pour chaque $h > 0$ est un polygone de degré h ou plus. Notre théorème 2 est dans un certain sens plus fort. Il permet de remplacer dans la formule (35) le signe d'inégalité par celui d'une inégalité faible (\leq ou \geq) pour tous les h sauf un. (Dans ce travail on a demandé l'inégalité (35) pour $h = 1$, mais cette condition n'est pas essentielle. Dans les théorèmes 1 et 2 on peut remplacer l'accolade $h = 1$ par un autre accolade arbi-
traire $h > 0$.

Travaux cités

[4] - Remarks on the differential equation $g(x+1)-g(x) = \varphi(x)$, II, ibidem 2 (1949), p. 181-182.

Reçu par la Rédaction le 11.3.1963

On maximally resolvable spaces

by

J. G. Ceder (Santa Barbara, Calif.)

In [2] E. Hewitt posed the problem of determining the largest number of disjoint, dense subsets possible in a topological space. As one result in this direction, W. Sierpiński [8] proved that a metric space X each non-void open subset of which contains $\geq m \geq n$ points, is the union of m disjoint sets each of which contains at least m points of each non-void open set in X. It is the purpose of this note to generalize Sierpiński’s result in two ways, one way of which will enable us to extend some of Hewitt’s results in [2] so as to determine the largest possible number of disjoint, dense subsets in certain spaces, including locally compact Hausdorff spaces and first countable spaces.

In the sequel, we will consider ordinals and cardinals as defined, for example, in J. L. Kelley [14], appendix), so that each ordinal is equal to the set of its predecessors and a cardinal is an ordinal which is not equipollent with any smaller ordinal [9]. The cardinal number of a set A will be denoted by $|A|$. The symbols k, m, n will always denote specific cardinals and the Greek letters a, b, γ, δ, etc. will denote general ordinals. A subset A of topological space is said to be m-dense $U \cap A = m$ for each non-void open subset U of X.

Our first generalization of Sierpiński’s result is

Theorem 1. Let X be any topological space with an infinite base B such that $|B| \leq n < m$. Then, if A is an m-dense subset of X, A is the union of m disjoint, n-dense subsets of X.

Proof. We will first take the case when $|B| = n$ and induct on the cardinals $m \geq n$.

For $n = m = |B|$, let us well-order B so that $B = (B_\alpha)_{\alpha < \gamma}$. Since $\bigcup_{\alpha < \gamma} B_\alpha = A$, we can by a result of K. Kuratowski [9], Lemma 1) find a disjoint family $(H_{\alpha})_{\alpha < \gamma}$ such that $H_\alpha \subseteq B_\alpha \cap A$ and $|H_\alpha| = n$ for each $\alpha < \gamma$. Since $|B| = n$, we can put each $H_\alpha = \bigcup_{\alpha < \gamma} H_{\beta, \delta}$ where $|H_{\beta, \delta}| = n$ and the sets $H_{\beta, \delta}$ are disjoint. For $0 < \beta < n$
put $A_\beta = \bigcup H_\beta$ and put $A_\alpha = (A - \bigcup H_\beta) \cup (\bigcup H_\alpha)$. Then it is easily checked that $(A_\alpha)_{\alpha \in \lambda}$ gives the desired decomposition of A.

Now suppose that m is a cardinal $> n$. Since $|A| = m$, we can well-order A by the cardinal m. Also, well-order \mathbb{B} by n so that $B = (B_\lambda : 0 < \lambda < n)$. Let I be the intersection of all subsets of A of m satisfying the three properties: (i) $0 \notin C_1$; (ii) if $n \in C_1$ then $n + 1 \in C_1$; (iii) the union of any subset of C is m or is in C. Then clearly each $a < m$ can be uniquely written as $\gamma + \xi$ where $\gamma \in I$ and $\xi < n$. Since $|I| = m$, we can also find a one-to-one increasing function f from m onto I.

By the "first α points" of a subset C of the well-ordered set A (where $|C| \geq n$) we mean the smallest initial segment (relative to the well-ordering of C) that is countable by A and having cardinality n. Now begin by choosing C_0 to consist of the first α points of A. Having chosen C_β for all $a < \beta < m$, consider β. If $\beta \in I$, we let $C_{\beta + 1}$ consist of the first α points of $A - \bigcup C_\alpha$. If $\beta \notin I$, then $\beta = \gamma + \xi$ where $\gamma \in I$ and $0 < \xi < n$, and we let $C_{\beta + 1}$ consist of the first α points of the set $D_{\beta, \gamma} = (A \setminus B_\gamma) - \bigcup C_\alpha$. Finally put $A_\beta = \bigcup \{ C_\alpha : a < \beta < f(a + 1) \} = f(a) + n$ for each $a < m$.

