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For O C 82, denote by px, ps the poles and by 8* the eql.lator of Sz,
Let ¢’ be the union of the set ¢ ~ 8§ and all the boundaries of com-
ponents of 82— that intersect St Then €' cuts 82 betwefen PN and pg.
Indeed, by the hypothesis, the poles do not belong to ¢ and if a con-
tinuum K C 82 joins them, it must meet ¢ ~ §* or §*—C. In the second
case, K intersects the common part of §' and some COHrl]_)Onent G of
S2—0. Hence K meets the boundary of @ because pye¢ K—G. Thus K
meet;t Gfollows that the projection f of ¢’ onto §* along the meridiags
is an essential mapping (ibidem). But if p, ¢ € ¢’ and f(p), f(g) ave 33?1:1-
podal points on Y, then the distance o(p, ¢) is .aJt lea;s:t n—2d, according
to the hypothesis and the definition of ¢'. Since (' C C, the theorem
from § 7 gives n—2d < 00’ < oC. '
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Recursive metric spaces *

by
Y. N. Moschovakis (Madison, Wisc.)

Introduction. In [10] the author introduced abstract “notation
systems” and used them to give an axiomatic treatment of the theory
of recursive real numbers. In this paper we use the same methods to
constructivize parts of the theory of metric spaces.

A (classical) metric space consists of a set A6 together with a function
6(a, B) from A into the set R of real numbers which satisfies the three
metric axioms. The natural way to define a “recursive metric space”,
according to the point of view that we adopted in [10], is to substitute
an arbitrary notation system M for the set A6 and a “recursive operator’’
D{a, g) from M into R (the notation system for the recursive real num-
bers [10], (1.5), (1.6)) for the distance function &(a, f) (Definition 1).

It is found that this concept of a recursive metric space is too weak;
before we can prove any of the more inberesting results of the theory,
we have to postulate a deeper connection between the metric and the
recursive structure of the space. We shall consider two conditions (A)
and (B) (§§ 1 and 4, respectively) on a recursive metric space M, which
seem to be sufficient for this purpose.

A space M satisfies (A) if we can effectively compute the limit of
a recursive, recursively Cauchy sequence of points of M, whenever it
exists.

In order to state our main result we need the concept of an “S-traced”
set. A subset B of M is S-traced if we can effectively find an element of B
in every sphere that intersects B (Definition 2). If M satisfies (A), then
every point of a listable subset L of M can be effectively separated from any
given S-traced subset B of the complement of L by an open sphere (the
separation theorem, § 2).

* This paper is Part IT of the author’s Ph. D. Thesis at the University of Wisconsin
written under the direction of Professor S. C. Kleene. Part of the material appeared
in [9], written under the direction of Doctor D. L. Kreider (now at Dartmouth College)
and was presented at Professor H. Rogers’ seminar in logic at MIT in the summer of
1960. I wish to express my sincerest appreciation to all three above-named persons for
their help and encouragement.


GUEST


216 Y. N. Moschovakis

Although the separation theorem is not hard to prove, it expresses
a rather deep relation between the metric and the recursive properties
of listable subsets of M. It is used in § 3 to derive some well-known un-
solvability results, for example that the irrational recursive real numbers
do not form a lstable subset of R.

In § 4 we introduce Condition (B): M satisfies (B) if every listable
subset of M is S-traced. We prove there that every partial recursive operaior
from & recursive metric space My satisfying (A) and (B) into a recursive metric
space M, is recursively continuous at all points of its domain (Theorem 3).
This general version of a well-known result of recursive analysis (see [1])
is derived here as an immediate corollary of the separation theorem.

A recursive metric space is recursively separable if it contains a dense,
recursively enumerable subset. These spaces are studied briefly in § 5.
A typical result is that, if P(ay, ..., an, ) is o listable predicate on R,
then so is (EB)P(ay, ..., au, f) (Theorem B5).

Another direct corollary of the separation theorem is Theorem 6, which
asserts in part that no listable ordering of R or F (the notation system
for the general recursive functions, [10], (1.9), (1.10)) is a well-ordering.

In § 7 we give a recursive version of the Baire category theorem
(Theorem 7), which implies that no lUstable non-empty subset of R or F
8 recursively enumerable.

Friedberg [2] has constructed a listable subset of F which is not
open. In § 8 we construct examples of closed, nowhere dense listable
subsets of B and F, and we use them to obtain a counterexample to
a plausible strengthening of our Theorem 7.

Finally, in § 9 we show that a recursively open subset of a recursively
separable space satisfying (A) is a recursive union of spheres (Theorem 11).
This result together with Theorem 3 yield a stronger version of the re-
cursive continuity theorem for recursively separable spaces due to
Ceitin [1].

Our notation and terminology is that of [10]. Although we shall
use the concepts introduced there without apologies, the only results

of [10] that are relevant are those concerning the notation system R,

especially Lemmas 4, 5 and 8.

1. Definitions and examples.

DEFINITION 1. A recursive metric space (1) (RMS) is a notation
system M = (A, ~uy) together with a binary recursive operator D(a, f)
from M into R such that, for all a, B,y eM, (a) D(a,f) =0=a=p,
(b) D(a, §) = D(B, a) and (e) D(a,y) <Dl(qa, f)+D(8,7).

(1) Ceitin defines in [1] constructive metric spaces in an essentially equivalent way
and proves our Theorem 12 below. Lacombe’s recursive metric spaces ([7], (4.2)) ean be

identified as the classical completions of our recursively separable, recursively complele
RMS’s (see below, §§ 5, 7). See also footnote 8.
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The first example of a RMS is R with the distance operator la—Bl,
which is easily proved to be recursive.

We define the notation system R" = (R", ~gs) (n>1) for the set
of n-tuples of recursive real numbers by

(1.1)
(1.2)

B" = {1, ooy Budt &y, ey B0 € B}, (9)
Tvpnl =8 € R &y e B" & (i)ical ()i ~r(y)i] -

If Cayy .., any Is the equivalence class of {a,, oy @y in R™ (where for
i=1,..,%, a;is an R-index of the recursive real number a;), R” is a RMS
with the distance operator

(1.3) DMKy oy a5 Buy ey Bud) = [ty —Bo)2 -+ oo+ (an— BTV .

Let us identify an element a of F with the general recursive function
it represents, so the notation a(f) (a ¢ F,  a natural number) is meaningful.
It can be shown that F is a RMS with the distance operator

0 if a=4,

(1-4) 9—Hl@ZFAL Gtherwise. (2)

D7(a, ) - |
Other important examples of classical metric spaces include the
space of continuous functions on the closed interval [0, 1] of real numbers
and Hilbert space. There are recursive analogs of both these spaces,
though we shall not give the definitions here.

We recall the definition of a listable predicate or set in a notation
system ([10], Def. 6 and remarks preceding Lemma 10). In order to be
able to refer to the listable subsets of a given notation system T in a con-
venient way, we let L(T) be the set of indices of listable subsets of T,

@5) nel(M)=@@wel &yel &u~ry & n}(z) | ~>n}(y) .

