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On the most general plane closed point set through
which it is possible to pass a pseudo-arc*

by
H. Cook (Auburn, Ala.)

Introduction. R. L. Moore and J. R. Kline proved [6] that, in
the plane, a closed and compact point set I is a subset of an are if and
only if every component of M is either a single point or an are ¢ such
that no point of ¢, except its end points, is a limit point of M —¢. To show
that this theorem remains true in the plane if the word “arc” is everywhere
replaced by ‘“pseudo-are” is the primary purpose of this paper. In the
case of the pseudo-arc, however, a simpler statement of this theorem is
possible since it has been shown by Bing [1] and by Moise [5] that every
point of a pseudo-arc is an end point of it. The author’s ability to do the
work represented by this paper is largely a result of his training by Pro-
fessor R. L. Moore.

The notation and terminology used throughout this paper is, for
the most part, that used by R. L. Moore in [7]. The space under
consideration is the plane and § denotes the set of all points in the
plane.

DEFINITIONS. A simple chain is a finite coherent collection C of
domains such that there do mot exist three domains of ¢ such that, if
d is one of them, then ¢ —d is coherent. If € is a simple chain, the domains
of the collection ¢ are called the links of ¢ and, if d is a link of ¢ such
that ¢ —d is coherent, then d is called an end link of C. If C is a simple
chain, the statement XY¥Z in C means that X, ¥, and Z are links of O
and C—Y is the sum of two collections T and ¥, containing X and Z,
respectively, such that no domain of U has a point in common with any
domain of V. If X and V are end links of the simple chain ¢ and ¥ and U
are two links of ¢ such that (1) either X is ¥ or X¥U in C, and (2)
either U is V or YUV in €, then ¥ is said to precede U in the order from
X toVin C.

* Presented to the American Mathematical Society in Chicago, April 12, 1962,
and to the faculty of the Graduate School of the University of Texas in partial ful-
fillment of the requirements for the Ph. D. degree, August 1962.
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If X and Y are end links of the simple chain C then O is called the
chain XY and, if 4 and B are points of X and ¥, respectively, € is said
to be a simple chain from A to B.

If every link of the simple chain D is a subset of some link of the
simple chain €, then D is said to be a refinement of C, and, if the closure
of each link of D is a subset of some link of O, it is said to be a strong
refinement of C.

If ¢ is a positive number, an &-chain is a simple chain each link of
which has diameter less than e. If 6 is a positive number and € is a simple
chain such that, i£ X and Y are two noninbersecting links of (, then
the distance from X to Y is greater than 4, then C is said to be a d-regular
chain. If there is a positive number 6 such that the simple chain ¢ is
d-regular, then C is a regular chain. '

If M is a point set and there exists & sequence €, C,, ... such that
(1) for each #, Oy is & 1/n-chain, (2) for each @, Cn4, is a strong refinement
of On, and (3) M is the common part of the point sets OF, CF y very then
each such sequence is called a defining sequence for M. If every ;imple
chain of a defining sequence « for the point set M is a regular chain, then
a is said to be a regular defining sequence for M. If a point set has a de-
fining sequence, it is a compact continuum and is called a chainable (or
snake-like) continuum. If A is a point of a chainable continuum M and
tlhere exists a defining sequence « for M such that 4 belongs to an end
link of each term of «, then 4 is said to be an end point of M. If 4 and B
are two points of a chainable continuum M and there exists a defining
sequence « for M such that each term of « is a simple chain from 4 to B
then M is said to be chainable from A to B. ’
) The simple chain D is said to be erooked in the simple chain O [1]
if and only if it is true that D is a strong refinement of ¢ and, if XYU
and'YUV in 0 (=XYUV in 0) and X’ and V' are two links of D inter-
seeting X and V, respectively, then there exist links ¥’ and U’ of D lying
wholly in Y and U, respectively, such that X'T'Y'V’ in D. Tf 4 and B
are two points of the continuum M and there exists a defining sequence
_C'I, Oy, ... fqr M of simple chains from 4 to B such that, for each n, Uiy
is crooked in Oy, then M is called a pseudo-are, [4). T

TEEOREM 1. If M is & compact continuwm and O is a simple chain

[ 4 ) her is @ g'N/l chain ¢ g q ] -
overing M, 1 ¢ 6XLS: re Y AN COVErLN, W which is o strong refine

