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Disjoint mappings and the span of spaces
by
A. Lelek (Wroclaw)

Mappings f, g: X ¥ will be called disjoint provided that fx) # g(z)
for every x ¢ X. This is to say that f and ¢ considered as subsets of the
Cartesian product X xY are disjoint. The first question arises: how
many disjoint mappings may exist of a given space X onto a given
space ¥?

Observe that if f: X ¥ is a mapping and g, g': Y—Z are disjoint
mappings, then the superpositions gf and ¢'f are also disjoint mappings.
Hence, for instance, for those Y which are locally connected continua
the above question reduces to the existence of a large family of disjoint
mappings I->Y of the unit segment I onto ¥. This can be interpreted
as such a motion of some number of points on the domain ¥ that in
the same period of time each of these points runs over the whole of ¥
and no moving point at any time collides with another.

If we consider mappings X Y as points of the functional space Y%,
the presence of a metric structure in ¥¥ suggests the second question:
how large may be the distance between two disjoint mappings of X
onto Y? This leads to the notion of the span of a space (see § 5), which
also has a natural interpretation. Roughly speaking, the span of a coun-
try Y is a maximal number d such that two men can pass over the same
part of ¥, keeping the distance at least d from one to another.

While in constructions of disjoint mappings (see §§ 1-4) onto a locally
connected continuum C the mappings §—C of the circumference §
will be used, the tool for investigating the span (see §§ 5-8) of a com-
pactum ¢ will be the mappings ¢ —8. We shall prove (see § 4) that every
polyhedron in which every arc has an empty interior can be transformed
onto itself under uncountably many disjoint mappings. However, we
start (see § 1) with infinitely many disjoint mappings, which is a sim-
plier case.

§ 1. Infinite families of disjoint mappings. We shall use
the term Peano parametrization of O to denote an arbitrary mapping
of the segment I = {i: 0 <t< 1} onto the space C. By a triod we


GUEST


200 A. Lelek

understand the union A4,v 4, 4, of three ares that have g com-
mon end point v, called the veriex of the triod, and are mutually disjoint
outside .

Lemuva, If T'= Ay 4,0 A, is a triod Tying in a locally connected
continuum C and Ly, Ly, L, are arcs such that

LiC A—{o} for i=0,1,2,

where v 4s the wvertex of T, them there exist locally connected continua
Gy, Cy, Oy satisfying

C=0,v0u0,

ve0yC O0—(Liy1 v Lye) for i=0,1,2,

where the indices are taken modulo 3.

Proof. Denote by RB; the component of ¢—(L;1y v Iyys) that con-
tains o. For every ¢ ¢ U, there is an arc ve C 0. Take the last point p on ve
which belongs to T. Then p e 4; for some ¢ = 0,1, 2 and the continuum
Ayu pe does not meet Ly v Liy,. It follows that 0 = Ryw R, u R,.

Therefore there exist locally connected continua K,, K, K, such
that 0 = K, v E; v K, and K;CR; for i=0,1,2 (see [1], p.193).
In order to obtain O it is enough to add to K; an arc in Ry, joining v
and K;.

TEuoREM. A locally connected continuum is an are if and only if it
does not admit infinitely many mutually disjoint Peano parametrizations.

Proof. Evidently, no arc has two disjoint Peano parametrizations.
Suppose a locally connected continuum € is not an are. If € is a simple
closed curve, it clearly has infinitely many disjoint Peano parametriz-
ations. We can thus assume that O is not a simple closed curve, which
gives the existence of a tried T'= 4, v 4, u 4, in €. Let k; be a homeo-
morphism of I onto 4; which maps 0 into v, the vertex of 7, for ¢ =0,1, 2.
Consider a sequence ¢, ¢,, ... of mappings 1T, defined by the formula

[ ho(1jz™—y),
By(t—1/3"+),
7, (2/3 =1/3™ —1),
ho(t—2/3 137,
ha(2/8+1/3" —1),
ho(t—2/8—1[3™*),

0 << 3™,
1/3"* <t <1/3,

13 <t <2/3—-1/3",
2/3—-1/3"" <1 <2/3,
2/8 <t <2[3+1/3",
2B+13" <<,

for n=1,2, ... It is not difficult to see that these mappings are mu-
tually disjoint and we only need to change them so that they will be
Peano parametrizations of . This can be done in. the following way.
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Take the segments:

Iy = {t: 2/3—1/8""—1/3"* <t < 2/3—1/3" +1/3"*%,
TP = {: 2/3 413" —1/3"* <1 < 2/3 +1/3"H 41/3"F%,
I;:, — {t: 1/3n+1_1/3n+2 <t <1/3n+1 +1/3n+2} ,

which are all mutually disjoint for n =1, 2, ... Every function g, will be
changed merely on Iy w IT u Iy. Let us observe that on each of these
three segments all the other functions gm (m # %) take values lying in
only two of the ares A,, 4;, 4,. Namely, denoting

Ln = {t: 13" <<t <1},
we have the inclusion

Im(TY) C hiya(Dn) © hizalLa)

where ¢=10,1,2; m,n=1,2,..; m#n, and the indices ¢+1, ¢+2
are understood to be reduced modulo 3.