For n € L(T), we let Ly (or simply Ly, if the particular notation system T
to which we are referring is indicated by the context) be the listable
subset of T with index n,

Ly = {27 {n}(z) |} .

In the sequel M = (M, ~y) will always be a RMS with distance
operator D(a, f), determined by the partial recursive funetion d(z,y)
with Godel number d. We frequently refer to the elements of M as points.

(1.6)

() <@y ooy > = pit-...- D8, where pg, Py, Ps, .. I8 the sequence of primes with
Do = 2.

(*) Although D¥(a, ) is a rational number for all a, § ¢ F, D¥(a, f) is not a re-
cursive operator from F into the rational numbers; i.e. there is no partial recursive
function d(x,y) such that, if =,y 7, then d(»,y)} and DY, 7) = r(d(z,y).
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For we M, we often let % (rather than %) be the point of M
with M-index .

For ayeM and % any natural number, S(«, k) is the open sphere
with center a, and (rational) radius 27%,

@.mn S(ag, k) = {@ e M: D(ay, a) < 27%}.

LemvA 1. For every age M and every k, S(ay, k) s a listable subset
of M. In fact there is a primitive recursive function s(x,k) (depending
on M) (*) such ihat, if xe M, then s(@, k) e L(M) and S(Z, k) = Lyyy.

Proof. (%) s(z, k) = Ay less ({d}(m,y), o2 ™).

Very little can be proved in the generality of Definition 1 about
a RMS M. For example, we cannot except to do any analysis on M unless
the limit operations are, in some sense, effective. This restriction on M
is formulated as Condition (A) below.

We recall ([10], Def. 10) that a sequence ay, oy, ay, ... of elements -

of a notation system T is recursive if there is a general recursive function
f(x) such that, for all z, f(2) ¢ T and a, = [f(m)]T. ‘We say that f£(z) de-
termines aq, a;, @, ... and we call any Gddel number f of f(z) an index
of oy, @y, A, ....

In case of a RMS M, the sequence ay, a;, ay, ... is recursively Cauchy
if there is a general recursive function g(f) such that, for all tand %,
D{agy, dgmen) < 27°. We say that g(i) is a recursive Cauchy criterion
for ay, oy, g, ... and we call any Godel number g of g(¢) an r.c. index of
gy Oy Oy ... (COmpare [10], Def. 11).

The statement a =lim o, where a, ay, a, @, ... are points of M,

Z—00

has the same meaning as classically, i.e.
(1) (Bn) () [z = n—>D(a, az) < 277.

(A) There is a partial recursive function ¢M(f, g) (a convergence fume-
tton for M) such that, if | is an indew of a recursive SEQUENCE dg, g, Osy ...
of points of M with r.c. indew ¢ and if there is an a e M such that o = lim a,,

then M(f, 9)}, N, g) e M and a = [cM(7, g)PL. o

(*) In fact s(z, k) is primitive recursive in d, an index of the distance operator
on M. It can be verified that, whenever we use the phrase “depending on...” for a fune-
tion that we define, this dependence is (primitive or partial) recursive in the parameters
involved. For example, sep(n,t,s) (Th. 1) is partial recursive in d and ¢M. Similazly,
T (@, k) (Th. 3) is partial recursive in d,, ™, tP% (a Godel number of t1¥(n)), d, and f, ete.

() We defined less(z,y) in [10], Lemma 5. It is partial recursive and such
that, for # and y <R, less(z,y) § =7 < J* The function o(x) = ¢®@) ([10], (4.5))
provides an R-index of the «’th rational number r{w) ([10], (1.1)). Here (and in similar
cases m the future) we shall not hother to show that o(r™(27%)) is (in fact primitive)
recursive.
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We have already seen that R satisties (A) ([10], Lemma 8). (¢) This
implies immediately that R™ (n > 1) satisties (A). We ean prove that F
satisfies (A) by setting

(1.8) (f, 9) = A{{f (g3 E+1)} @) -

A RMS M is weakly recursively complete if every recursive, recursively
Cauchy sequence of points in M has a limit; recursively complete if it is
weakly recursively complete and satisfies (A). The spaces R, R" and F
are all recursively complete. The open interval

(0,1)={ceR: 0<a<1}

(as a natural sub-notation system of R ([10], (6.7.a), (6.7.D))) is an example
of a RMS which satisfies (A) but is not recursively complete.

2. The separation theorem. Some of the most fundamental
results of the classical theory of metric spaces cannot be obtained without
the axiom of choice. In order to prove the recursive versions of these
results, we have to confine ourselves to spaces (or subsets of spaces) for
which the relevant recursive versions of the axiom of choice are true.

Let 8 be a family of subsets of a notation system T. We say that
a subset B of T is traced with respect to 8, if we can effectively find an
element of E in every A €8 such that E ~ A 52 3. We make this precise
for the case where 8§ is the family of spheres with rational radius in
a RMS M.

DEerFINITION 2. A subset E of a RMS M is traced with respect to the
spheres (S-traced), if there is a partial recursive function t(z, k) such
that, if <M and E~S(#, k) #9, then t(z, %)), t(z,%)eM and
[6(z, k) € B ~ S(Z, k). We say then that t(z, k) is an S-tracing function
for B and we call any Godel number ¢ of t(x, k) an S-tracing index of E.

Let B be a subset of M. A point a e M is a (classical) limit point
of B if, for every k, B ~ S(a, k) # 9; a recursive limit point of B if there
is a recursive sequence a,, @, 0y, ... of points of E converging to o.
Clearly every recursive limit point of E is a classical limit point of E. The
importance of S-traced sets stems from the fact that the converse of this
statement holds if E is S-traced. Because if ¢ = @ is a limit point of E,
then Akt(a,k) is an index of a recursive sequence of points of E which
converges to a. A set E is closed if it contains all its limit points; recur-
stvely closed if it contains all its recursive limit points. Thus a recursively
closed S-traced set is closed.

(%) In the case of R the definition of “recursively Cauchy’ given here agrees with
[10], Def. 11.(a). .
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The next theorem is the basic result of thig Daper. For the proof
we need the following version of Kleene’s second recursion theorem ([4]’
Th. XXVII). For each n>0, there is a primitive recursive fzmctio?;
Tt"(6, @y, ..y ®a) Such that, for each e, @y, ..., ¥n, the number m — 6", @y, ...
<y W) 08 o Godel number of {e}(m, i, ..., wn,y) as a function of y, i..
for all y,

(2.1) {m}(y) ~ {e}(m, »,, vy Tny Y) .

To prove this we set

(2.2) rf’n(e: Byy eoey Tn) = S;H_Z(f) € fy @y eny ) s
where f is a Godel number of

Heym, @y ooy ay y) = {6} (STH(m, 6, my 2y, ..., @), 24, oy Ty )

THEOREM 1. Let M be a RMS satisfying (A). There is a pariial re-
cursive function sep(n,t,x) (depending on M) (%) such that, if n e L(M),
t is an S-tracing index of some st BC M disjoint from L, (B~ L, = 0)
and x is an M-index of some point Zeln, then sep(n,t, z) and
E~S(z,sep(n,t, #)) = . (The separation theorem.)