Proof. Let ¢' denote a subcollection of ¢ covering M such that
no proper subcollection of ¢’ covers M. Then ¢ is a simple chain. Let
.L,,Lm ..:,Ln denote the links, in that order, of C’. For each positive
@teger t<n +1, let K; denote the set to which P belongs if and onl
if P is a point of M. L; which liesin no other link of €. Let Dy, D,, ... ,DZ
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denote domains containing K, K,, ..., Ky, respectively, such that there
clostires are mutually exclusive. For each ¢ < n -1, let H; denote the
set to which P belongs if and only if P is a point of 3 - L; not in D;_; nor
in Diyq. If 7 and j arve two positive integers < » -1 such that [¢—j|>1, H;
and H; are mutually exclusive closed point sets and H; and L; are
mutually exclusive. The point set H; + Hy+ ...+ Hy is M.

Let 6 denote a positive number such that, if 4 <n -1, the distance
from H; to S—IL; is less than 38 and, for each ¢ <mn-+1, denote by d;
the set of all points at a distance from H; less than J. Then K, the col-
lection of all domains d;, for all ¢ <n-+1, is a simple chain covering M,
for each ¢ < n-+1, d; is a subset of Iy, and, if ¢ and j are two positive
integers < m -+1 such that |{—j]> 1, the distance from d; to d; is greater
than 6.

THEOREM 2. Suppose that M is a closed and compact point set, n s
a positive integer, and C is a regular chain covering M such that either no
proper subchain of C covers M or no end link of C intersects M. Then there
ewists a positive number s such that, if G is a coherent collection of n domains,
each with diameter less than &, one domain of which contains a point of M,
then G* is a subset of some link of C.

Proof. Let & denote a positive number such that the distance from
M to 8§ — C* is greater than & . Let M’ denote the set to which P belongs
if and only if P is a point of M or P is a point such that the distance
from P to M is not greater than /2. For each link L of ¢ which is not
a subset of any other link of 0, let Pz denote a point which belongs to L
but to no other link of €, and let Mz, denote the set to which P belongs
if and only if P is either Pz or a point of M’ which belongs to L but
to no other link of C. Let &, denote a positive number such that, if I is
a link of ¢ which is not a subset of any other link of (, then the distance
from M} to S§—L is greater than . Let s, denote a positive number
such that € is an e-regular chain.

Denote by & a positive number which is less than each of the numbers
&/2m, &fn, and &fn, and suppose that G is a coherent collection of n
domains, each of diameter less than & one of which contains a point
of M. Then G* has diameter less than ne.

Suppose that G* is not a subset of any link of O. Since G* has diameter
less than & it is a subset of 0%, and, since it has diameter less than e,
it does not intersect three different links of €. Indeed, there exist two
intersecting links X and ¥ of € such that X4 ¥ contains G*. Suppose
that G* contains a point of M. Since G* has diameter less. than &, it is
a subset of X. Similarly, G* contains no point of M¥. Since @ has
diameter less than /2 and a point of M, it is a subset of M’ and,
hence, is a subset of X-Y.M'. Then G* is a subset of X.
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TrEOREM 3. Suppose that (1) & s a positive number, (2) C is an &-regular
chain, (3) the &/2-chain D is a strong refinement of C, and (4) F is a simple
chain which is crooked in D. Thén B is crooked in C.

Proof. Suppose that X, Y, U,V in € and X, and V, ave links of B
intersecting X; and Vy, respectively, such that there do not exist links
Y, and U, of B lying in Y, and U,, respectively, such that X,U; ¥,1,
in E. Let ¥; and U denote the non-end links of the subchain X,V of €
such that ¥, intersects X, and U; intersects V. There do not exists links
T, and U, of E lying in ¥; and U7, respectively, such that X;U, ¥,V in E.

Tet X, and V, denote links of D containing X, and Vs, respectively.
Let Xs denote the last link in the order from X, to V, in the subchain
X,V, of D which intersects X;, and let V3 denote the first link in the
order from X3 to V, in the subchain X3V, of D which intersects V. Let
Y: and U denote the non-end links of the subchain XoV; of D such that
¥} intersects X4 and Us intersects Vs. Since each link of D has diameter
less than £/2 and Xj intersects X, but is not a subset of X, and since
there is no link Z of C containing Xs such that ZX,V, in €, X3+ ¥; is
a subset of ¥{. Similarly, Us+Vs is a subset of Uj.