By the above lemma, applied for L; = hi(Ls), we can choose locally
connected continua CF such that the point » belongs to each of them,
every triple C7, CT, 07 fills up ¢ and

0l gn(ID) =0
m#ER
for i =0,1,2; »=1,2,.. The vertex v being an interior point of each

arc ¢u(I7), let us modify the function g, to a mapping f» which agrees
with g, outside the segments Ig, I7, I and satisfies

falI) = OF © galI7)

for ¢=0,1,2. Then f,, /s, ...
ations of C.

are mutually disjoint Peano paramefriz-

§ 2. Measures of some distance sets. Let R be the real line
and § the unit circumference |2| = 1 on the complex plane. The symbol
#X will denote the linear Lebesgue measure of the set X, for X CR
or XC 8. Then uS = 2.

For arbitrary sets X, YC S we shall denote by D(X, Y) the set
of all distances from X to Y, i.e.

DX, Y)={lz—yl: v X, y e ¥},

and write shortly D(X) = D(X, X).
Let f be a mapping of X. We shall denote by W; the whole subseb
of X on which f is not 1-1, i.e.

Wy = (o {z} =17 (@)},
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and by D(f) the set of all distances of points in X which have the same
images under f, i.e.

D(f) = {le—yl: fle) = f(y)}.

Further, a mapping f of § will be called linearly finite provided
that there exists an integer k(f) satisfying the following condition:
for every > 0 the circumference § can be covered by finite sequence
Ay, ..., Am of arcs in § such that all of them have diameters 64; < ¢
and each image f(4:) meets at most %(f) of the images f(4,),...,/(4dn)
for i=1,..,m.

Levma. If f: §C is a Unearly finite mapping and wW; =0, then
uD(f) = 0.

Proof. Denote by V, the union of all sets 7~ *(¢), where ¢ e C, such
that 1/n <67 (¢) (n=1,2,...). Thus each V, is a compact subset
of W, and, in view of the equality uW; = 0, we can find, for every given
index #» and an arbitrary number »> 0, a set Z C § such that

wZ <wv,

the interior of Z contains Va, and Z is the union of finitely many arcs.
Let & be the minimal distance between two different components of Z.
Hence ¢ > 0 and we can cover 8 by ares A, ..., 4, with diameters less
than e so that each f(4) intersects at most %(f) of sets from the sequence
f(4a)y s f(Am).

Let us take only those arcs A; that interseet V,. Consequently,
for these A;, all the sets A; ~ Z are ares and their union contains V,.
After shortening some of them and, eventually, omitting others, we
obtain new arcs L, ..., L, such that

VaCLiw .. uly,
the interiors of IL; are mutually disjoint and
L;CAynZ,

where 45 5 43 for §,§' =1,..,h; js£§. It follows that each set f(I;)
meets at most %(f) of the sets F(Ly)y ooy f(I). Let U be the union of all
the distance sets D(ILy, L) such that ) AF(Ly) #£0; 4,5=1, ..., h
Then, obviously,
D(f|Va)C U,

where /| V5 is the function f restricted to V,, and

#U < D uD (I, L),
Xy
where the non-ordered pair {é,§} of indices runs over all such distinct
couples of values 1, ...,k that 7(Li) ~ f(Ls) # 0. Thus, in the last sum
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each of the numbers 1, ..., % appears at most %(f) times as ¢ or §. Buf

since I, ..., Ly are arcs, we have
#D (L, Ly) < pLe+pLy
for ¢, =1, ..., h, and therefore

uU <k Fm-k bLj) k(f)- uZ <k(f)-v,

the equality being a consequence of the fact that the ares I; have mu-
tually disjoint interiors.