Intuitively, for every point # of a listable seb L, and for every
S-traced set E disjoint from L,, we can effectively find a sphere with
center Z disjoint from E.

Proof. Let ¢ he a Godel number of the convergence funection
¢™(f, g) for M and id a Godel number of the identity function

(2.3) id(z) == .

Using the abbreviation

@4 P, myn) =Ty, m, id, (u)) & Tofn, T((u)), (w),) ,

we define a partial recursive function f (m,n,t, s, y) by
fmy n, 1,3, ) = { > i (Uuey P (u, m,m),

=, k(m, n))  otherwise,
where

(2.5) k(m,n) ~ puP(u, Mmyn) .
Let f be a Godel number of f(m,n,t, z,y), and put

(2.6) m=18(f, n,t, ) .
By (2.1), for all ¢,
2.9 {m}(y) ~£(m,n, t, @, y) .
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We now assume that #, ¢ and « satisfy the three hypothesis. We shall
show by contradiction that

(2.8) (Bu)P(uw, m,n).

Suppose that (2.8) is false. Then, for all y, {m}(y) = @, and thus m is an
index of the recursive sequence z, Z, Z, ... of points of M which converges
to Z with r.c. index 4d. Thus, by (4),

(2.9) Mim, id) | & cM(m, id) e M & [cM(m, id) L =F € Ly, .

The last conjunct of (2.9) implies that {rn}{c*(m,id))|, which together
with the first conjunct of (2.9) implies (2.8). Thus (2.8) is proved, and
in particular k(m, n)}.

It y > k(m, n), then {m}(y) = {£}{z, k(m,n)). If B~ 8(g,k(m,n))
# 0, then by the definition of an S-tracing index, {f}(z,k(m,n)}|. Thus
mis an index of the recursive sequence of points %, ...(k(m, n) times),.. s &y
[, & om, n)) [, |8 (2, k(m,m))[¥, ... which converges to [}, X (e, m))
with r.c. index id. Hence {n}{c(m, id)} is not defined, since by definition,
[} (2, k(m, n))]Mgé Ly, contradicting (2.8). It is thus enough to set

(2.10) sep(n, t, ), ~ k(m, n)
which by (2.4), (2.5) and (2.6) is a partial recursive function of », ¢ and «.

3. Listable sets and predicates. The most direct application
of the separation theorem is to the case of a listable subset L, of a RMS M
satisfying (A) whose complement C, = M —1Lj, is S-traced. Under these
assumptions L, must be open, i.e. every point of L, is contained in some
open sphere lying entirely in L, (cf. §§ 8, 9).

I T is a notation system and W.C T, we let W, (or simply W,
if T is indicated by the context) be the recursively enumerable subset
of T determined by W, ([10], (2.2) and Def. 9).

LeMwmA 2. Every recursively enwmerable subset of a RMS M is S-traced.
In fact there is a primilive recursive function tri(e) (depending on M) (4)
such that, if W, determines a recursively emumerable subset W, of M, then
tr(e) is an S-tracing index of W,.

Proof. Given a sphere 8(z, k) in M, we search through the elements
of W, (which can be effectively enumerated) until we find one that belongs
to the listable set Ly = S(%, k). Formally,

(31)  tr(e) = Ak (wu[Tyfe, (w)o, (w)) & Tafs (@, %), (o, (w)s)]), -

THEOREM 2. The complement Cp =M—Ly, of a listable subset of
a RMS M which satisfies (A) is.recursively closed.
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Proof. Let ay, a5, o, ... be a recursive sequence of points in C,.
The set {0y, a1, @, ...} is recursively enumerable and hence, by the pre-
ceding lemma, S-traced. Since it is disjoint from L,, the separation theorem
implies that every point of L, can be separated from {00, 01y @y, ...} by
an open sphere. In particular, no point of L, is a limit point of {a,, ay, ay, Wt

This purely topological result supplies very easy preofs of the non-
listability of several subsets of R of . For example, the irrational re-
cursive real numbers do not form a listable subset of R, since there are
recursive sequences of rational numbers which converge to irrational
numbers. We can show in the same way that none of the following subsets
of R is listable: the rational numbers, the real algebraic numbers, the
recursive real transcedental numbers, the set {a} containing a single
recursive real number, the closed interval [, 1= {6 eR: a<ELH
(o and g given elements of R, a< p). Similarly, none of the following
subsets of F is listable: {a¢ e F: a(f) = n, for all t > &}, {a e F: a(t) = n,
for infinitely many #%s}, the set {a} confaining a single general recursive
function o, ete. By a simple contradiction argument we see that the
predicate o = B is not listable on either of these two notation systems.

For each of these results there are direct, elementary proofs (for
example, see Shapiro’s [13]). The separation theorem isolates the simple
topological argument that is common to all these proofs. (7)

4. The recursive continuity theorem. Perhaps the most
important result of recursive analysis is that asserting the recursive
continuity of a partial recursive operator F(a) from R into R (a partial
recursive real function) at all points of its domain. A weak form of this
theorem was anticipated by Markov in [8]. Ceitin [1] gives a general
version in the context of a “recursively separable” (§ 5 below) recursively
complete RMS.

In this section we deduce the recursive continuity theorem as a direct
corollary of Theorem 1 for a RMS that satisfies (A) and the following
condition.

(B) There is a partial recursive function tP*(n) such that, if n e L(M),
then t1(n)| and L, is S-traced with S-tracing index t1"(n).

In § 9 we give Ceitin’s slightly stronger result for a recursively sep-
arable RMS satisfying (A) (Theorem 12).

Although there are RMS’s that satisfy (A) and (B) but are neither
recursively separable nor recursively complete, Theorem 3 does not cover
any interesting cases not already covered by Ceitin's result. We prefer

(") We can prove ([10], Lemma 9) (which asserts that R has no non-trivial recursive
subsets) as follows. We first use the ‘Weierstrass bisection method to show that if A cR
is recursive and non-trivial, then there is an a « R which is a imit point of both A and
R—A. Now Theorem 2 implies that both a e A and a e R— A, which is absurd.
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to state it separately because it shows that the continuity of recursive
operators dces not depend on the topological assumptions of (recur-six"e)
separability and completeness. In this version it is the constructivity
assumptions (A) and (B) that are essential. (8)

LevumA 3. Let M satisfy (A) and (B). There is a partial recursive
function sep, (n, m, x) (depending on M) (4) such that, if n € L(M), m e L(M),
Ln ~ Ly = O and z is an M-index of some point & € Ly, then sepy (n, m, x))
and Ly ~ S(Z, sep(n, m, x)) = 0.

Proof. sep,(n, m,z) ~ sep(n, th(m), ).

THEOREM 3. Let M, satisfy (A) and (B), let M, be a RMS and let F(a)
be a partial recursive operator from My into M,. There is a parﬁalA recu‘rsive
function re(x, k) (depending on M,, M, and F(a)) (%) such that, if = is an
M,-index of some point in the domain of F(a) (i.e. F(%)|), then rc(z, k)|
and for all y e M,

F(7)} &Dy(3,7) < 27"P>D,(F(z), F(7)) <27".
(The recursive continuity theorem.)

