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On induced connections
by
A. Goetz (Wroclaw)

The purpose of this paper (*) is to give a detailed exposition of the
method of inducing connections in immerced principal fibre bundles
announced in the author’s paper [3].

The first chaper contains a very brief summary of the main prop-
erties of general notions, and the intention is to make clear the wuse
of notations (2).

The second chapter deals with the main subject of the paper.
Section 6 contains the definition of the immersion of principal fibre
bundles and some geometrical examples, in section 7 the notion of the
invariant projection of Lie algebras is introduced and its relation to
the notion of weak reductivity of homogeneous spaces is given. Exam-
ples of invariant projections are the subject of section 9. Section 10 deals
with the change of the immersion. In section 11 some generalizations
are given, which extend the field of applicability of our scheme.

I

§ 1. Differentiable manifolds.

1.1. The differentiable manifolds as well as all mappings and func-
tions considered in this paper are supposed to be of class ¢=. The linear
space of vectors tangent to the manifold M at @ « M is denoted by To( ),
the space of all tangent vectors by T'(If). Tangent vectors and vector
fields will be denoted by the Greek letter = with subseripts; if necessary
the “contact point” z will also be indicated as a subscript.

A tangent vector at mye M is interpreted either as a class of differ-
entiable paths in M tangent to each other at z, or as a linear func-
tional defined on the class of differentiable functions in I and satisfy-
ing the condition
1) T B+ @) = (v, F) - G (@) +F (w0) - (7o) 5

(*) The present paper was written partly during the author’s stay at the Uni-
vewsity of Notre Dame, Notre Dame, Indiana, U.S.A.

(%) For more information, see Lichnerowicz [7] or Nomizu [8]. Our notations are
near, but not identical, to those of Lichnerowicz.
Fundamenta Mathematicae, T. LV 11
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where F' and @ are differentiable real functions defined in a ﬁeighbotu’-
hood of x,. A vector field (z, variable) can be interpreted as a linear
operation, called an nfinitesimal transformation, which satisfies the
condition

(2) 7(F-G) = (zF)- G+F- (z@) .

Given two infinitesimal transformations z; and z,, we define their
bracket [t,, 7] as the infinitesimal transformation v = 7y7,~—7,7;, Where
7,7, is the composition of the transformations z, and 7.

1.2. Given a mapping ¢: M —~>M’, we denote by ¢  the derived
mapping T(M)->T(M’') of the tangent spaces. This mapping maps
linearly each T'y(M) into Tpu(M'). If linearly independent vectors are
mapped into linearly independent vectors by ¢, the mapping ¢ is called
reqular.

The derived mapping maps brackets of vector fields into brackets
of vector fields:

¢ ([m1, ) = [@'(m), ()] -

1.3. Let ¢: M, x M,~>M be a mapping of the Cartesian product
of A, and M, into JI. Consider the mappings ¢u: IM,—I defined by
the formula

Pa(y) = @(w,y), well, yell,
and @y: M;—IM defined by the formula
ey(@) = @(»,7), zelly, yel,,
The derived mappings are respectively
@p: T(M)->T (M) and gp T(M)->T(I).
Now we can define the mappings
dyp: T(M) x M—=T (M) and  dyp: My xT(3M,)>T(IH)
by setting
o, y) =g)n)  and o, n) = pxv) ,
where x e M,, y e My, v, e T(My), 1, € T(M,).

The projections of the Cartesian product 37, x [, onto the axes
are denoted by j; and j,, i.e.

e, y)=a and iz, y)=y.

§ 2. Exterior differential forms.

_ 2.1. An exterior differential p-form « on an n-manifold M is a funec-
_ tion which is defined in U" (TAI)” (¢) and, for a fixed =, is linear in
Ze€ )]

all variables and squew symmetric, i.e.

ATy ooy Tiy) = i1ty @(Tay ooy )y G=1,2, ..., p,

() X® denotes the pth Cartesian power of X.
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where
(3)  Eipujp = T2
1 if 4y,...,%, i8 an even permutation of 1, ..., 7,
= 1—1 if it iz an odd permutation,
0 if i =4; for some pair k #j.
Moreover, if 7, ..., vp arve differentiable vector fields, a(r, ..., ) is a dif-

ferentiable function.
A function in M is considered as a 0-form; a 1-form is called also

“g linear differential form. The latter can be regarded as a mapping

a: T(M)->R, R denoting the field of real numbers.
2.2. The exterior product a A B of a p-form a and a ¢-form f is
a p+g-form defined by the formula (%)

1040 ¢ (T oeny Tip) B (Tipras <oe s Tipag) +

1
(8) (@A B o) = 57y
The exterior product satisfies the associative and distributive laws
and the following commutative law

ahB=(—1"B8 A a.