We get uD(f|Va)=0fora=1,2, ..
be represented as the union

D) =10y v J D(AIVa),

Now, the set D(f) can clearly

which gives uD(f) =

§ 3. Uncountable families of disjoint mappings. Recall that
a mapping g: §—C is said to be irreducible if ¢(X) = ¢(8) implies X = §
for every closed set X C 8, or what is the same, if the set S—W, is
dense in S. )

THEOREM. If there exists a linearly finite irreducible mapping of the
circumference 8 onto a compactum C, then there exists an uncountable family F
of mutually disjoint mappings of S onto C. Moreover, for every s e 8, the
set {f(s): f e F} can be represented as a countable union of non-empty perfect
sets such that every open subset of C contains at least one of them.

Proof. Let g: §—C be a linearly finite irreducible mapping of S
onto (. Since W, is obviously a F,-set and §—W, is a dense subset of S,
there exists a decomposition

W,=X,uX,u
of W, into mutually disjoint 0-dimensional compacta X,.

We shall construct inductively a sequence by, ks, ... of homeomor-
phisms of § onto itself and a non-decreasing sequence M;C M, C ...
of finite subsets of §—W,. Namely, take h, such that ph,(X;) =0 and
put M, = 0. Suppose hy and M, are defined (n= 1,2, ...). Choose M,
in §—W, so that M,C M,; and all the components of the set §—M, 4
as well as of the set §—hy(M,.,) have diameters less than 3/2". Then
the 0-dimensional compacta

Y = hp( Xy U e Zn o Myy)

do not intersect, which gives the existence of a homeomorphism »: §—+8
such that

and  Z = ha(Xpns1)

uh'(2) =0,
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%' maps each component of §—Y onto itself, and is the identity
mapping on Y. Putting hnii = h'ha we get

phny(Xpp1) =0 and  |ha(®) —hpsa(o)] < 3/2"

for every < 8. Thus, the sequence 7y, hy, ...
convergent.

The limit mapping # =limh, is a homeomorphism. In fact, if
#,y 8 and @ # ¥, a positive integer » exists such that # and y belong
to disjoint ares x's”’ and y'y"’, respectively, in § with end point staken
from M,.:, according to the definition of the sequence M,, M,,... But
since hi(2) = Ru(2) for 4> n and 2 € M,y; by virtue of the definition of
the sequence hy, h,, ..., we obtain

hi(@'®") = ho(z's’")

so obtained is uniformly

1

and  h(y'y"’) = ha(y'y"")

for ¢ >n, whence the points h(») and %(y) belong to disjoint arcs hu(a'z")
and ha(yy’’), respectively.

Similarly, we have hiXn= ha|X, for i>n=1,2,..
R(Xy) = hn(Xy) and so :

ph(Xz) =0
for n =1,2,... Hence uh(W,) = 0.

Now, & being a homeomorphism, the mapping ¢’ = gh™" is linearly
finite and W, = h(W,). Applying the lemma from § 2, we infer that
uD(g’) = 0. Manifestly, the set D(g’) is closed in R, which implies the
existence of non-empty perfect sets P; C 8 such that each open set in §
contains at least one of them and

D(P)C[E—D(g")] v {0}

for P=P, U Pyu.. (see [2], p. 146).
Let 7p, for p € 8, be the rotation z—>p-2 of § onto itself. The family

F={g'ry: peP}

has all the required properties. Really, if s ¢ § is an arbitrary point and
P,p" P, p#p’, then

Therefore

72(8) —rp(8)l = |p-s—p"-s| = |p—p'| ¢ R-D(¢),

fmd the inequality g'rz(s) # g'rp(s) follows. Moreover, the set {f(s): f e F}
is the union of the perfect sets {¢’(p-s): p  P;}, homeomorphic to Pi,
respeetively (¢#=1,2,..). If @ is an open set in ¢, then 7;7¢""{(G) con-
tains some Py and, consequently, p ¢ P; implies ¢'(p-s) = g'rs(p) € G.

§ 4 Ma[.)pings onto polyhedra. Concerning disjoint mappings,
there is a difference between the behaviour of 1-dimensional spaces
and that of »-dimensional ones, where n > 1. This appears for the cells:
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a pair of disjoint mappings of n-cell onto itself can easily be found for
n > 1, but it cannot for n = 1. However, as we shall confirm in the sequel,
the contrast is more expressive here (1).
Let us first denote by Ug(m), for every m = 0,1, ...and n =1, 2, ..,
the finite collection of congruent n-dimensional cubes that have the
length of edge equal to 1/3™ and arise by cutting the cube

I" = {(@yy ey ) 0y <1, 4=1, ...,0}

with the (n—1)-dimensional hyperplanes of the form x; — §/3™, where
i=1,...,n and §=0,..,3". Next, establish for a moment an index
§=1,..,n By dividing each cube from Ug(m) into two congruent parts,
along the hyperplanes of the form ¢ = (2j+1)/2-3™ (j = 0,...,3"—1),
we get a finite collection of interiorly disjoint parallelepipeds, which
will be denoted by Uji(m).