Proof. Let D(a, ) and Dya, f) be the recursive distance operafcors

of M, and M, respectively, determined by the partial recursive functions

dy(x, y) and dy(x,y), and let f(x) be a partial recursive function which
determines F(a). If » e 3, the partial recurgive functions

glw, b, y) = less(dz(f(az), (), 9(1_1(2_"_’))) s
ul@, &, 9) = less(o[r (277, Ayt (), £(9))
determine (as functions of y) the listable subsets of M,
L ={aeM;: F(3)] &F(a)| & Dy(F(7), F(a)) <277},
Lt ={aeMy: F(@)| &F(a)} & Dy(F(F), F(a)) > 277"}

respectively. If Z is not in the domain of F(a), both these sets are empty.
It F(Z)], at least It # O, since % ¢ L, and in any case It ~ 12 = @. Set

(41) ro(w, k) =~ sepy(4y gz, %, 9), 4y gi(@, , 9), @) -

— = —re(z, k)
By Lemma 3, if e My, y e M, Fk(a“:l)‘!,, Ii‘g.y)i, and D&, 7) < 277",
then 7¢ 1?2, ie. DyF(5), F(7)) <27 <27

5. Recursive separahiliti. A RMS M is recwsi'u{zly sepam‘ble
if it contains a recursively enumerable subset W, which is dense, i.e.
which intersects every sphere.

(%) The author became aware of Ceitin’s [1] from Shepherdson’s review [14], after
he had given in [9] a proof of Theorem 3.
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Lemva 4. R, R" (n>1) and F are recursively separable.
] Proof. In the case of R (R"), the rational points (the points with
rational coordinates) form a dense recursively enumerable subset. In
the case of ¥, the set

{eeF: (Ek)(@)[z = k—>a(z) = 0]}

of general recursive functions that arve eventually zero can be easily seen
to be recursively enumerable and dense.
The basic result for recursively separable spaces is:

) THROREM 4. Let M be o recursively separable RMS satisfying (A)
with dense recursively enumerable subset W,. For every listable subset Ly,
of M,

Ly=0=L,nW,=0.

Proof. Assume that there is a listable subset L, of M which does
not intersect W, and a point ay ¢ Ly,. Since W, is S-traced (by Lemma 2)
Theorem 1 implies that there is an open sphere with eenter ay disjoin‘é
from W, contradicting our assumption that W, is dense.
) CoROLLARY 4.1. If M satisfies (A) and is recursively separable, then
it satisfies (B).
) Proof. The intersection of a listable subset L, and a sphere S(z, k)
sa listable subset of M, and is thus empty unless it intersects W,. A po’int
in L n S(Z, k) ~ W, can be found (if one exists) by testing simultaneously,
in & uniform way, all members of W, for membership in both Ly, and 8 (z, k).
Formally, ,

(5.1)  t1%(n) = Aak (pu[Ty(p, (u,), (u),) &

& Ta(n, (w)o, (w)s) & Tfs (@, &), (w)o, (w))]), -

Another direct corollary of Theorem 4 is the next result, stated
here only for the case of R.

CORQLLARY 4.2. If F(o) and G(a) are partial recursive operators
from B into R (partial recursive real functions) such that F(a) = G(a)
for all rational numbers o in the intersection of their domains, then F(a)
= G(a) for all aeR in the intersection of their domains.

Pro.of. The set {aeR: F(a)| & G(a)| & F(a) # G(a)} is listable.
Hence fslther it is empty or it contains rational numbers.

It is easy to verify that the set of listable predicates on a notation
system T’ is elosed under the operations of conjunction and disjunction.
For e}zample, if (2) and g (z) are partial recursive functions that determine
the listable predicates P(a) and Q(a), then f(2)+g(x) determines P(a)

& Q(a). In case M is a recursivel isfyi
y separable RMS satis A) we can
assert something mueh stronger. g (&)
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TeEOREM 5. Let M be a recursively separable RMS satisfying (A).
If Py, -5 tny B) s @ listable predicate on M, (EB)P(ay, ..., o, fB) is also
listable on M.

Proof. For each fixed n-tuple ay, ..., ay of points,

(BB)P(ayy ey any f) = {B e M: Play, ..., a0, f)} # O .

But the set on the right is listable, and thus {by Thecrem 4) it is non-
empty if and only if it intersects W,, the dense recursively enumerable
subset of M. It follows that, if £(x, ..., 24, y¥) with Godel number f de-
termines P(ay, ..., an, f) a8 a listable predicate cn M, then

g(&yy «ors Tn) = ﬂ“[T1( s (%)os (u)l) & Tn-!—l(f; Lyy eeny Bny (%), (u)z)]
determines (EB)P(a, «..y On, B).

The set of listable predicates on a recursively separable RMS M
satisfying (A) resembles the set of number-thecretic predicates of the
form (By)R(2y, ..., %a,y) with R recursive in that it is closed under
conjunction, disjunction and existential quantification. (In general it
is not closed under negation, for example in the case of N= (¥, zyz =y)
or B by [10], Lemma 9.) It would be interesting to study what other
conditions must be imposed on M before a nontrivial hierarchy theory
can be developed starting with the set of listable predicates.

6. A theorem on listable orderings. A lisiable ordering on
a notation system T ([10], Def. 7) is a listable predicate «<Jf defined
on T which is a classical linear, irreflexive crdering. The next theorem
is a standard example ¢f how the separation theorem and its corollaries
can be used to provide almost routine proofs of plausible statements.

A point a of a RMS is isolated if some open sphere with center a
contains no points other than a. A RMS with no isolated points is perfect.

THEOREM 6. A perfect RMS M satisfying (A) and (B) cannot be listably
well-ordered. In fact, for every listable ordering a<<f of M we can define
a4 recursive SequUence Oy, Gy, Os, ... 0f points of M which is an infinite de-
seending chain, i.6. ago>0y S0y ...

Proof. Let less™(z,y) be a partial recursive function with Godel
number less™ which determines the given listable ordering a<<f of M.
We define partial recursive functions minM(z, ) and max™(z, y) which
determine

e it a<lf,
MINM(a,ﬁ)=kﬁ i f<8a,
undefined if a = g
and
- B if a{ﬁ;
MAX*(q, ) =I a i f<a,
undefined if a = §,
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respectively as partial recursive operators on M, by
min¥(z, y) ~ (;m[[Tg(lessM, @, Y, (u)) & (u), = o] v

[ Ty(tess™, y, @, (w)o) & (u), = y]])l
and '
max™(z, y) ~ o+y—min¥(z,y) .