Every exterior differential p-form on an n-manifold M can be
represented locally (in some neighbourhood U C M) in the form
« :—%ailm,-m'ﬁ'i‘ A AD?,  Gp=1,2,.,n,
p

where &%, ..., 9" are n linear differential forms which are linearly inde-
pendent in each point x e M, and a;,.;, are functions defined in U.
In particular, in a fixed coordinate neighbourhood of M we can choice
# = do (the differential of the ith coordinate of ) and obtain
1 . . .
o =]7a.i1,,,ip dzit A ... A dote .

23. If ¢: M—~M' is a mapping and o’ & p-form on M’, we define
the induced p-form ¢*a’ on M by setting

(5) (@) (Fry ey Tp) = @ (@7(T) ) ooy @(T))y  T1y oy T € TH(B) .

In particular, if ' is a linear form regarded as a mapping «': T(M')~>R,

we have
qj*(]_l = a’ o(p.: T(ﬂ[)—)'R y

o denoting the composition of mappings.

(*) The summation convention is used throughover the paper.
11*


GUEST


e ©
icm
152 A. Goetz

2.4. The exterior differential of a p-form o« is the p+I1-form de
whose values for p +1 vector fields z,,..., 7, are :

(6)  da(te, Ty ey Tp)

1 Tp)y

»
= 2(_1)i7ia(70, veey Ty vey Tp) — Za([fiy Tily Toy eony Tiy vy Tfy o
i=0 i<j
where the cap ~ over a letter indicates that the letter is to be omitted.
In particular, the exterior differential of a 0-form (function) is
identical with its total differential, and the exterior differential of a linear
form « is defined by the formula

(7) da(ry, 75) = 110(%:) —Tya{wy) — a([r;. %)) -
The exterior differentiation is a linear operation with the following
properties:
(8) dlan ) =dan B+(—1) an dp
where p is the degree of the form g,
&) dde = 0.

If « is given in the form

i . A dxie,

1 .
U= — i ip dxii A ..
P
then

(10) da :]%dail---fr Adri A ..o p date
The exterior differential of an induced form is identical with the
induced form of the exterior differential of the original form:

(11) g*da’ = deg*a’ .

§ 3. Lie groups.

3.1. The groups considered in this paper are Lie groups, i.e. groups G
whose space is an analytic manifold, and the multiplication law is ana-
Iytic. The dimension of the manifold is sometimes called the number
of parameters of G.

The Lie algebra g of an »-parametric group @ is an r-dimensional
vector space whose elements can be interpreted either as veetors of 7,(&),
¢ being the unity element of @, or as left invariant infinitesimal trans-
formations (vector fields) on @. These elements will be denoted by the
letter 2 with indices.

A bracket [4;, 2,] of two left invariant infinitesimal transformations
is itself a left invariant infinitesimal transformation, hence the bracket
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operafion can be regarded as a kind of multiplication in g. This multi-
plication is linear in both multiplicands and satisfies the conditions

[117 12] = —mg; 11] ?
(20 A1y Za]  [[225 As], ] +[[A55 ], 2] = 0.

If @ is a group of linear transformations of a vector space, we re-
present its elements by non degenerated matrices 4 with matrix multi-
plication as group operation. The Lie algebra is then an algebra of square
matrices M (they can be also degenerated) with bracket operation

(12) [M,N]= MN—NM .

3.2. Any homomorphism %: G¢—>@ of Lie groups induces a homo-
morphism, denoted by the same letter h, of their Lie algebras. If & is
a monomorphism (or isomorphism) of groups so is also the induced
mapping of Lie algebras.

In particular, the inner automorphism of G sending every element
g, € G into gg g~ induces a linear transformation of g called the adjoint
transformation and denoted by adj(g). This transformation is an auto-
morphism of the Lie algebra. The image of 1eg by the mentioned trans-
formation is denoted by adj(g)- 2. The mapping g—adj(g) is a homomor-
phism of the group & into the group of linear transformations of g, called
the adjoint representation of @. Hence

(13) adj (g1 gs) = adj(g:)adj(ge)
and
(14) adj(g™") = (adj(9) -

3.3. Let y: M —@ be a mapping of a manifold into a Lie group,
and let 1 be a fixed element of the Lie algebra g of the group &.

THEOREM. If the mapping yx: M->g is defined by the formula

x(@) =adjly(@™), wel,
then

(15) xeM, veT (M),

2@ =—[y(@) "y (), adify(@) ) 2],
where y (%) "y (z) denotes the element of g = T.(@) obtained )‘a'o_':;n .the tangent
vector (1) to G at y(x) by means of a left tramslation y(x)™ into e.