Let X; denote the last link in the order from X, to V;in the subchain
X,V of E which intersects X3, and let V3 denote the first link in the order
from X: to Vs of the subchain X3V; of E which intersects V.. Since E is
crooked in D, there exist links ¥, and U, of ¥ lying in Y and Us,
respectively, such that X;U; ¥;Vs in E. But then XU, YV, in E, and
Y, and U, are subsets of ¥{ and Uy, respectively.

THEOREM 4. Suppose that (1) M is a pseudo-arc, (2) D is o regular
chain covering M such that either no proper subchain of D covers M or no
end link of D intersects M, and (3) Oy, Cy, ... is a defining sequence for M
such that, for each n, Cy properly covers M and Cpyy is crooked in Cn. Then
there exists a pesitive integer k such that, if B is a simple chain which is
a refinement of Oy, then E is crooked in D.

Proof. Let ¢ denote a positive number such that (1) if & is a co-
herent collection of three domaing, each with diameter less than e, one
of which intersects M, then @* is a subset of some link of D; and (2) D is
2¢-regular. Let % denote a positive integer > (1-+¢)fe. Then Uy is an
¢-chain, and, since O is crooked in Cr—_;, O is crooked in D. Let E denote
a simple chain which is a refinement of ¢, and suppose that (1) X, ¥, U,V
in D, and (2) X, and V, are links of ¥ intersecting X, and V,, respectively,
Let X, denote a link of Cj containing X,, and let X, denote a link of
Cr-1 containing X;. Let V; denote a link of Cp containing V,, and lef
V, denote a link of Cy_; containing V,. Since X, intersects X, no three
link subchain of Cy,, one of whose links is X,, has a link which intersects
a link of D which does not intersect X;. Similarly, no three link subchain
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of Oy_1, one of whose links is ¥,, has a link which intersects a link of D
which does not, intersect V;. Therefore, there exist links ¥, and U, of
Or—1 lying in ¥; and U;, respectively, such that X, ¥,U,V, in 0. Since
O is crooked in Oy-,, there exist links ¥, and U, of C; lying in ¥, and U,,
respectively, such that X3T; Y3V, in Ci. Then there exist links U, and Y,
of F lying in U, and Y;, respectively, such that X,U,Y,V, in E. Butb
Y, is a subset of ¥; and U, is a subset of U,. Hence, every simple chain
which is a refinement of Cy is crooked in D.

TEROREM 5. If M is a pseudo-are, there exists a regular defining
sequence Oy, Cy, ... for M such that, for each n, Cyi+i is crooked im Cy.

Proof. Suppose that M is a pseundo-arc, 4 and B are two points
of M, and Dy, D,, ... is a defining sequence for I/ such that, for each #,
Dy is a simple chain from A to B and Dyy, is ecrooked in D,. For each #,
D, properly covers IM. Denote by 0y, Oy, ..., and ks, ... sequences
such that Cy is a regular chain covering I no subcollection of which
covers M, Cyis a strong refinement of D, and, for each n, (1) kn is a pos-
itive integer such that every simple chain which is a refinement of Dy,
is crooked in Oy, and (2) Oy is a regular chain covering M no subcol-
lection of which covers M such that Cpy is a strong refinement of Dy, .
Then €y, Cs, ... is a regular defining sequence for M such that, for each =,
Cpay is crooked in Cn.

That every chainable continuum has a regular defining sequence
was proven by G. W. Henderson in [3].

DerFINITIONS. If M is a point set and e is a positive number, an
&-chain with respect to M is a finite colerent collection C of domains
with respect to I, each with diameter less than e, such that there do
not exist three domains with respect to M of the collection ¢ such that,
if d is one of them, ¢ —d is coherent.

An open-ended simple chain is a simple chain C such that, if L is
an end link of O, then there exists, in the boundary of L, a domain O
with respect to the boundary of O* which does not intersect the boundary
of any other link of ¢. Such a domain O with respect to the boundary
of C* is called an open end of C. If C is an open ended simple chain, then
the open ends O and 0’ of C are called opposite open ends of C provided
0 and 0’ are mutually exclusive and, unless € has only one link, O and
0’ lie in the boundaries of different end links of C.