Let ¢, be an R-index of the recursive real number 0. For each z,y M,
W, y,2) = less(ty, d (2, 2)) + less (t, d(y, 2))
determines (as a function of 2) the listable set
I ={aeM: a£F& a7}

Sinee M is perfect, every sphere with center # and radius 2% must contain
more than two points; hence it must contain points of L%, We can find
one such point by setting

@, y, %) = {1 A2 hy(o, y, 2))} (2, %) .
It is easy to wverify now that for every «,y e M such that z = 7,

(6.1) t(@, 9, %) = max(z, hy(s, y, b))
and
(6.2) &, y, k) =~ min¥(z, hy(z, y, k)

are M-indices of points a = a{z,y,%) and B=2p8=9,%k
such that
(6.3)

Let
(6.4)

respectively
a,ﬂeS(i,k)&a#?&ﬂ#?&ﬂ{a.

k(z, y) = sep, (AzlessM(z, y), AzlessM(y, 2), @) .
Lemma 3 implies that if <7, then, for each a M,

(6.5) aeS(&:',k(m,y))ea:g?Vaﬁy.

‘We now choose two points %, and Yo of M such that %,<7,. By (6.5),
8 (%o, & (#5, 9o)) contains no points a<7,. Hence, by (6.3), if a = a (@, Yoy

k(mo:f‘/o)) and .B=ﬂ(-"vo: Yo, k(“’mi’/o)): then f<a<l7. We now repeat
the construetion starting with the points # and a instead of %, and 7,.

Formally, we define three functions (1), g(t) and k(2) by simul-
taneous induction,

£(0) =Y, 8&(0)=u,, k(0) =k(w0,yo),
1e+1) ={g@), £0), k(1) ,
gl+1) =g(g(), £(1), k() ,
k(t+1) =k(g(t+1),f(t+1)) .
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It is easy to show that £(f), g(f) and k(?) are all general recursive and
that £(Z) determines a recursive infinite descending chain, ie. for all t,
£(t) e M and [£()PLS[f(t+1)Pe

It should be pointed out here that, in view of the complicated strue-
ture of listable sets and predicates, even in the simple cases of R and I
(see § 9), the assertion of Theorem 8 is not as self-evident as it perhaps
looks on first sight.

For the case of R and R”, this result can be strengthened: The only
listable orderings of R are the natural ordering a < B and its reverse
a> f. There is no listable ordering of R” (n > 1) [11].

7. Recursive completeness. One of the most basic theorems
of the classical theory of metric spaces is the Baire category theorem
([3], Ch. XVI, Sec. 9, Th. 33) which asserts that a complete metric
space is not a denumerable union of closed, nowhere dense seis. (®) In
this section we give a recursive version of this result which implies in
particular that no non-empty listable subset of B or F is Tecursively
enumerable.

In the remarks following Definition 2 we mentioned that the classical
closure of a subset B of a RMS M need not coincide with the recursive
closure of E, unless E is 8-traced. It thus appears that in a constructive
version of the category theorem we should require the closed sets in the
definition of “first category” to be S-traced. This restriction is not enough,
as we shall see in § 8. In addition to requiring the sets in question to be
“constructively closed”, we must also require that their complements be
“constructively open”.

A listable-S-traced (I-8-) subset of a RMS M is a listable seb L,
whose complement Cn = M—Li, is S-traced. If ¢ is an S-tracing index
of Cuy, <n,t)=2"8" is an 1-8-¢ indew of L,. The complement C, of
an I-8-¢ subset Ly is an §-1-1 set. We note that, by Theorem 2 and the
remarks following Definition 2, an S-t-1 subset of a RMS satisfying (A)
is closed.

A subset B of a RMS M is of the first category, if it is a recursive union
of nowhere dense S-t-1 sets, ie. if

E={J0C
A Oy

where £(f) is general recursive and, for all ¢, £() is an 1-S-t index of some
set Lixy), dense in M. We say then that £(f) determines E and we ecall
any Godel number f of £(f) an index of E (as a subset of M of the first
category).

(*) A closed subset of a metric space is nowhere dense if it contains no sphere.
Fundamenta Mathematicae, T, LV 16
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TeRoREM 7. Let M be a recursively complete RMS satisfying (A)
and (B). Then, no sphere in M is of the first category. In fact there is a partial
recursive function b(a, &, f) (depending on M) (%) such that, if acaeM

and if f is an indew of some set B of the first category, then b(a, &, f){, i

bla, ky,f) e M and [b(a,ky, N eS(a,k)—E. (The Baire category

theorem.)

Proof. Under our definitions we can constructivize directly the
classical proof of the Baire theorem.

Let us assume that a and f satisfy the hypothesis. For this proof,
we let Lf = Ly, and ¢ = M-I

For each 2 « M and each ¢ and k, L’ ~ 8(, k) # 0, since 1! is dense.
We can find effectively an index of some element in L'~ S(Z, k) by
setting
(7.1)

gz, t, k) {th(({j} ), )}(m %)

For each {, ({f}(t))1 is an S-tracing index of C'. Hence Theorem 1
implies that if & e L, then

(7.2) ky(a, 1) = sep(({f}(B)r (UHD), s 2)4
and
(7.3) 8(%, ko, 1)) CLL.

Now let k, be given. We define two recursive functions g () and k()
by the simultaneous induction:

g(0) ~ gia, 0, %+2),

k(0) = max(l(g(0), 0), % +2),

g(t+1) = gifg),t+1, k() +2),

k(t+1) = max (k(g(t+1), t+1), k() +2) .
It follows easily from (7.1) and (7.2) that, for each {,

g0 &k(t)] &glt) e M & i =[gW « LY,
and

8(Be, k(1)) C8(Be, alg (1), ) C T/ .
‘We observe that
(7.4) 8(a; ko+1) D 8(By, k(0)) .

Because by definition D(a, f) < 27®7* and k(0) > -
v €8 (8, &(0)) >D(y, a) < D(y, fo) + D (By; a) < 2777 427%7% =

ke+2, and hence
g7 R,
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Similarly, for each ¢,
(7.5) S(B k(1) +1) D 8B, k(t+1)) .
Because, by definition, D (B4, fi) < 275%™ and k(14+1) > k(f) 1 2, and

hence ¥ €S (Bes1,
L gkO-=

k(i+1))=>D(y, f)) < D(y, Bir) + D (Brsa, fr) < 275021
= 97kKO=1 1p particnlar, (7.5) implies that, for each ¢ and u,

ﬁi: ﬂt+u

since trivially k(f) > 4. Thus £y, f1, Bs; .-
index ¢d (cf. (2.3)). Hence

—k(®)—-1

(7.6) <ot

is recursively Cauchy with r.c.

b(a, &y, f) = GM(Atg(t)yid)wL s

7.7
@ bla, ko, f)e M, §=[b(a, ko,f)]M=}im B,

and by (7.4) and (7.5),

(7.8) D(a,f) <27 ™ <27,

It remains to show that, for each ¢, § ¢ Ct. To prove this, we notice
that from (7.3) and the definitions of g(f) and k(),

9=k

(7.9) ye C'>D(y, B) >

Hence (7.6) implies that, for each %, D(y, fiy) >

o KO gk _ D(y, 8)—D(By, Brzu)

27¥0-1 Thus D(y, 8) > 275 which implies y % §.
Classically every denumerable subset of a perfect space is of the
first eategory. The next lemma is a recursive version of this fact.