Observe that each element of Uf(m) meets at most 2.3" elements
of Ufm) (4,§=0,...,m; m=0,1,..5 n=1,2,..).

THEEOREM. Every polyhedron whose dimension at each point is greater
than 1 admits uncouniably many mutually disjoint mappings onto itself.

Proof. The theorem clearly reduces to connected polyhedra and
therefore it is sufficient to prove that the hypothesis of the theorem
from § 3 holds, i.e. we must only show that there always exists a linearly
finite irreducible mapping of the circumference S onto a connected poly-
hedron P whose dimension at each point is at least 2.

Let T’ be a triangulation of P. Denote by 4, ..., 4; all the sim-
plexes from T’ which have non-empty interiors in P. We shall prove,
by induction on I, that there exists a simplicial subdivision T of T"
such that all proper faces of 4; belong to T (¢ = 0, ..., ) and T possesses
a ecyclic order property which can be described as follows. There are:
a decomposition

S=A4,u..vdg

of § into interiorly disjoint arcs, a 1-1 correspondence A;«4; between
these arcs and all the simplexes 4, ..., 4¢ of T having non-¢mpty inte-
riors in P, and a function f which maps the set of end points of arcs
Ay, ..., Ax onto the set of vertices of T’ so that if p,p’ are end points
of A:, then f(p), f(p") ave distinet vertices of 4; (1 =0,..., k).

In fact, for | = 0 we have P = 4Aj = gy ... g, Where k > 1 according
to the hypothesis. Let ¢ be the centre of gravity of A;. We define T
as the colleetion of simplexes

Ae=qgy - Qi o

() I am indebted to H. Steinhaus who suggested to me that the 2-cell admits
uncountably many disjoint Peano parametrizations.
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and all their faces (¢ =0, ..., k). Here the sign * conventionally meang
that the vertex under it ought to be omitted. Take arcs Aoy ooy Ay on §
such that A; ~ Ay, s a single point for ¢=0, ..., & and for 441 been
reduced modulo %+1. For every end point p of the form 4; ~ A;q put
f(p) = gi42 (mod k+1). This is a good definition, since we have

Greedin iy (mod & +1)

for i =0, .., %, by virtue of the inequality & > 1.

Further, the existence of T for I vields also the existence of T
for 1+1. Indeed, P being connected, there always exists among the
simplexes A, ..., Ai;; one, say 45, such that the union of the rest of
these simplexes, i.e.

P=4{v..udiy,

is a connected polyhedron. Take a common vertex v of the polyhedron
Py = 4; and P;, and consider the union 8, v 8, of two circumferences
which have only a point s in common. Applying the induction hypo-
thesis, we can find suitable simplicial subdivisions T, and T, of the
triangulation T° restricted to P, and P,, respectively. Since all proper
faces of A belong to T, and those of 4; (i =1,..,1+1) belong to T,
the union T =T, T, is a subdivision of T". Moreover, we can find
suitable decompositions of 8, and 8§, into ares corresponding to sim-
plexes of T, and T, as well as mappings f, and f, of the end points of
these arcs into the vertices of T, and T, respectively, so that s is an
end point of some ares in 8, and in 8, and fol8) = fu(s) = v. Let
8=TLyuI, be a decomposition of § into two interiorly disjoint ares.
It is now sufficient to map L, and L, onto §, and 81, respectively, by
sending Iy ~ I, into s, and to choose decompositions of L, and I, into
arcs which are mapped onto the decompogitions of §, and 8., respectively.
The function j appears: if an end point p of an arc obtained from such
a decomposition of § is mapped into p* belonging to 8, or §,, take f(p)
to be fy(p*) or fi(p*), respectively.

Denote by # the number of vertices of the triangulation T. Then

T can be regarded as a complex consisting of some faces of the unit
simplex

An—-l:{(wn---; Tn): Bt 2p =1, >0, i=1,.., 0}

in the %-dimensional Ruclidean space E". Thus PC A" Tet J* be
the union of all the proper faces of the cube I™ that contain the point
{1,1,...,1). The central projection % of 4™ onto J* in E" with the
centre (0,0,..,0) is a homeomorphism, each face of A™* ig mapped

under h onto the union of some proper faces of I" and the vertices of
4™ are fixed points of h.
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Consider an arbitrary simplex 4; from the sequence 4, ..., 4x of all
the simplexes of T that have non-empty interiors in P. Let d be the
dimension of 4;. Then

W) =Fyu ... v Fy,

-di i "(j=0,..,d). Let p and p’
here all F; are d-dimensional faces of I" (j y veny L wnd
:)Ve the end points of the arc 4;. It follows that f(p) and j(p’) are distinet

. vertices of 2; and belong to some faces F;. We can assume that f(p) e F,.