A simple consolidation of a simple chain C is a simple chain D each
link of which is either a link of € or the sum of the links of a subchain of C.
The primary open-ended consolidation of a simple chain C is a simple
consolidation D of ¢ which is an open-ended simple chain such that,
if E is any simple consolidation of ¢ which is open-ended, then E is
a simple consolidation of D.
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TaEOREM 6. If J is a circle of radius & then no &-chain with respect
10 J covers J and, therefore, no ¢-chain covers J.

Proof. Suppose that J is & circle of radius ¢, C is an 2-chain with
respect to J covering J, and Ly, Ly, ..., Ln are the links, in that order,
of C. For each positive integer i < n -1, let T; denote the arc of J with

" end points in the boundary with respect to J of L; and which contains L;.
For each ¢ < w1, T; is a subset of some semicircle of J. Since I, contains
the end points of Ty, T, contains T;. Indeed, for each ¢ < n, Ty contains
T;. Then T, is J.

THEOREM 7. It & is a positive number and C is a 6-regular chain,
then every comsolidation of C is a 8-regular chain.

THEOREM 8. Suppose that ¢ is a positive number and C is an e-chain
such that C* is a simple domain. Then the primary open-ended consolidation
of C is a 4e-chain.

Proof. Let L, Ly, ..., L, denote the links, in that order, of O, and
let A and B denote points of I; and Ly, respectively. If X is either A
or B, denote by Jx the circle with center X and radius e, by Ix the interior
of Jx, and by Dx the component containing X of Ix- 0*. Let F denote
the simple chain of which e is a link if and only if either (1) e is the
sum of the links of ¢ which intersect D4, (2) ¢ is the sum of the links of ¢
which intersect Dg, or (3) ¢ is a link of ¢ which intersects neither D4 nor
Dg. Then E is a 4¢-chain which is open-ended and is a simple consolidation
of €. Then the primary open-ended consolidation of € is a 4e-chain.

THEOREM 9. Suppose that M is a closed and compact point set no
component of which separates S and G is a collection of domains such that
each component of M lies wholly in some domain of G. Then there ewists
a finite collection H of simple domains covering M whose closures are
mutually exclusive such that each domain of H is a subset of some domain
of the collection G.

Proof. For each component % of M, let J; denote a simple closed
cwrve lying in §—M whose interior, I, contains % and lies wholly in
some domain. of the collection @. Let @ denote the collection of all domains
I for all components & of M, and let Q' denote a finite subcollection
of @ covering M. Let 8 denote the sum of the boundaries of the domains
of the collection Q'. For each component D of 8 — B which containg a point
?f M, let Op denote a simple domain containing M.D whose closure
is-a subset of D. Let H denote the collection of all domains Op for all
components D of §—p which contain a point of M. Then H is a finite
collection of simple domains, covering M, whose closures are mutually

exclusive such that each domain of H is a subset of some domain of the
collection G.
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TEEOREM 10. A closed and compact point set M is a subset of
a pseudo-arc if amd only if every component of M is either a single point
or a pseudo-are.
Indeed, if M is such a closed and compact point set, there exists a pseudo-
arc T, containing M, no composant of which contains two components of M.

Proof. Moise [4] proved that every non-degenerate subcontinuum
of a pseudo-are is a pseudo-arc. Therefore, every component of a closed
subset of a pseudo-arc is either a single point or a pseudo-arc.

Suppose that M is a closed and compact point set every component
of which is either a single point or a pseudo-arve. Let A and B denote
two points of §—21. For each component k of M, denote by Cuz, Ce, ...
a regular defining sequence for k such that, for each n, Cnx properly
covers k and Cp11,r is crooked in Cpy. (In case k is degenerate, for example,
each chain of the sequence Ciz, Cox, ... may be degenerate.) The remainder
of the proof will be divided into five parts.

Part I. Denote by @, the collection of all domains Cf for all
components % of M. Denote by H, a finite collection of siraple domains
properly covering M such that (1) each domain of the collection H, is
a subset of a domain of the collection Gy, and (2) if d, and d, are two
domains of the collection Hy, then d, and d, are mutually exclusive subsets
of §—(A + B). Let hy, hyay -, bin, denote the domains of the collection H; .
For each i (1 <4< ny), (1) denote by %; 2 component of M such that
Cfy contains fug; (2) denote by ay; the chain of which X is a link if and
only if for some link ¥ of Cu,, which intersects hu;, X is Y- hy; (3) denote
by af; the primary open-ended consolidation of a;; and (4) denote by
0y and 0f; opposite open ends of af;. For each ¢ (L < ¢ < my), af; is a reg-
ular 1-chain.

