\infty} \prod_{\alpha < \alpha_\xi} E[p; \varrho(p, p_a) > a_a - \frac{1}{n}] E[p; \varrho(p, p_a) < a_a + \frac{1}{n}];$$

and

$$\mathcal{X} - (\Delta) = \sum_{\alpha < \alpha_\xi} E[p; \varrho(p, p_a) > a_a] + \sum_{\alpha < \alpha_\xi} E[p; \varrho(p, p_a) < a_a] + \prod_{\alpha < \alpha_\xi} E[p; \varrho(p, p_a) = a_a] E[p; \varrho(p, p_a) > a_a],$$

one can prove that $(\Delta)_\alpha$ is T^α-closed.

(ii) If α is a limit ordinal, then from the following equation

$$\prod_{\alpha < \alpha_\xi} E[p; \varrho(p, p_a) = a_a] E[p; \varrho(p, p_a) < a_a]$$

$$= \prod_{\alpha < \alpha_\xi} E[p; \varrho(p, p_a) = a_a] E[p; \varrho(p, p_a) < a_a + \frac{1}{n}]$$

and by the hypothesis of (b), we know that, for each $\eta < \alpha$, the set

$$\prod_{\alpha < \alpha_\xi} E[p; \varrho(p, p_a) = a_a] E[p; \varrho(p, p_a) < a_a]$$

is a T^α-open set. By intersecting the above sets with respect to $\eta < \alpha$ we obtain the following T^α-open set:

$$\prod_{\alpha < \alpha_\xi} E[p; \varrho(p, p_a) = a_a].$$

The intersection of the above set with the T^α-open set $E[p; \varrho(p, p_a) < a_a^{(\xi)}]$, where $a_a^{(\xi)}$ assumes the same meaning as in (i), is the following T^α-open set:

$$\sum_{\alpha < \alpha_\xi} \prod_{\alpha < \alpha_\xi} E[p; \varrho(p, p_a) = a_a^{(\xi)}] E[p; \varrho(p, p_a) < a_a^{(\xi)}];$$

by making a union of the above sets with respect to $n_1, a_{n_1}, ..., a_{n_i} ... (i < \alpha_\xi)$, the T^α-open set $(\Delta)_{\alpha}$ is obtained. In a similar way one can prove that $(\Delta)^\alpha_{\alpha}$ is T^α-open.

The proof that (Δ) and $(\Delta)^\alpha$ are T^α-closed sets is completely the same as in case (i), whence it is omitted here.

From Theorems 3 and 4 we have

Theorem 5. ω_α-metrisable spaces and ω_α-additive $(U)_{\omega_\alpha}$ spaces are identical, in particular ω_α-metrisable spaces and ordinary metrisable spaces are identical.

§ 4. ω_α-metrisation theorems (iv). We prove

Theorem 6. For a regular ω_α-additive space to be ω_α-metrisable, it is necessary and sufficient that there exist an κ_α-basis.

Let us recall that the family \mathcal{B} of open sets is called an κ_α-basis of the topological space if \mathcal{B} is a basis and \mathcal{B} can be written as $\mathcal{B} = \sum_{\alpha < \alpha_\xi} \mathcal{B}_\alpha$, where \mathcal{B}_α are locally finite systems of open sets.

(iv) Let us observe that in our metrisation theorems the notion of ordered algebraic base (see (93), p. 129) \mathcal{B} is not used.
Proof of Theorem 6. As the necessary part has been contained in the proof of proposition 2, we need to prove the sufficient part only.

From Theorems 5 and 4, we need only to prove that X is a normal space (this is an improvement of theorem (vii) of [9]).

In fact, let F_1 and F_2 be disjointed closed sets; since X is regular, for every pair of points $p \in F_1$, $q \in F_2$, there exist neighbourhoods $U_p \subseteq U_q$ such that $U_p \cap F_2 = \emptyset$ and $U_q \cap F_1 = \emptyset$. Let $U_p^{(i)} = \sum_{a \in p} U_a$ and $U_q^{(j)} = \sum_{a \in q} U_a$, then $U_p^{(i)} = \sum_{a \in p} U_a$ and $U_q^{(j)} = \sum_{a \in q} U_a$, since βX is a locally finite family.

Put $U_* = U_*^{(i)} - \sum_{a \in p} D_a^{(i)}$, $U** = U**^{(i)} - \sum_{a \in q} D_a^{(i)}$.

The sets U_* and $U**$ are disjointed open sets containing F_1 and F_2, respectively. Thus X is normal. Therefore, theorem 6 is proved.

Corollary 1 (R. Sikorski [9]). If X is an ω_α-additive normal space with a basis of power κ, then X is ω_α-metrizable.

Corollary 2 (Nagata-Smircnov). For a regular space to be metrizable, it is necessary and sufficient that there exist an κ-basis.

Theorem 7. For $\mu > 0$, for an ω_α-additive space to be ω_α-metrizable, it is necessary and sufficient that there exist an κ-basis consisting of sets both open and closed.

Proof. Necessity. It is contained in the proof of proposition 2.

Sufficiency (3). Let \mathscr{B} be an κ-basis of X and let $\mathscr{G} = \sum_{a \in [\mathscr{B}]} G_a$ where \mathscr{G} are locally finite (discrete) systems consisting of open-closed sets (Proposition 2). For $U \in \mathscr{G}$ define

$$f_U(p) = \begin{cases} 1 & \text{for } p \in U, \\ 0 & \text{for } p \notin U. \end{cases}$$

The family $P = \{ \max(\varnothing, \ldots, \varnothing) \}$ of functions,

$$\varnothing(\varnothing, \varnothing) = \sum_{U \in \mathscr{G}} f_U(p) - f_U(q),$$

makes X as κ-almost metric space its topology is the same as the original. In fact, the \varnothing are continuous functions by the local finiteness of \mathscr{G}. Conversely, for an arbitrarily given open set G and $p \in G$, one can find $U \in \mathscr{G}$ (for some \varnothing) such that $p \in U \subseteq G$, whence $\varnothing(p, \varnothing) \subseteq G$. Thus X is an ω_α-additive (U_κ)-space, and theorem 7 follows from Th. 4 (or Th. 5) immediately.