Let
Ai=Byu ..u By

osition of A; into arcs such that p ¢ B, and B;—; ~ Bj is
Zesiig(lijclgﬁgt for j =1, ...,2d. We shall show that each of_ the 'faeei
Fy, ..., Fq can be divided into two congruent pamts and the d-dzmenmon‘a
parallelepipeds so obtained can be ordered in a sequence .Hl’ ey Ilog 1]n
such a way that (after putting If, = F,) the .functlon f. is e%tendab e
on end points of all the ares B; in the fo?lowmg sense: if b,?) arefer;?
points of Bj, then f(b),f(b') are diametrically opposite vertices of II;
v m]%.’e;l‘l,y?d;n isometry corresponding to a permutation c?f coordinates
tn E" clearly reduces our situation to one where the vertices of 4; are

he following points:

ﬂp)=(1707--->050, ,0),

(03 17 3 07 b , 0) i

fp’)=(0,0,..,1,0,..,0)
Thus the face F, is the common part of I and the hyperplexine
with equations: #; =1, ;=0 ({ = d+2, ..., %). Of course, we have also

=0 (¢ =d+2,..,n) for every point‘ of the faces Fy, ...,Ffd. 031;:
sequently, we can change their numeratlo.n so that F; be I:]S‘he ae: &
termined by equations: ;1 =1, 2: =0 ({ =d+2, .;.,"n). ow, W e
the cube F; (j =1, ..., d) with the hyperplane z; = % into tx}j'o pavra‘omt
epipeds IT,;_, and IL;, the indices being taken so that IIy; as a p *
in common with the hyperplane z; = 0. We (?xtenlc,l the fl’LIlC'blOSll tj oof
end points of the ares B; as follows: if b{l: <b" are en.d points
Bs;—y and Bs; in the ordering < from p to p’ on A4, then:

d+1
f(d) =(0,0,..,0,1,1,1,..,1,0,..,0),
f(bl)=(1,17'":1’%71:0"--3070;-‘ ,0),
0,0,1,1,..,1,0,..,0)

f(b“)z(oa(),'“: s Vb
i
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In this way we get the decomposition
My =Iy oIl ... Uy

into d-dimensional parallelepipeds, where I7, is the cube Fyand IT, ..., I,
are all congruent to the half of F,. Let us do the same for every sim-
plex A; and, respectively, for every arc A; (¢ =0, -y k). The decom-
position of § into some arcs B so obtained corresponds to a decompo-
sition of 2(P) into parallelepipeds I7 and the function f maps the end
points of each B onto a pair of diametrically opposite vertices of IT.
We once more extend f, this time on the whole circumference 8, by
taking a linear mapping of each B onto the diagonal of I7.

Finally, let us change f on each B to the standard Peano mapping
of B onto II, induced by ternary decompositions of B into congruent
arcs and those of II into congruent parallelepipeds. We thus obtain
a mapping ¢ of § onto h(P) which is irreducible because the standard
Peano parametrizations of parallelepipeds are irreducible and the common
part of every two distinct parallelepipeds 7 and JI’ from our decompo-
sition of %(P) is a nowhere dense subset of both IT and II’. The last
statement follows from the fact that all the simplexes Ayy .oy A have
non-empty interiors in P.

The mapping ¢ is also linearly finite. Indeed, for every m-th
Successive termary subdivision of ares B into ares, say @, given in the
m-th step of the standard construction of Peano mapping, the images
9(Q) are the intersections of some faces of I" with some parallelepipeds
from the collections Ufm), ¢ =10,...,n
(see the beginning of this paragraph).
Hence each from these sets ¢(£2) meets at
most 2. (n+1). 2.3 others.

Remarks. There are, however, 1-di-
mensional compacta which can be mapped
onto themselves under uncountably many
mutually disjoint mappings. For instance,
consider a dendrite D in the plane, in
which the set of end points is dense and
which has the ramification at each point
equal to 1, 2 or 4. Let the circumference
8 swrround D (see the figure). If we shall strain & on D, the resulting
mapping will be irreducible and linearly finite. Hence, by § 3, D admits
uncountably many mutually disjoint Peano parametrizations.