Let AoBigy A1 Buy +-s Ain B, denote mutually exclusive ares lying
wholly in §—H} such that (1) 4y, is A and By, is B, and (2) for each 7
(1< i< my), A is a point of 04f; and Bis— is a point of Oy;. Denote by
Bios Buus -v, Pin, Tegular 1-chains the closures of the sums of the links
of which are mutually exclusive such that, for each ¢ (0 < i< 1)y (1) Bu
is a simple chain from Ai; to By; covering the arc Ay;By; and having more
than two lnks; (2) each link of pi; is connected; (3) if X is a link of Bi;
and Y is a link of one of the chains afy, afs, ..., ain, and X and ¥ have
a point in common, then Y is the only link Z of one of those chains such
that X and Z have a point in common, and X is an end link of §;; which
contains neither 4 nor B; and (4) no link of fi; contains a point of M.

Denote by D, the chain of which & is a link if and only if 4 is a link
of one of the chains aj:, aje, ..., ain, O of one of the chains fig; fu1s -+ s fins -
Then D, is a regular 1-chain from 4 to B, covering M, and Di is connected.
Let E;, and E;z denote the end Iink.sdﬁ:fw;l)l containing 4 and B, respec-
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tively. The point sets E1 4, Big, and M are mutually exclusive. Let &
denote a positive number such that (1) if d is a domain with diameter
less than & which contains a point of M, then d is a subset of some link
of Dy, and (2) D, is g-regular. Then & <1.

Part IL For each component % of the point set M, denote by Ci;
an /3-chain of the sequence Ci, Cer, ... such that every simple chain
which is a refinement of Csxis crooked in D,, and denote by py(k) a positive
integer such the closure of every domain with diameter 4/p,(k) which
intersects M is & subset of some link of Ci. For each i (1< i< ),
(1) denote by Ga; the collection of all domains Oy, Tor all components
% of M- hy; (2) denote by Hy; a finite collection of simple domains properly
covering M - Ty; such that (a) each domain of the collection Hyp; is a subset
of some domain of the collection G, and (b) if d; and d, are two domains
of the collection Hy;, then d, and d, are mutually exclusive subsets of hu;
and (3) denote by T, A, ...y hom, the domains of the collection Ha;.
For each 1 (1 < ¢ < ny), and each j (1 < § < ney), (1) denote by ke a com-
ponent of M such that Opyigey contains hey; (2) denote by asy; the
chain of which X is a link if and only if for some link ¥ of Cpykyiay
which intersects hey, X 18 ¥ -hey; (3) denote by as; the primary open-
ended consolidation of a;; and (4) denote by Ogy and Oz; opposite open
ends of ajy;. If 4 is a positive integer (1 < i< ny), and § is a positive
integer (1 <<j < mei), sy 1S a refinement of Cu,, and, therefore, is an
£/3-chain which is crooked in D,; and az; is & regular chain.

For each ¢ (1<i<m), let AsioBeg, AeinBairy vy Azing Biiny denote
mutua]ly exclusive arcs lying wholly, except for their end points, in
hy—HE; such that (1) Asy is Big—1 and Big, is Ay, and (2) for each j
(1 <7 Mgz}, Agij is a point of 0% and Bsy-q is a point of Oy . For each ¢
1 <i<m), denote by Zs the point set AdgBen-+ AsiBair+ -+
- Asing Boings + Foir = Baig + oo -+ Baing - For €ach ¢ (1 < 4 < my), Zaog is a com-
pact continuum which does not separate DY.