LemMMA 5. Every recursively enwmerable subset of a perfect RMS M is
of the first category. In fact there is a primitive recursive function by(e)
(depending on M) (%) such that, if W, determines a recursively emwmerable
subset W, of M, then W, is of the first category with index by(e). (1)

Proof. The whole space M is an 1-S-t subset of itself with 1-S-t
index m, = <id, Axk pu[u 5= 4])>. Thus the empty set is a nowhere dense
S-t-1 set. Similarly, if M is perfect and @ ¢ M, then M—{Z} is an 1-S-t

(*%) We can prove ([10], Lemma 7) by setting tr(e) = b(t,, 0, by(e)). Then tr(e) is
primitive recursive, since b(z, k, f)~ M( At g(f),id) by (7.4) and cR(f, g) is primitive
recursive ([10], Lemma 8). We can see directly that tr(e) can be taken to be primitive
recursive (without fracing the definitions) by setting tr(e) = Af {'b(tf,, 0, bl(e))} (£) instead
of the above function. The same trick can be used to show that every recursive operator
F(a) on any notation system T into R or F is determined by a primitive recursive function.
For, if f(z) determines F(a), g(x) = At {f(»)}(#) also determined F(o) and is primitive
recursive.

16*
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subset of M with 1-8-t index f(2) = {Aeless (4, d (2, 2)), 4ok x). (Here ¢,
is an R-index of 0, as in the proof of Theorem 6.) Thus {Z} is a nowhere
dense S-t-1 set. To prove the lemma, we simply write W, as a recursive
union of empty sets and the unit sets of its members,

) & u—£((0g)]] .

TurorREM 8. Let M be recursively complete satisfying (A) and (B):
No non-empty listable subset of M is of the first category. In particular, if M
is perfect, no non-empty listable subset of M 1is recursively enumerable.

Proof. Theorem 7 implies directly that the complement of a set B
of the first category with index f is not only dense but S-traced, with
S-tracing index Aaxk b(z,%,f). Since a listable set with an S-traced
complement is (by the separation theorem) open, it cannot have a dense
complement unless it is empty.

by(e) = At ;’-‘“[[Tl(‘?; (o, (t)l) &u= mﬂ] v [T1(9; (2o, (8

8. A listable, closed, nowhere dense set. The simplest
listable subsets of a RMS M that one can construct (see § 9) are open.
This, together with the separation theorem, suggest the conjecture that
under suitable assumptions on M, every listable set will be open. Fried-
berg first constructed in [2] a listable subset of F which contains the
constant function 0 but no sphere with 0 as center (he was motivated
in [2] by a different problem). In this section we shall construct listable
subsets of R and F that are closed and nowhere dense. These extremely
thin listable “Cantor” sets will give us a counterexample to an apparently
plausible strengthening of Theorem 7.

Throughout this section M shall be a recursively separable RMS
satisfying (A) (and hence by Corollary 4.1 (B)) with dense recursively
enumerable subset W,. We shall construct some closed listable subsets
of M which, under an additional “thickness” hypothesis (satistied by
both R and F), will be nowhere dense.

We first define a natural notation system to represent the “recm‘swe
completion” of M. In order to simplify notation, we put =, ~ {z}(u
and x, = [m,]" in case z, ¢ M.

(81) wely= (W) (Pusocilu { & ue Wy &, | &y € W, &
& D (=, %) < 27%].
(8.2) Ty =0 Mp&ye M, &D(xy, yp) < 2752,
(8.3) weM,= (k)xweM;.
(8.4) By = ()2 ~iy .

It can easily be verified that # ¢ Mz and @~y are recursively enumerable
predicates of @, y and k.

icm

Recursive metric spaces 231

The relations ~i (k=0,1,2,...) are not equivalence relations.
They satisfy the following two properties, which imply that ~ is an
equivalence relation on M,.

(8.5.2) L~pp1 Y >~y .

For D(xkylg’)_k) < D(2py ®41) + D (%epay Yor1) + D (Yoaa, yi) < 27542757
N S B

(8.5.h) Leovppel &Y ~ppad >T~2

For D(xx, zk) D(xky Xpys) + D(xk+25 Yirs) + D (Yrve; sp42) + D (2pse, 1)
< 2“"+2“"+2 +97F = g7k
LeMMA 6. The recursive ]"zmotfion

(8.6) o* = fo(®) = At {try(p)}Hw, t+1)

determines & recursive operator Fy(a) from M info the notation system
M, = (-Mc; "'M.,)

Proof. Since W, is dense, if xe M, then (u)[zyk) & o« « W,]. (%)
Also if u<Co, D(x¥, a¥) < D (s, %)+ D(E, «%) < 27 42771 £ 27 Thus
x* € M. Now if  ~yy, then, for each %, D(«x%, y¥) < D(«%, %)+ D(Z, ) +
+D(7,y8) <271 427% < 27%2 hence @* ~py*.

Because of the lemma, each listable subset L° of M, defines a listable

subset L of M by
(8.7) aeLli=Fya) e L°.

Let #, be some fixed member of M,, and g(f) some fixed general
recursive function with Godel number g such that, for each ¢,

(8.8) glt+1)>g(t)+3.

We define a sequence 4,, 4,, 4,,... of sets of natural numbers by the
induction

(8.9.a) vedo=0=u0,

(8.9.b) T e Anrr = (Ey)[y € An & &~ y] -

It is easy to verify that each 4, is recursively enumerable and that
A =Undn = W,, where
(8.10) e = ce(%y, 9)
with ce(z,, g) primitive recursive.

() In the statement of Lemma 2 it is only asserted that if » ¢ M, Wec M and

Wen S@E, k) # @, then [{tru(e)} (%, k) ¢ We ~ S (%, k). However it is obvious from (3.1)
that under these assumptions {tr;(e)}(x, k) ¢ We.
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The inductive step (8.9.b) of the definition of 4 implies trivially that
(8.11) ze A& p~ymy—>yed.

Thus ¢ eL(M,). Let L°= L, be the listable subset of M, with index 6
and put L = F, (L), the corresponding listable subset of M.

To show that L is closed, we observe that, if a =@ M is a Hmit
point of L, then there must be some f="5¢L with D(a, f) < 275,
Since gel, b* e 4, ie. b* e 4, for some n. Now

D("?(a*); b;(a')) < D(";(a*)) a)-+D(a, p)+ D(ﬂ: b;(a'))
< 2‘8(“‘)+2—E(ﬂ‘)+2—8(ﬂ‘) < 2—8(11')+2 ,

hence a*~yenb* and a* € 4,4, which implies ael.
‘We also note that if 2, = a* for some z ¢ M, , then Z e L. In this case L
is a non-empty listable closed subset of M.

LenmA 7. For fized k, let ©* =@y, and let £, ..., 1™ (m < %) be the
finitely many members of A that are < k. If we A ~ Mgy, then there is
some i < m such thai & ~gumt'.

Proof. By induction on the number » such that z e 4,.

Basis: # ¢ 4y. In this case .= z,, and hence @~y = 0.