Although, as we have seen in § 1, every dendrite which is not an
arc, e.g. the triod, earries an infinite family of mutually disjoint Peano
parametrizations, an uncountable family need not exist for some of such

e ©
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dendrites. Namely, one can show more generally that if pg is an are
in a space C such that
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P4~ 0—pg = {p},

then each family of mutually disjoint Peano parametrizations of C is at
most countable. In fact, for every f: I—-C from this faxijfly, let I; be
a component of f~'(pg) such that it overlaps the set f7'(g). Then all
I; are mutually disjoint segments, and so the family eannot be un-
countable.

§ 5. The span. Let X be a metric space with a distance e We
shall denote by p, and p, the projections of the Cartesian product X x X
onto its axes, i.e. pi(wy, ) =z for (wy, M) e X X X; ¢ =1, 2.

We define the span oX of the space X to be the least upper bound
of numbers ¢ for which there is a connected subset Z, of X XX such that

(1) pZ) =pulZ)  and  (2) ol®, @) =5 for (2, 3) € Z,.

Of course, the sets Z, in the above definition ca-,n bej assumed to
be closed in X xX. The span ¢ is 2 monotone function, i.e. X <o¥
for X C ¥. Further, if 4 is a connected space and f;, fy: 4 >X are
mappings such that f,(4) =f,(4), then for the number

&= inﬁ Q(fl(a)y fz(a)) ’

the inequality ¢X > ¢ holds. Indeed, it is enough to t.a,ke as Z, the set
of all pairs (fl(a), jz(a)), where @ ¢ A. Thus we can write

(%) oX = 11,1) inf( Q(f1(“): fz(“)) ’

S

A,Jy ae

where A ranges over all connected spaces, and f; ({ =1,2) over all

mappings of 4 into X with f,(4) = fg(A)l. = .
In the case when the span oX is infinite, let us understand by

oX—7 an arbitrarily large number. ) )
TEEOREM. If > 0 and f: XX is a mapping, then there exist poinis

%, %' ¢ X such that

(2, ) >cX—q and of(@), (@) <o¥+7.

Proof. Let ¢ be a number such that o X—# < &< oX, and such
that there is a connected set Z, in X x X satisfying conditions (1) and (2).
Putting f; = fp; for i = 1,2, we have f,(Z,) = fx(Z.) a,n'd, .by (%), there
is a point (#,#’) of Z, such that the distance between its images under
f1 and f, is less than o¥ +1.
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CorOLLARY. If f: XY is a mapping of a compactum X, then there
exist points x,x’ € X such that

0@, @) 20X and  off(a), /() <o¥.

Thus, if oY =0, there is a point yeY such that oX < 8 !(y).

Since each bounded subset of the real line is clearly of span zero,
the above corollary implies that every compactum, on which therc exist
real continuous functions with arbitrarily small point inverses, is of
span zero. Consequently, the span is equal to zero for all the chainable
continua, for instance. This statement is, however, equivalent to the
known fact that no chainable continuum can be represented as a con-
tinuous image of any continuum under a pair of disjoint mappings.

§ 6. A uniformization of real functions. If a <b and ¢ are
real numbers, we shall denote by [abd] the segment {i: a <t<<b} and
by [ab, ¢] and [c, ab] the segments

{(w;?/)i a<m<b7:‘/=c}
in the plane, respectively.

Levwa. If f,, f,: R—>R are real continuous functions and a < b < ¢ < d
are numbers such that

fila) <fia(t)  for
fi) < fimald)  for

where §= 0,1 and {41 is taken modulo 2, then there is a continuum K
and continuous functions 9y 012 K—R such that

[be] C go(K) ~ g(E)  and Togu(p) = figu(p)
for every p ¢ K.

Proof. Let @ be the Square on the plane which has the points (a, a)
and (4, d) as opposite vertices. Denote by A4 the set of points (z, Y) eQ
such that fo(z) = f,(y). If

(p,q)e[a,bd]u[ac,d] (®'y¢) elbd, a] [d, ac],

then fi(p) < f,(g) and fo(p’) > f(¢') according to the hypothesis. Tt follows
that every continuum € C @ joining (p, g) and (p’, q') meets the set A.
Hence 4 cuts the square @ between the arcs

[a, bd] © [ac, d] [bd, a] w [d, ac],

lying on the boundary of Q. Therefore 4 contains a continuum X which
joing the complementary arcs

[a, ab] w [ab, a] [ed, dl v [d, cd]

of this boundary. It is sufficient $o define gy(p) and g,(p) as the abscissa
and the ordinate of p, respectively, for p ¢ K.

and  {(z,9): v =0, a <y <b)

and

and

and
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§7. An estimation of the span. Suppose that X, X,, ... are
subsets of & compactum X. It readily follows from the definition of the
span that

lim sup 0 X; < o Limsup X;,
i—>00 =00

and this property allows us to make use of polyhedral approximation
of a set for obtaining some estimation of its span. We shall write

e(4,B)= inf o(a,bd)

aed,beB
for subsets 4 and B of X.