Let A10P10@uB1oy A1 Pu@uBu, -y Aing Piny @iy Buny denote mutually
exclusive arcs (different from but having the same end points as A;,By,
AyBiyy ooy Ay B, respectively) lying wholly, except for their end
points in D¥—(Zy + Zy+ ... + Zop, +- A +B) such that (1) for each ¢
(1 <4< m), Py is a point of Bip and @y is a point of Fy; (2) for each ¢
(0<i<m—1), if X and Y are two links of D, such that (a) XY Bz
isin Dy, (b) every link of af;., follows Y in the order from E, 4 to Bypin Dy,
and (e) Z is a point of the subare @By of A;;P1;0y; By lying in X, then
there exist points Z' and Z”’ of ¢y;By; lying in Bip and Y, respectively,
such that Z, Z’, Z"”, and By; are in that order on @,;By;; and (3) for each ¢
I<i<m),if X and ¥ are two links of D, such that (a) B4 XY in D,
(b) every link of a;; precedes X in the order from E,4 to Bp in D,, and
(¢) Z is a point of the subarc 4,:Py; of A1;P1iQ1:By; lying in ¥, then there
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exist points Z’ and Z" of APy lying in Biy and X, respectively, sueh
that A, Z', Z', and Z are in that order on A;;Py;.

Denote bY i, Vi ooy Y1n, regular g/3-chains the closures of the
sums of the links of which are mutually exclusive such that, for each ¢
(1 <i< ), (1) y; is a simple chain from A,; to By covering the arc
A3 PQ1:By;; (2) each link of yy; is a connected domain whose closure
is a subset of some link of D;; and (3) if X is a link of yy, j is positive
integer < n,, and X intersects Z.;, then j is the only positive integer
p < my such that X intersects Z.,, X is an end link of y; which contains
neither 4 nor B, X does not interseet any of the point sets heji, hojoy vey
Trojnyy» and X intersects only one of the ares 43 20 Bejoy Aaji Bajry ooy Aoy Bejmase

For each 4 (0 < i << n,), let yi; denote a regular chain of connected
domains from A4;; to By which is crooked in y;; such that the closure
of no non-end link of y{; intersects one of the point sets Zy, Zss, ..y Z2ny-

For each ¢ (1< i<ny), (1)let Aoy denote the last point of Ao Beio: yii—1
in the order from Asj t0 Bso on the arc AspBsi; (2) let AsBao denote
the appropriate subare ¢ of the are AsjBoin; (3) let Bswm, denote the first
point of AspnyBlmg- yif in the order from Aspmy t0 Bimy on the
are Aspm, Boiny; and (4) let Asim,Bom, denote the appropriate subare
of the are Asiy, Boing.

For each i (1 < ¢ < n), denote DY Bai, Pairs +r-y Peiny Tegular /3 - chaing
the closures of the sums of the links of which are mutunally exclusive
such that, for each j (0 < § < Ma), (1) feyy is a simple chain from A4s; to
Bay; covering the are A.;Bsxy; and having more than two links; (2) each
link of Bay; is & connected domain whose closure is a subset of some link
of aj;; (3) it X is a link of By; and Y is a link either of one of the simple
chains agy, Gam, -ry Uaing OT of one of the simple chains yio, yi1; -. s Yin, and
X and ¥ have a point in common, then Y is the only link Z of one of
those chains such that X and Z have a point in common and X is an
end link of fu;; and (4) no link of f; contains a point of M.

Denote by D, the chain of which dis & link if and only if 4 is a link
of one of the chains yig, yi1, «-; yin, 0T, for some positive integer ¢ < ny,
d is a link of one of the chains Pai, Pairy -3 Painy OF of one of the chains
i1y Gai2y -y Using. Then D, is a regular 2 /3-chain and D% is connected.
Denote by F.4 and Fap the end links of D, containing 4 and B, respectively.
The point sets E.4, Bsp, and M are mutually exclusive. Let &, denote
a positive number such that (1) if d is a domain with diameter less than
¢, which contains a point of I}, then d is a subset of some link of D,
and (2) D, is &-regular. Then & < &/3.

Lot Ry, hop, oovy Bon, denote the finite sequence fuy, hazs -o-s Botng,

ozt Baggy woe s Bosmgs vovs Bongay Bomgzy -ovy Bomg, 'Where ¢ = fizn,, and let H,
denote the co]lectlon of all snnple domains which are terms of that
sequence. If each of the symbols p, i, and j denotes a positive integer
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(D < Moy T 0y, and j < my), sSuch that hyy is hsy, then (1) denote ayy
by a3p, (2) denote Qs and Os; by O2p and 0z, respectively, and (3) denote
by Bop-1 and Ay, points of Os and Ogp, respectively. Let A4, denote 4
and let B,,, denote B.