Then $(A_\alpha)_{\alpha \in \lambda}$ yields the desired decomposition of A. Since $|A \setminus B_\gamma| = m$ and $\bigcup C_\alpha \subseteq \{ n : \beta < m \}$, we have $|D_{\beta, \gamma}| = m$ for each $\beta \notin I$. Hence the choice of C_β is possible. To prove the statement and the n-density of the sets A_α are immediate. The fact that $|A_\alpha|$ exhausts A follows from the choice of $C_{\beta + 1}$ for $\beta \in I$.

For the case when $|B| = n$, we decompose m so that $m = \bigcup_{\alpha \in \lambda} M_\alpha$ where $|M_\alpha| = n$ and the M_α's are disjoint. From above we know that $A = \bigcup A_\alpha$ where A_α is $|B|$-dense. Now define $A_\beta' = \bigcup \{ A_\alpha : \alpha \notin I \}$. Then A is the union of the M_α disjoint, n-dense sets A_α', which completes the proof of the theorem.

Of particular interest is the decomposition of the n-dense subset of the plane. Here, the decompositions can be made to satisfy some interesting geometrical properties. For instance.

Theorem 2. Any m-dense subset of the plane is the union of m disjoint, mutually homeomorphic, countably dense sets each of which has the property that no three of its points are collinear and that each vertical or horizontal line intersects it at most once.

Proof. We follow the pattern of the proof of theorem 1. In the case $m = \aleph_0 = \omega$ we have from theorem 1 that $A = \bigcup_{\alpha = 0}^\omega C_\alpha$, where the C_α's are disjoint and ω-dense. Now well-order A by the ordinal ω.

Let $(B_\alpha : 0 < \alpha < \omega)$ be a countable basis for the plane. By induction upon a_α, pick x_α to be the first point in A. Having chosen x_α for all $a < \beta < \alpha$, consider β, which can be uniquely expressed as $\alpha + \kappa$ where $\kappa < \omega$. If $\kappa = 0$, let x_α be the first point in $A - (\{ x_\alpha : a < \beta \})$. If $\kappa = 0$, choose x_α to be the first point in the set $(B_\alpha \cap C_\alpha) \cup \{ (x_{\alpha + 1} \setminus (x_{\alpha + 1} \cup \{ x_{\alpha + 1} \}) : 0 < i < j < \kappa \}$ where $K(z) = \{ v \in \mathbb{E}^2 : z, v \} \cap \mathbb{E}$ (a common coordinate) and $L(z, v)$ is the line passing through z and v, where $z \neq v$. Then put for each $n < \omega$ $A_n = \{ x_\alpha : \alpha \in [\omega, \omega + n] \}$, and \aleph_1 can be shown without difficulty that $(A_\alpha)_{\alpha \in \lambda}$ yields the desired decomposition of A.

In the case $m > \aleph_1$, we simply repeat the corresponding argument in the proof of theorem 1 with the modifications that $m = \aleph_1$; C_α is chosen to consist of the first point in the set

$$D_\alpha = \bigcup_{\beta < \omega} (B_{\alpha + 1} \cap C_\beta) \cup \{ (x_{\alpha + 1} \setminus (x_{\alpha + 1} \cup \{ x_{\alpha + 1} \}) : 0 < i < j < \kappa \}$$

whenever $\beta = f(i) + n$, $\kappa = 0$; C_α is chosen to consist of the first point in $A - \bigcup C_\alpha$ whenever $\beta \in I$. The rest of the proof is as before. Finally, the decompositions are mutually homeomorphic since any two countably dense subsets of the plane are homeomorphic (Sierpiński [11]).
Only in the case X is Hausdorff can we dispense with the requirement that $\eta \leq \chi(X)$ in theorem 3 (as well as in theorem 9), for then, if $\chi(X)$ were finite, X would have the discrete topology and hence be maximally resolvable. To show that $\eta < \chi(X)$ is necessary in a non-Hausdorff space, take a two point set with the indiscrete topology. Next we show a “locally m-resolvable” space is m-resolvable.

Theorem 4. If each non-void open subset of X contains an m-resolvable subspace, then X itself is m-resolvable.