TeworEM. If COCI® is a closed subset of the Hilbert cube I° and
f: C—8 is an essential mapping of C into the circumference 8, then

inf o(f~(s), 7 (—s)) < 00

Proof. Let us denote by ¢ the number on the left side in the last
inequality. The mapping f has an extension f: U->8 onto a neigh-
bourhood U of ¢ in I”. For an arbitrary number 7> 0 and neighbour-
hood V of € in 1% let WC U~V be a neighbourhood of ¢ in I°®
such that

(@) s—n < ef ()~ W, F7H(—s5) A W)

for every se 8. Choosing a finite cover C of ¢ with sufficiently small
open sets we can find a mapping 7 of C into the nerve N of C such
that N C W and

7' ()—f (o)l < 2

for every ¢« U (see [1], p. 18). Thus 7 is homotopic to f and hence it is
essential. Consequently, f|¥ is essential too.
Observe that if y: 4"—>8 is a mapping of the simplex 4™ into &8,
n>1, a<b<e, and
h: (bdA™) x [ab] -8

is & homotopy joining h, = y|bd4” ie. y on the boundary of A™(3),
to the constant mapping %, = 1, then % is extendable to such a homotopy
hr A" % [ac]—>8

joining R, =y to K, =1, that A[(bd4™) x[be] =1. In fact, h can first
be extended to
b A" x[ab]>8

() We write k() instead of h(w, ).
Fundamenta Mathematicae, T, LV 15
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o= (ibi . 262). Let y be the transformation of A
such that hg =y (ibidem, p. 26 : ] rany ‘
onto the nm-dimensional sphere 8", defined by identifying the boundary
bd 4™ with a point g € §". Since

Bl bdA™ = by =1,

the superposition hjx~' is a mapping of 8" into § = §'. Therefore, for
n> @ hometery 1§ x [be] -8

exists such that by’ = hjx ", ko' =1 and 1"(¢,1) = 1 for b<i<e (ibiSem,
p. 338). It is sufficient to define h(w,.t) as equal, for every = e 4", to
¥iw, 1) if a <t<b, and to A"{y(w), 1) if b <t <e. ‘

Let N™ be the n-dimensional skeleton of the .polyhedron N in some
triangulation. If the mapping jIN* were homotopic to 1, we tazould thus
successively extend the homotopy on all simpl.exes of N2, N s ey a‘rnd,
finally, on the whole polyhedron N. But, f|¥ being an essential mapping
fIN* is the same, i.e. we can write

- fINtnon~1
(ibidem, p. 326). It follows that there is a continuum ¥ C N! satisfying
FI X irrnon~1

(ibidem, p. 325). Hence Y is locally connected and consequently it is
a simple closed curve (ibidem, p. 322). _
Let us take a homeomorphism % of § onto Y and consider the

mapping v: B—S defined by

(if) (1) = fu(em)
for ¢ e B. Then a continuous function ¢: E—R covers v, i.e.
(i)
holds for each i e B. Moreover, we have ¢(1) = ¢(0)+%, where L is the
degree of fu: §—>8, and thus ¢ satisfies

= { p(t-+[—1]+1)— k- ((—1]+1),
T Vet—tn +5- 111,
where [f] denotes the integer part of the number . Formula (iw.r) is a con-
sequence of the unigueness of the covering function ¢ for given » and
given initial condition, which determines the value of ¢ at some =1,
(ibidem, p. 309). _

Sin,ce fu is an essential mapping of § onto itself, we»ha‘ve k#0.

‘We conclude from (iv) that the functions f,, f;: R—R, defined by

it = k- [p(0) +4/2) ,

o(t ) = e2miop(t)

t<0,

(iV) t>=0,
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for j =0,1; <R, satisfy the hypotheses of the lemma from §6 for
b =0 and ¢ =1 provided that a < 0 is sufficiently small and d> 1 is
sufficiently large. So we have a continuum & and mappings ¢o, ¢;: E—R
such that

[01]C go(E) ~ go(E)

and  @g(p) = pg(p) + 3

for p e K. Setting
wi(p) = u(eionp)

for § = 0,1; p e K, we get mappings w, and w, of K onto ¥ such that
Two(D) = vg4(p) = e2ienis) — gomiggupy+ni
= — P = —pg,(p) = —Fwy(p),

according to (i) and (ili). Therefore s—g < o(wy(p), wyp)) for every
P <K, by (i) and the inclusions ¥ C N C W. It follows from formula (x)
in § 5 that ¢—n < oW < oV. The number 7 >0 and the neighbourhood
V of C being arbitrary, we obtain the inequality & < oC.