Proof. Let us fix @, ¢ M and take, for v:eTfn(M), the path ()
tangent to 7 at ¢ = 0. Now, let us express y(m(t)) in the form

ple@) ™ = {pl@) "y s@)) 7y @

Then we have
xlz () = adj({y (@) y(m (t))}—l). adj(y(mo)—l) “A.
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Since y (@) y(#(t)) is a path in @ tangent at e to y(z,)'y'(z) € g, and
adj(y(m)™Y)- 4 is a fixed element of g, the tangent vector to the path
2(x(t)) can be expressed in the form (%)

1) = "[')’(wo)_li’.(f)y adj(?"(mo)vl) : /1] , Q.E.D.

3.4. We have to deal with exterior differential forms with values
in a Lie algebra g. A bracket of two g-valued exterior differential forms
7 and 7, is defined in the same way as an exterior product provided
the multiplication of values is replaced by the bracket operation. In
particular, for g-valued linear differential forms on I, we have

(16) [770s 2721 (71 70) = [972(71) 5 (7)1 —[7(70) s Ma(70)]
for 7;, v, € T2(3), whence it follows immediately that formula
(17) (7715 77e] = (a5 1] -

holds for g-valued linear differential forms.

If 2;,..., 4 form a basis of g, then every g-valued form can be
expressed as -
N=1%, a=1,2,..,7,

where 7%, ..., 5" are number valued forms on M. In this case the bracket
operation is given by the formula

[ 7] = 71 A ng[}-a: 28]
35. If  is a g-valued linear differential form on M, and y: M -G,
then
¥ =adj(y")n

is also a g-valued linear differential form, and, as it is not difficult to
calculate with help of formulas (13), (7) and (16),

(18) a9 = adj(y™)- dn—[adj(y=")- 7, ydy],
where y—idy is the linear form with values

(19) 7idy) @) =y @)y (v), weM, veTo(B).

3.6. The g-valued linear differential form z on @, whose value for
the vector 7eT,(G) is g-ir e To(() = g or, in another interpretation
of Lie algebras, the left invariant vector field containing 7, is clearly
left invariant. We shall call it the g-valued Maurer-Cartan form of G-

Given a basis 4, ..., 4, of the Lie algebra, u can be represented
in the form

po=p, a=1,2,..,7,

(%) See Pontrjagin [11], chap. X, § 54 F) or, in the English translation of the
first edition, [12], chap. IX, § 52 B).

i : 55
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where 4l ..., u are left-invariant number valued differential forms on @
which form a dual basis of Maurer-Cartan forms on G. Consequently,
the following generalized Maurer-Cartan equation is satisfied (%)

(20) du = —3[u, pl.

The form y-1dy is nothing else than the g-valued form y*u induced
by the mapping y from the g-valued Maurer-Cartan form z on G.
Therefore,
(1) - d(y~idy) = —3ly~'dy, v~ dy]-

§ 4. Principal fibre bundles.

4.1. A ditferentiable principal jibre bundle E(3, G, p) is an w471
manifold in which an 7-parameter group G acts as a transtormation
group by right multiplication. Fov this multiplication we use the no-
tations

2y = Dyle) = ¥(2, 9), zel, ge@;

¥ iy a mapping F xG-E. This multiplication satisfies the following
conditions:

i (8h) g2 = 2(g10e)s

ii. The space M = E/G of orbits, called the basic space of the bundle,
is an n-manifold. o

The natural mapping of B onto M is called the projection of 'the
bundle and denoted by p. The set p~i(x) for e M is called the fibre
Over &. -

iii. There exist a covering {U,} of M and a system of mappings
¢ U,—~EH such that

1. p(Cda)) =2, weU,. '

2. Tgle nZappi;lg (%, §)>Ldw)g is a diffeomorphism of U,x@ onto

ibres i hic to G.)
-1(7,). (Consequently, the fibres are diffeomorp _ ) )
! 3.” For e U.n U"L tlz) = @) gule), where g 18 & differentiable
mapping U, ~ U, G-

4.2. The mapping d¥: ExT(G)—~T(H) restricted to the §ubset
ExT,G) = Exg will be denoted by y; we use also the nommon‘ 2
for y(z, 1), 2B, Aeg. The vector =1 is tangent at z to the fibre
over p (). . ‘

Conversely, every vector v tangent to the flbre at 2 eE is of the
form zA with a uniquely determined 1 € g. If g(t) is a path in G.tangent
to A at t = 0, then 24 is the tangent vector of the path =g(t) in B.