Part III. Repeat the process described in Part IT above infinitely
many times with appropriate subseripts having » added to them on the
7t repeat (r =1,2,...). Note that, for each %, e,+1< /3 <1/3" ™" and
the closure of each link of D,.; is a subset of some link of D,.

Denote by 7' the common part of the point sets DY, D%, ... Then T
is a chainable continuum containing M + A4 + B. i

Part IV. Suppose that X, Y,U,V, in D,, and X; and V; are links
of Dy intersecting X; and V,, respectively, such that there do not exist
links Y; and U; of D;lying in ¥; and U,, respectively, such that X;U; ¥V,
in D;. Let Ry and 8, denote the non-end links of the subchain X,V
of D; intersecting X, and V,, respectively. There do not exist links ¥
and U; of Dj; lying in Ry, and 8§y, respectively, such that X;U;Y,V,
in Dj.

Let X,, X3, and X, denote links of D,, D;, and D,, respectively,
such that X, contains X;, X, contains X,, and X, contains X,. Let Vs
Vs, and V, denote links of D,, D,, and D,, respectively such that V,
contains V;, V, contains V,, and V, contains V. Then X, intersects X,
and V, intersects V;. Let X3, X3, and X, denote links of D,, D, and D,,
respectively, such that (1) X; is the last link in the order from X, to V,
of the subchain X,V, of D, which intersects X, and (2) if ¢ is either 3
or 4, X; is the last link in the order from X; to V; of the subchain X;V;
of D; which is a subset of Xi_,. Let V3, V3, and V; denote links of D,,
Ds, and Dy, respectively, such that (1) Vj is the first link in the order
from X; to V, of the subchain X;V, of D, which intersects V5, and (2) if
% is either 3 or 4, V; is the first link in the order from X} to V; of the
subchain X;V; of D; which is a subset of V,_;. For each i (2 <i<4),
let Ry1, Rip, and R;s denote the second, third, and fourth links, respectively,
in the order from X; to V; in the subchain XV} of D; and let S, S,
and 8 denote the second, third, and fourth links, respectively, in the
order from Vi to X; in the subchain X;V: of D;. For each 4 2<i<d),
By + Rig+Rig is 2 subset of Ry_1; and 8+ 8-+ 85 is a subset of Si—y.,.
It follows, therefore, that, if 4 is either 3 or 4, there do not exist links
¥y and Uy of Dy lying in Ry + By + Ry and Sy + Sy, + Sy, Tespectively,
such that X;U;Y;V;in D;.

If ¢ is a positive integer < ny, aj; is crooked in D, and, hence, Ry
and Sy are not both links of af;. Also, if ¢ is an integer (0 < 7 << ny), 4 is
crooked in D, and, hence, R, and 8, are not both links ysi. (Note that
iff ) li)s a positive integer and j is an integer (0 <j < N4}y ¥ 18 a subchain
of Dj,1.)

e ©
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Suppose that 0 < ¢ < %, and y3; is 2 subchain of the subchain XV,
of D,. Since the arc As; Ps;@sBs; intersects every link of D, and each
link of ys; is a subset of some link of D;, every non-end link of D,
contains a link of yy. Then every non-end link of D, contains a link of
ya:. Let Z denote a link of y3; lying in R,, and let Z’ denote a link of y§;
lying in Sp.. Then it is not true that X:Z'ZV, in D,. Now, yi; is crooked
in D, and, therefore, there exist links W and W’ of y3; lying in R, and
Ses, Tespectively, such that ZW'WZ' in 3. Then X, W'WV, in Dy,
a contradiction.

Each of the chains yso, ys1, ..., Ysn, has more than two links. It follows,
then, that either three of the links X;, Ry, R, and Ry or three of the
links Vi, Su, Se; and Sy all belong to one of the chains yso, yii, .. s Vng-
Then, either both Ey and By, or Sy and S,, belong to one of those chains.