Induction step: zed,ys. If » is one of the s there is nothing
to prove. Otherwise, there is some &' € 4, such that #~pest. Proceeding
in the same manner, we find finitely many distinct elements Ty e, 8
(s<n) of A and some ' (4 <m) such that :

(8.12.a) (Fh<i<s® > E+1

and

(812b) & ~gz) $1 ~g(al) m2 e wswl ~g(zs-1) a;" ~g(a?) fi .
Thus,

D (s, tg(k)) < D (%) %zzy)  +D (%) xé(z))
+ D (w0, %) + D (%hany, #ian)
+ o + D (a5giny, ahn)
+ D (g1, %ion) + D (xfcan) ; tion)
+ D (thia, t;r(k)) .

Now [(8.1) implies that, if 2 € Mmaxun, then D (s, &) < 2720200 < 9~
+27". Using this, (8.12.a) and (8.12.b),

D(xggn; ) <27 W2 ' 9750 3T gsite y gowth)
r2k+1 r=k+1
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(Here 2 ) 27% is an upper bound of the first column above, except
r=>k+1

for the top and bottom entries, and > 2757*2 i3 an upper bound of
r=k+1

the second column. We are using the faet that the 2 are distinet.)
Thus
D (x; o) < 2750 42 Y 277 4g D g
1>E(k+1) r>g+D)
— 2—g(k)+1+6_2—g(k+1)+1 < 2~g(k)+1+2-g(k+1)+4 .

Since (8.8) implies that 2 8FFNTE  g=stiie

i —g(k)+2 : 7
D(xg(k), t;(k)) <2 2+ ; L.e. &~ .

Let g(t) be some function satisfying (8.8). We say that M is some-
where thin (with respect to g) if, for some a « M and some %, S(a, k) can
be covered by < k+1 spheres of radins 27", If M is not somewhere
thin, it is nowhere thin.

TrEEOREM 9. (a) If M is nowhere thin with respect to g, then the listable
closed subset Lo of M defined in this section is nowhere dense.
(b) If g(t) = 8¢, then both F and R are nowhere thin.

Proof. To prove (a) by contradiction, assume that M is nowhere
thin, but that, for some a e M and some k, S(a, k) C L. For this %, choose
2,8, ., ™ (m<k as in Lemma 7. If ZeL, then a*ed n I,
and thus, for some < m, Trgmt. Hence D(ZF,tyw) < D(E, xfw) -~
+ Dk, thy) < 2750 g EEHE o o=8IHS  9=8HY Mhyg each ZeL, and
in particular each ZeS(a, k), is contained in some sphere S (thm,g(k+1)).
Since there are at most %41 such spheres, this contradicts our as-
sumption that M is nowhere thin.

(b) is trivial in the case of F, since a sphere of radius 27% cannot
be covered by a finite union of spheres of radius 2% = 7% <977,
In the case of R, a sphere of radius 27 jg simply an open interval of
length 2-27% If an interval of this length were to be covered by %k+1
intervals of length 27**"%, we would have 27*™' < (k+1)27%°, which
is absurd. v

Remark. In the case of F, the construction of I and the proof of
Theorem 9 are much easier, essentially because the relations ~y are
equivalence relations. :

We asserted in (8.10) that A = Woess,s Where ce(2, ) is primitive
recursive, The definition of A together with Lemma 6 and (8.11) imply
at once that

(8.13) &~y > Wootar0p= Weotys,0) -
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Thus, if @caeM, the listable set L= Fy'(Liows,s) does not depend
on the particular index & of a. The binary predicate ae L’ is listable
on M, since

(8.14) aell ={ce(b*, g)}(a*)| (aeaeM, befeM).

Thus for fixed a, {f: a e L’} is listable. This set is also non-empty, since
ae L;. Thus, by Theorem 4, for each a M there is a ¢ W, such that
ael’, ie.

(8.15) M= |J L.

.ﬂEWp
Let h(t) be a general recursive function which enumerates W,. We can
rewrite (8.15) as

(8.16) M= LtJ Lt
where
(8.17) £(t) = Aw {ce(h(t)*, g)} () .

TeEOREM 10. There is a general recursive fumction £(t) such thai,
jor each t, 1(¢) e L(R), Lyy is a listable closed nowhere dense set and
R = ULsyy. Similarly with F.

¥

We note that each Ly is S-traced, by Lemma 4 and Corollary 4.1.

9. Recursively open sets. A listable subset L of a RMS M is
recursively open, if there is a partial recursive function op(x) such that,
if a eaeM, then

(9.1.2) op(a)l =ael
and
(9.1.b) op(a)+8S(a, op(a)) C L.

We say then that op(z) determines L, and we call any Godel number op
of op(x) an index of L (as a recursively open subset of M).
) We saw (Theorem 1) that I-8-t subsets of M are recursively open,
i M satisfies (A). We also constructed listable sets which contain no
sphere at all and are closed (Theorem 9). In this section we classify the
recursively open subsets of a recursively separable M that satisfies (A).
This classification, together with Theorem 3, will yield Ceitin’s version
of the recursive continuity theorem for recursively separable spaces.
The simplest example of a recursively open subset of M is a sphere
S(a, k). For, if a € a and

92) f(a,k,2)~ (,uu[Tg(d, a, @, (u)g) &
Tofless, U ((u)), ofr™'(27H), (u)) &
Tg(zm, e(r(@™), f+(g(r“1(2"‘)) | U((u)o))) ) ('M)a)])zs
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then

(9.3) sro(a, k) = Az f(a, &, o)

is an index of S(a, %) as a recursively open set. (1%)

The next most obvious examples of recursively open sets are re-
cursive unions of spheres. Let £({) and g(t) be partial recursive functions
such that, for each ¢, if £(f)], then £(¢) ¢ M and g(t)|. The set

L= U s e)
i)}

is a Lacombe sef with index (f, ¢g>, where f and ¢ are Godel numbers of
£(t) and g(?), respectively. (Subsets of the classical real numbers defined
in this way were called “recursively open’ by ‘Lacombe [6].)

LemyA 8. Every Lacombe subset of a RMS M 4s recursively open.
In fact there is a primitive recursive function lro(x) (depending on M) (¥)
such that, if <{f,g> is a Lacombe index of L, then Iro({f,g)>) is an index
of L as a recursively open set.

Proof.

Iro(z) = Ay sro({(@)} (k(3) , @k} (k)| ),

where
k(y) =~ (/m[Tl((a:)o, (w)oy (w)) & Ti((@):, ()y, (%)) &
T1(S(U((u)1)7 U(( u)g))’ Y, (’Ll,)sﬂ\o,

TEEOREM 11. Every recursively open subset of a recursively separable
RMS M satisfying (A) is @ Lacombe sel. In fact there is a primitive recursive
function rol(x) (depending on M) (%) such that, if op is an index of L as
a recursively open subset of M, then rol{op) is a Lacombe ‘ndex of L.

Proof. We use the method of proof of Theorem 1. Let

(9.4)  P(m,op,x,u) = Tolc¥, m, id, (u)) &

T1(0.’P; U((’"/)o); (“)1) & Tx(S(U((u)o)y U((u)l))s &y (’“')2) .
We set
(’M)u<tp(m) 0p, @, %) ,
otherwise ,

o5 1 oo [N D)
(9.5) h(m,op,a,1) {try(p)} (W, 8(m, op, w))
where

(9.6) s(m, op, x) ~ yuP(m,op,z,w)+1.