Proof. Let A_m be a subset of X which is m-resolvable. Let $(G_\alpha)_{\alpha \in m}$ be its corresponding resolution. Now suppose we have chosen for each $\alpha \in m$ an m-resolvable set A_α with resolution $(G_\alpha)_{\alpha \in m}$. Consider $G_\beta = X - \bigcup \alpha \in G_\alpha$. If $G_\beta \neq \emptyset$, we select by hypothesis an $A_\beta \subseteq G_\beta$ which is m-resolvable. If $G_\beta = \emptyset$, put $A_\beta = \emptyset$. Let β be the least ordinal β such that $G_\beta = \emptyset$. Then put $C' = \bigcup \alpha \in G_\beta$, for each $\gamma < \alpha$. Then it can be shown without difficulty that $(C' \cup (X - C')) \cup (C': 0 < \gamma < m)$ gives the desired m-resolution of X.

Theorem 5. If each point $x \in X$ has an open neighborhood $U(x)$ such that $\eta \leq \chi(U(x)) \leq \chi(X)$, then X is maximally resolvable.

Proof. By theorem 3 each $U(x)$ is $\chi(U(x))$-resolvable, hence $\chi(X)$ resolvable. Since open subsets of m-resolvable spaces are obviously m-resolvable, the hypothesis of theorem 4 is satisfied for $m = \chi(X)$. Thus X is maximally resolvable.

Theorem 6 (Hewitt [53, Th. 46]). Let X be a T_γ-space devoid of isolated points and having the property that each non-void open subset of X contains a non-void open subset Y such that for each point $p \in Y$, $\chi(p) \leq \|Y\|$. Then each non-void open subset of X contains a non-void open subset G so that $\chi(G) \leq \chi(X)$.

The next four theorems provide us with a large class of maximally resolvable spaces.

Theorem 7. Any locally compact Hausdorff space is maximally resolvable.

Proof. It is well known that a locally compact Hausdorff space devoid of isolated points satisfies the hypothesis of theorems 6 (cf. [1], p. 67). Then apply theorems 2 and 4 where $m = \chi(X)$ to complete the proof.

Theorem 8. Any T_γ-space in which each point has a local basis linearly ordered by inclusion is maximally resolvable.

Proof. It is easily seen that the hypothesis of theorem 6 is fulfilled. Then apply theorems 2 and 4.

In particular then, 1st countable T_γ-spaces (including metric spaces), and linearly ordered sets equipped with the order-topology are maximally resolvable. We are unable to prove that an arbitrary product of maximally resolvable spaces is maximally resolvable, however, we do have

Theorem 9. For each $a \in \Lambda$ let X_a be a maximally resolvable space with $\eta \leq \chi(X_a)$. Then the product space $\prod X_a$ is maximally resolvable, provided there does not exist an infinite subset $\mathcal{M} \subseteq \Lambda$ for which $\chi(X_a) = \sup_{a \in \mathcal{M}} \chi(X_a)$ and $\chi(X_a) < \chi(X_a)$ for all $a \in \mathcal{M}$.

Proof. First we prove that a finite product of maximally resolvable spaces is maximally resolvable. By induction, we need only consider two maximally resolvable spaces X and Y with resolutions $(X_a : a \in \Lambda)$ and $(Y_a : a \in \Lambda)$, respectively. Then, since $\chi(X \times Y) = \chi(X) \cdot \chi(Y)$, $(X_a \times Y_b : a \in \Lambda, b \in \Lambda)$ becomes a $(X \times Y)$ resolution for $X \times Y$.

Let us now put $X = \bigcap_{a \in \Lambda} X_a$, $m_a = \chi(X_a)$ and $m = \chi(X_a)$ for each $a \in \Lambda$. Now we decompose the index set into four disjoint sets: $A_1 = \{a \in \Lambda : m_a = m_1\}$; $A_2 = \{a \in \Lambda : m_a = m_2\}$; $A_3 = \{a \in \Lambda : m_a = m_3\}$; and $A_4 = \{a \in \Lambda : m_a = m_4\}$. Since X is homeomorphic to $\bigcap_{a \in \Lambda} X_a$ where $X_a = \bigcap_{a \in \Lambda} X_a$, we need only show that each X_a is maximally resolvable.

(1) For X_1, put $m = \chi(A_1)$ and let $(G_\alpha : \alpha \leq m_1)$ be a m_1-resolution for X_1. Then the family $(\bigcup \alpha \in G_\alpha : \alpha \leq m_1)$ is disjoint and has cardinality $\prod_{\alpha \leq m_1} m_a$. Moreover, each non-void open set intersects each member of this family in $\bigcup_{\alpha \leq m_1} m_a$ points. Clearly there exists a finite subset $\{a_1, a_2, \ldots, a_n\}$ of A_1 for which $\chi(X_1) = \bigcap_{a \in A_1} m_a \times m \subseteq \chi(X_1)$.