COROLLARY. Every compactum of span zero is contractible relative
o the circumference. Consequently (see [1], p. 271), compacta of span zero
are at most 1-dimensional.

It follows directly from the definition of the span (see § 5) that each
compactum of span zero is atriodic. Thus, by the above corollary, each
locally connected continuum of span zero is an arc. This is, however,
a weaker form of a previous theorem (see § 1).

§ 8. Spans of plane and spherical sets. Let & be a circle
in the plane with a diameter d and suppose that a compactum O ecuts
the plane between ¢ and the point at infinity. Then each real continuous
function on C takes the same value at a pair of points of ¢ whose distance
is at least d. This is a consequence of the following theorem and the
corollary from § 5, for instance. Moreover, the real continuous function
can be here replaced by an arbitrary mapping of ¢ into a space of
span zero. o

The sphere §2 will be considered with s distance ¢ taken to be the
angle « < = between the rays from the centre of 82 to points on S

TrEROREM. Let C be a compactum. If CC B and some bounded com-
ponent of E2—C contains a circle of a diameter d, then d < oC.

If CC 8 and all components of S*—C have diameters not greater than
d <%=, then =—2d < oC.

Proof. For OC B2, let { be the central projection of ¢ onto the
boundary of this circle. Then / is an essential mapping (see [1], P. 345)
and the theorem from § 7 implies the inequality d < oC.
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For O C 82, denote by px, ps the poles and by 8* the eql.lator of Sz,
Let ¢’ be the union of the set ¢ ~ 8§ and all the boundaries of com-
ponents of 82— that intersect St Then €' cuts 82 betwefen PN and pg.
Indeed, by the hypothesis, the poles do not belong to ¢ and if a con-
tinuum K C 82 joins them, it must meet ¢ ~ §* or §*—C. In the second
case, K intersects the common part of §' and some COHrl]_)Onent G of
S2—0. Hence K meets the boundary of @ because pye¢ K—G. Thus K
meet;t Gfollows that the projection f of ¢’ onto §* along the meridiags
is an essential mapping (ibidem). But if p, ¢ € ¢’ and f(p), f(g) ave 33?1:1-
podal points on Y, then the distance o(p, ¢) is .aJt lea;s:t n—2d, according
to the hypothesis and the definition of ¢'. Since (' C C, the theorem
from § 7 gives n—2d < 00’ < oC. '
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Recursive metric spaces *

by
Y. N. Moschovakis (Madison, Wisc.)

Introduction. In [10] the author introduced abstract “notation
systems” and used them to give an axiomatic treatment of the theory
of recursive real numbers. In this paper we use the same methods to
constructivize parts of the theory of metric spaces.

A (classical) metric space consists of a set A6 together with a function
6(a, B) from A into the set R of real numbers which satisfies the three
metric axioms. The natural way to define a “recursive metric space”,
according to the point of view that we adopted in [10], is to substitute
an arbitrary notation system M for the set A6 and a “recursive operator’’
D{a, g) from M into R (the notation system for the recursive real num-
bers [10], (1.5), (1.6)) for the distance function &(a, f) (Definition 1).

It is found that this concept of a recursive metric space is too weak;
before we can prove any of the more inberesting results of the theory,
we have to postulate a deeper connection between the metric and the
recursive structure of the space. We shall consider two conditions (A)
and (B) (§§ 1 and 4, respectively) on a recursive metric space M, which
seem to be sufficient for this purpose.

A space M satisfies (A) if we can effectively compute the limit of
a recursive, recursively Cauchy sequence of points of M, whenever it
exists.

In order to state our main result we need the concept of an “S-traced”
set. A subset B of M is S-traced if we can effectively find an element of B
in every sphere that intersects B (Definition 2). If M satisfies (A), then
every point of a listable subset L of M can be effectively separated from any
given S-traced subset B of the complement of L by an open sphere (the
separation theorem, § 2).

* This paper is Part IT of the author’s Ph. D. Thesis at the University of Wisconsin
written under the direction of Professor S. C. Kleene. Part of the material appeared
in [9], written under the direction of Doctor D. L. Kreider (now at Dartmouth College)
and was presented at Professor H. Rogers’ seminar in logic at MIT in the summer of
1960. I wish to express my sincerest appreciation to all three above-named persons for
their help and encouragement.
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