(**) The functions f.(x,y) and f-(z) ([10], Lemma 4) are primitive recursive and
determine a+f and —a as recursive operators on R to R.
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By the recursion theorem ((2.1) and (2.2)), if & is a Gddel number of
h(m,op, 2,1t and

(9.7) m = 1t¥h, op, ) ,
then, for each i,
(9.8) {m}() ~h(m,op,n,1).

Let us now assume that op is an index of L as a recursively open set and
that ¢ M and % e L. We show by contradiction that

(9.9)

Suppose (9.9) is false. Then, for each %, {m}(f) ~ {try(p)} (2, t+1). Tt can
be verified that m is then an index of a recursive sequence of points of M
which eonverges to Z with r.c. index 4d. Thus

(Bw)P(m, op, 2z, u) .

(9.10) Mm, id)| & cM(m, id) e M & [M(m, id)M =F < L,
and hence
(9.11)  {op}(M(m, id))| &

Z = [M(m, id)P* € S([M(m, id)], {op} (M(m, m))) CL.

This is a contradiction, since (9.10) and (9.11) together imply (9.9).

It is clear now from (9.4), (9.5) and (9.9) that, if z ¢ M, T el and m
is defined by (9.7), then
(9.12)  cM(m, id)| & M(m, id) e M & [¢M{m, id)]M « W, &

Z e 8 ([M(m, id) ¥, {op} (M(m, id)|C L.

Thus, each point of L is contained in some sphere of the form S (@, {op}(a)),
where @ ¢ Wy, ~ L. The set {a: & ¢ W, ~ L} is not, in general, recursively
enumerable. What we must do is find a recursively enumerable subset

of if which contains ¢M(m, id) for each z e M, T eL.
Let

(913)  Q(op, @) = (Bw)[P(m, op, 2, u) &
() (@icocu {tra(0)} @, 1+ 1)) & {tr3(0)} (2, E+1) € W, &
{try(p)}(@, 2+ 1)) & {try(p)} (2, 241) e Wy &
D ([{try(p)} (@, ++ 1)1, [Hbu(p)} (@, 2+ 1)) < 271]],

where m is defined by (9.7). It is not hard to verify that Q(op, z) is re-
cursively enumerable, i.e.

(9.14) Q(op, #) = (By)R(op, @, y)

with R recursive. We set

(9.15) rol{op) = <f, >,
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where
(9.16) f= Az cMm, id)+0-uyR{op, »,y),
(9.17) g = Aw {op}({f}()) .

Now if {f}(z)), then (9.13), (9.4) and (9.5) imply that
(9.18)

Thus {g}(z) = {op}(I} (@)} and S{{}(®), {g}(®))C L. On the other
hand, if 2 e M and % eL, then (9.12) implies that {f}{«)] and

% e S([{fH{2)P, {g}(x)). Thus L = w%‘ S[THOPL, {93(0).

THEOREM 12. Let M; be a 1ecursively separable RMS satisfying (A),
let M, be @ RMS and let F(a) be a recursive operator from M into M,. Then
for each o M, and each k, F~'(S(a, %)) is a Lacombe subset of M. In fact
there is a primitive recursive function le(a, k) (depending on M;, M, and
F(0)) (%) such that, if a caeM,, then lc(a, k) is a Lacombe indez of F(8(a, k)).

Proof. Let £(z) with Godel number f determine F(a) and let dy(x, y)
with Godel number d, determine the distance operator on M,. We first
seek a partial recursive function g(a, k, #) such that, for each aeaeM,
and each we M,

{f}(@) = Mm, id) e M & [{{H{@)M L.

(9.19) gla, k,a)] =F(7)eS(a, k),
and
(9.20) g(a,k,m)¢—>S(F(§),g(a,k,m))CS(a,k).

i

To insure that (9.20) holds if g(a, k, )|, it is enough to guarantee that
27848 9% Dy(a, F(%)). Thus we set

(9.21) gla, k,z) ~ (/W[Tl(f,m, (w)o) & To(day @, U ((w)o), (u)l) &
1 ess, o™ ), 2ol 275, (T (0 )]} e
Theorem 3 implies now that '
F(8(z, 0(0, gla, ¥, 2)))) CS(F(2), gla, b, ) CS(a, 7).

Thus dzre(z,g(a, %, ) is an index of F7'(8(a, k) a8 a recursively
open subset of M;, and hence by Theorem 11
(9.22) le(a, k) = rol( Aw re(s, g(a, &, 2)))

is a Lacombe index of F'(3(a, %)) .
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Remark. Theorem 12 is the version of the recursive continuit
theorem given in Ceitin’s [1]. As Ceitin mentions there, it implies direetly
that a recursive operator on a recursively separable subspace ¥, of F intz
b_T = (N, Jzy © = y) is the restriction of some partial 1'ecwsi'vel]‘mwtional
{in the sense of Kleene [4], § 63) whose domain contains F, to F,. This
Problem Wwas proposed by Myhill and Shepherdson in [12] and wasls.olved
independently of Ceitin by Kreisel, Lacombe and Schoenfield in [5].
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A remark on Sikorski’s extension theorem
for homomorphisms in the theory of Boolean algebras
by
W. A. J. Luxemburg * (Pasadena, Calif)

1. Introduction. In [1], Sikorski proved the following important
extension theorem for Boolean homomorphisms.

THEOREM (R. Sikorski). Let B, be a subalgebra of a Boolean algebra B,
and let B’ be a complete Boolean algebra. Then every homomorphism of By
into B' can be ewtended to a homomorphism of B into B'.

Sikorski’s proof of this thecrem consists of two parts: (i) First the
following fundamental lemma is proved.

Lemma. Let B, be a subalgebra of a Boolean algebra B, and let B’
be a complete Boolean algebra. If a, ..., ay are a finite number of elements
of B and if B, is the subalgebra of B generated by By and the elements
Gy vy G, then every homomorphism of By into B’ can be extended to a homo-
morphism of B,,.

(ii) Using Zorn’s lemma or transfinite induction in conjunction with
the preceding Lemma, it is shown, in a standard fashion, that every
homomorphism of B, into B’ can be extended to all of B.

By specialization we obtain that Sikorski’s theorem implies the prime
ideal theorem for Boolean algebras (see p. 114 in [2]), i.e., every proper
ideal in a Boolean algebra can be extended to a prime (= maximal) ideal.
It was shown, however, by J. D. Halpern (see [3]) that the axiom of
choice is independent from the Boolean prime ideal thecrem in a seb
theory which will be made more explicit in due course. It seems therefore
natural to ask whether may be Sikorski’s extension theorem follows
already from the Boolean prime ideal theorem rather than from the
axiom of choice?

In the present paper we shall report on some results which were
obtained in trying to settle this question. The present investigations
seem to indicate that Sikorski’s theorem is independent from the Boolean

* Wolrk on this paper was supported in part by National Science Foundation
Grant G-19914.
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