Suppose that ¢ is an integer (0 < ¢ < ny) such that R, and R,, both
are links of y4;. Let X3 denote a link of the subchain X,V which is a subset
of R, . Then there exists an integer j (0 <j < n,) such that X; is a link
of y4;. Let d denote a link of y,; containing X; and let P denote a point
of the arc A4 Py Q4 By lying in d. Let L denote the last link of the subchain
X;V; in the order from X; to V; which is a link of yi; and let P’ denote
the end point of the arc 4, Py;Q By lying in L. Let d' denote a link
of y4; containing L. Denote by e, the end link of .D, such that By Rye, in D.
Then there exist points Z and Z* of the are A4; Py Qy By lying in ¢, and R,,,
respectively, such that P, Z, Z', and P’ are in that order on the arc
A4 Py Qy By and, hence, links g and g’ of y,4; lying in 8,, and R,,, respec-
tively, such that dg'gd’” in y4. Therefore, there exist links U, and Y
of y4 lying in ¢’ and g, respectively, such that X3 UY,V; in D;, ¥, is
a subset of Ry, and U, is a subset of 8y;. A similar contradiction would be
reached if it were assumed that S, and S,, both were links of one of the
chains yso, ¥s1y -y Vans. Lherefore, D; is crooked in D;.

Similarly, for each n, Dyy4 is crooked in D,. Hence, the common
part of the domains Df, Df, ..., Dfi—s, ..., which is T, is a pseudo-are.

Part V. The continuum 7' is chainable from A to B. Therefore,
by a theorem due to Bing [2], it is irreducible from 4 to B.

Suppose that %, and %, are two components of the point set M, and
K is a proper subcontinuum of 7' which intersects both %, and %,. Suppose
that Z is one of the two points 4 and B such that K does not contain Z.
Let ¢ denote a positive number such that no point of K-+k +k; is at
a distance less than ¢ from Z. Denote by p a positive integer > 2/e such
that %, and %, are not both subsets of the same domain of the collection Hy.
Let Dpy, denote a subchain of Dyiq properly covering K -+k +k; and
let X, and X, denote links of Djy, intersecting %, and k,, respectively.
There exists a positive integer i< my such that y,; is a subehain of the
subchain X, X, of Dpy; and, thus, is a subchain of Dj4.. Since the
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are ApiPyiQpiBpi intersects every link of Dy, every non-end link of D,
contains a link of y,;. In particular, the non-end link ¥ of D, which
intersects Fypz contains a link of y,; and therefore a point @ of K 4% +k,.
Then @ is at distance from Z less than 2/p < ¢, a contradiction. Thus,
no composant of 7' contains two components of M.

The following theorem can be proven by an argument which is
a simplification of the argument for Theorem 10:

THEOREM 11. A closed and compact point set M is a subset of a chainable
continuum if and only if every component of M is either a single poini
or a chainable continuum.

Indeed, if M is such a closed and compact point set, there exists an
indecomposable chainable continuum T, containing M, no composant of
which contains two components of M.
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Metric characterizations of Banach and Euclidean spaces
by
E. Z. Andalafte and L. M. Blumenthal (Columbia, Missouri)

Introduction: One of the most important classes of metric spaces,
both intrinsically and for its great usefulness in theoretical physics, is
formed by the (metrically) complete, normed, linear spaces. This class
was axiomatized and studied by Banach in 1922, and in the same year
(and quite independently) the class was defined and investigated both
by Hahn and by Wiener.

The usual formulation of the abstract Banach space (over the reals)
is in terms of three primitive concepts: (1) addition (with each (ordered)
pair of elements ,y there is associated a unique element «-+y—the
ordered sum of & and y); (2) scalar multiplication (with each real number 1
and each element z there is associated a unique element A-x—the scalar
maltiple of by 1); and (3) normation (with each element @ there is
associated a unigue real number |jz|—the norm of ). The three primitive
notions are subjected to ten postulates, which are stated in another part
of this paper. A normed linear space is a Banach space provided it is
complete (that is, if {ms} is an infinite sequence of elements such that

lim [l + (—1) @yl = Lm |l —a4] = 0,
1,500 2,700

then an element « exists such that lim o —a:| = 0).
100

The concept of distance is introduced in a normed linear space by
defining the distance zy of two elements ,y to be the norm of their
difference,

ay = llz—yl,

and it i easily seen that in terms of this definition, every normed linear
space is a metric space (that is, (1) ay > 0, (2) 2y = 0 if and only if & =y,
(8) my = y», and (4) @y -+yz > oz for each three elements @, ¥, 2 of the
space). The class of Banach spaces is, therefore, a (proper) subclass of
the class of all metric spaces, and the problem arises of characterizing
metrically this subclass among the members of the whole class. More
precisely, the problem is to obtain conditions, expressed wholly and
explicitly in terms of the metric, in order that an arbitrary metric space
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