Hence, X_1 is maximally resolvable.

(2) For X_2, we have a finite subset $\{a_1, \ldots, a_n\}$ of A_2 for which $\chi(X_2) = \bigcap_{a \in A_2} m_a \times m \subseteq \chi(X_2)$. Let A_3 consist of all finite subsets of A_3 which $|A_3| = |A_4|$ unless A_4 is finite in which case X_4 is already maximally resolvable. Then obviously $\chi(X) = \prod_{a \in A_3} m_a \times m_4 \subseteq \chi(X)$. Then it is easily established that $\chi(X) \leq \prod_{a \in A_3} m_a \leq \chi(X_3)$. Now we apply theorem 3 to conclude that X_4 is maximally resolvable.

(3) For X_4, put $A_2 = \{a \in \Lambda : a \leq m_4\}$ and $A_3 = A_4 - A_3$. By assumption, A_4 is finite so that $X_4 = \bigcup_{a \leq m_4} X_a$ is maximally resolvable. Assuming $|A_4| = m_4$ is infinite, we have, since $m_4 \leq m_4$,

$$\chi(X_4) \leq \bigcup_{a \in A_3} m_a \times m_4 \leq \chi(X_3).$$
Also, since there exists a set \((a_1, \ldots, a_n)\) for which \(\prod m_a = \prod k_a = a(X_i)\), we can prove that \(\gamma' = \prod k_a = a(X_i)\). But the assumption that \(\sup_{a \in A_a} k_a = m\) implies that \(\gamma = m\) and \(x(X_i) = 2^m\). Hence, by theorem 3, \(X_i\) is maximally resolvable, as is \(X_4\).

(4) For \(X_i\), we have as in (3) that \(\gamma' \leq a(X_i)\) where we can assume without loss of generality that \(|A_4| = m\) is infinite. Then \(\chi(X_i) = \sum (\prod m_a : \beta \in A_4) \leq \sum (\prod k_a : \beta \in A_4) = |A_4| = \gamma - m\). But since \(\gamma' \leq \gamma\) for all \(m\), we have \(x(X_i) \leq a(X_i)\) and thus, \(X_4\) is maximally resolvable.

There do exist maximally resolvable spaces \(X\) for which \(\kappa = a(X) < |X| < \gamma = x(X)\). For example, let \(Y\) be the linearly ordered space obtained by inserting a copy of the rationals between each two consecutive ordinals \(<2^\omega\). Let \(X\) be the subspace \(Y \cup \{p\}\) of \(Y\) (the Stone-Čech compactification of \(Y\)) where \(p \in \beta Y - Y\). Then \(X\) is maximally resolvable with \(\kappa = a(X) < 2^\omega = c = |X| < 2^\omega = \gamma = x(X)\). Now as an application of theorem 9 we obtain:

Theorem 10. A product space \(\prod X_i\) is maximally resolvable if each \(X_i\) is Hausdorff and \(\chi\) \((p) \leq \kappa\) for each \(a \in A\) and \(p \in X_a\). (In particular, if each \(X_a\) is Hausdorff and is either locally compact or has a local linearly ordered base at each point.)

Proof. Let \(B = \{a \in A : \kappa_a \leq |X_a|\}\), and \(C = A - B\). For \(a \in B\) we have for \(X = \prod a \in B X_a\) that \(\kappa_a \leq \chi(X) = \sum Xa(p) \leq |X| |X| = |X|\) and upon application of theorem 9 we have that \(X = \prod a \in B X_a\) is maximally resolvable. If \(|C|\) is finite, then \(\prod X_a - Y\) has an isolated point and we are finished.

If \(|C|\) is infinite then \(a(Y) = \prod a \in B X_a\) and \(\gamma(Y) = |C|\) unless \(Y\) has an isolated point. Therefore, unless \(Y\) has an isolated point \(\kappa_a \leq \gamma(Y) - |C| \leq \prod a \in B X_a = a(Y)\). Hence, \(X\) is maximally resolvable, which proves the proof. The parenthetical statement is a consequence of theorems 7 and 8.

In particular, a product of real intervals is maximally resolvable. Although open subsets of maximally resolvable spaces are obviously maximally resolvable, arbitrary subsets may not be. For example, Katětov \([3]\) has shown that there exist normal, zero-dimensional spaces of arbitrary infinite cardinality which are not 2-resolvable. In particular, there exist a countable, normal space (hence, regular Lindelöf) which is not 2-resolvable. Finally it should be mentioned that Padmanabha \([6]\) has constructed a connected Hausdorff space which is not 2-resolvable.

References

Reçu par la Rédaction le 29.3.1963