From theorem 7 we can derive some results which are closely related to Theorem M_α.

Corollary 1. For $\mu > 0$, for an ω_α-additive space X to be ω_α-metrizable it is necessary and sufficient that there exist a collection of families of continuous functions $F = (F_i)$ and $P = (P)$, where $\xi < \omega_\alpha$, such that the families of sets $E_x \subseteq \omega_\alpha^x$, for fixed ξ are locally finite (discrete) sets, and the family of sets $E_x \subseteq \omega_\alpha^x$, where $\xi < \omega_\alpha$ and $\xi < \omega_\alpha$, is a basis of X.

Proof. Necessity. It suffices to put in theorem 7

$$f_U(p) = \begin{cases} 2 & \text{for } p \in U, \\ 0 & \text{for } p \notin U, \text{ for every } U \in \mathscr{G}, \xi < \omega_\alpha. \end{cases}$$

Sufficiency. The families of sets $E_x \subseteq \omega_\alpha^x$, for fixed ξ, are locally finite systems, consisting of sets both open and closed:

$$E_x < \omega_\alpha^x \subseteq 1 + 1^1.$$
Proof. It is completely the same as in the case of \(\mu = 0 \), which is classical and well known ([4], p. 113), whence omitted.

The above proposition had been given by Parovicenko in [8].

Theorem 8. If \(X \) is an \(\omega_\alpha \)-metric space and is compact (in the sense of [9]), then \(X \) has a basis of power \(\leq \kappa_\alpha \), whence is bicomplete (in the sense of [9]).

Proof. By Th. 3, \(X \) is a \((U_n)_{n \in \omega} \)-space. Since \(X \) is compact, every subset \(\mathcal{X} \) of power \(\geq \kappa_\alpha \) has a \(X \)-contact point of order \(> 2 \) (\(p_x \) being a contact point of \(X \) of order \(> 2 \) means that for every neighbourhood \(V(p_x) \) of \(p_x \) the set \(X \cap V(p_x) \) contains at least two points of \(X \) (cf. [10]), then from Theorem of [10], \(X \) has a basis of power \(\leq \kappa_\alpha \). Then Th. 8 follows from Lemma 2 of [10] immediately.

Recalling Cor. 1 of Th. 6, we have the following

Theorem 9. For a Hausdorff \(\omega_\alpha \)-additive compact (in the sense of [9]) space to be \(\omega_\alpha \)-metrisable, it is necessary and sufficient that it have a basis of power \(\leq \kappa_\alpha \).

Proof. Sufficiency. Follows from Th. 8 immediately.

Necessity. Follows from Th. 8 immediately.

The case \(\mu = 0 \) of this theorem is the well-know second metrisation theorem of P. Urysohn.

The author cordially thanks for the criticism and corrections made by the reviewer.

References

On lattice-ordered groups

by

B. Banaschewski (Hamilton, Ontario)

Introduction. We shall be concerned with a lattice-ordered group \(G \), written additively though not necessarily abelian, with the set \(P \) of its positive (i.e. \(x \geq 0 \)) elements, and with homomorphisms, epimorphisms, etc. from \(G \) to other such groups (mainly totally ordered ones and their products) which are always understood to be non-trivial, and lattice-ordered group homomorphisms, i.e. meet and join as well as sum preserving. If \(K \subseteq G \) is an \(l \)-ideal in \(G \) then \(G/K \) denotes the quotient group as lattice ordered group, i.e. with the partial ordering defined by the image of \(P \) under the natural mapping \(G \to G/K \), and we recall that for lattice-ordered groups and their homomorphisms the First Isomorphism Theorem holds, i.e. if \(f : G \to G' \) is an epimorphism and \(f = g \circ h \) its factorization into the natural mapping \(h : G \to G/\text{Ker}(f) \) and the induced mapping \(g : G/\text{Ker}(f) \to G' \) then \(h \) is an epimorphism and \(g \) an isomorphism. Our main object is to study the epimorphisms from \(G \) to totally ordered groups \(T \), to obtain characterizing conditions for the existence of "sufficiently many" of these and hence of embeddings of \(G \) into products of such \(T \), and to consider particular types of such embeddings. Some of our results can be regarded as an extension of those of Ribenboim [6] who restricted himself to the abelian case. The possibility of this extension is suggested by Lorenzen's theorem on regular lattice ordered groups [5] for which a proof is given in the present setting. The methods used here differ from the approach in [5] or in [6], the latter since we are able to dispense with Jaffard's notion of filter [4] in the proof of Proposition 3.

Particular subsets of \(P \) which will be of interest in the following are:

(i) the filters in \(P \); the non-vord subsets \(F \subseteq P \) with \(\neq y \leq F \) for any \(x \leq y \leq F \) and \(x \leq F \) for any \(x \geq y \) where \(y \leq F \);

(ii) the prime filters \((\dagger) \) in \(P \); the proper filters \(Q \) in \(P \) for which \(x \not\leq y \leq Q \), \(x \) and \(y \) in \(P \), implies \(x \not\leq Q \) or \(y \not\leq Q \);

\((\dagger) \) Terminology as in [2] unless stated otherwise.

\((\dagger) \) We use the term "prime" with respect to the group operation here rather than the lattice operation of forming the join. However, a prime filter in this sense is also prime with respect to join since \(x \vee y \neq x \vee y \).