{¢) See Cohn [1], chap. IV, § 4.5, formula (20).
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§ 5. Infinitesimal connections in principal fibre bundles.
5.1. An infinitesimal connection in E(M, G, p) is defined by means
of a linear differential form » on F with values in the Lie algebra g of G.
This form satisfies the conditions
(22) o(zl) =1, zekl, leg,
(23) ofrg) = adjlg™o(r), Tel(E), geb.
The fulfilling of these conditions is equivalent to the commutativity
of the diagram
T(E)—>g
ot ¢ ey
(4) T(B) —> g
» ¢ 2
xg
5.2. Vectors tangent to the fibre are called wertical, those which
satisfy o(r) = 0 are called horizonial. The space U, of vertical vectors
at z ¢ B and the space 3¢, of the horizontal vectors at z are complementary
vector spaces which together span T(E). Every vector = ¢ T(E) can be
represented in one and only one way as a sum of its horizontal and
vertical parts v = J(z) -+ (v). Since o (X(r)) = 0, we have o (r) = ©(V (1)) .
Curves in F are called horizontal if their tangent vector is horizontal
in every point. A horizontal curve z(f) whose projection is p (=)
= (1) e M is called the horizontal lifting of z(t). Every curve x(i) in M
has a horizontal lifting z(f) which is uniquely determined by the con-
dition #(%,) = %, % being arbitrarily fixed in the fibre over ().
5.3. The curvature form of the infinitesimal connection is a g-valued
tensorial 2-form defined by the formula

(24) Q(ry, 1) = dow (36(71)7 Je(Ta)) .
It can be expressed by the formula (%)
(25) Q2 = do+i[o, w].

I

§ 6. Immersion of principal fibre bundles.

6.1. Let M and M’ be two manifolds, g: M —-M’ a regular immersion
and k: ¢ -G’ a monomorphism of the Lie group ¢ into the Lie group G'.
Now, let E(M, @,p) and B (M', G, p’) be two principal fibre bundles

(") See, e.g., Nomizu [8] chap. II, § 4, or Lichnerowicz [7], § 35. The difference
between our formula (25) and that of Lichnerowicz is a consequence of a different
definition of the bracket of two linear forms. According to our’ definition (16) it is

[@, 0](z:; 2) = [0(7), o (w)]—[0(m), © (@1)] = 2[0 @), © ()] which is twice the value
used by Lichnerowicz.

. . I
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with basic spaces M and M’, groups ¢ and ¢ and projections p and p’,
respectively. A mapping f: B—HF' is called an immersion of z}m‘-ncipal
fibre bundles compatible with ¢ and k if the following conditions are
satisfied

(26) flzg) =1(e)1(g), 2eB, ge@,

(@7 P'(1(2) =o(p(2) 5
or, in other words, if the diagram

BExG@2 B> M
(B) Ln ™ 1i? e
B xG@ —>BE > M
w
is commutative. - ‘
The commutativity of the left part of the above diagram yields
the commutativity of the diagram

Exg— T(H) - T(E)
¥ . 7 .
© pal Pl Pl
B xg —TE)—T(E).
v Dixg)
Really, by passing to the derived mappings in the left part of (B)
we obtain the diagram
ExT(Q)—> T(B)
d¥
fuhe), rd
E' <TG e T(E")
which yields (C) after restriction to I x g and B’ x g’. The commutativity
of the right-hand part of (C) becomes clear if we put the left part of (B)
in the equivalent form
E—F
P b
B —E.
Diig)

6.2. Suppose that the principal fibre bundle B'(M, &, p) can b‘e
reduced to a subgroup @ of @', ie. it contains a subspace E which is
stable under right multiplication by elements of @ apd thus haJ-s the
structure of a principal fibre bundle B(M, &, p)- .In thmj case th.e me}u—
sion mapping f: BE—E is an immersion compatible VV.lth thel identity
mapping id: M —M and the inclusion homomorphism i: GG,

I ¢ is one-to-one, the general case can be reduced to the_} above
mentioned. To this end it suffices to identify 2 with f(z),lw mtlhlq)(w)
and g with %(g), and to reduce the principal fibre bundle B’ to p’~ (M),
where M is a subspace of M’ now. _ . _

Since  is a monomorphism, G can always be identified with h(&).
Consequently, G can be considered as a subgroup of @&, and %k as the
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inclusion map. Although this leads to a slight simplification of formulas,
the general approach seems to be more natural in some of the applic-
ations.

6.3. Let M be a real k-manifold, M’ a real n-manifold (k < n)
and ¢ a regular immersion M —J[" (a k-dimensional surface in Ir).
The set of all linear k-frames on M forms a principal fibre bundle
E(JM, G, p), where G = GL(k, R), and the projection p maps every frame
in T{J) into its origin .

Similarly, the set of all n-frames on I’ forms a principal fibre
bundle E'(3', &', p') with @ = GL(n, R). Let us define now the mono-
morphism k: & -G by the formula

A 0
h(A) - (O En—k)7

where 4 is a nondegenerated % « k-matrix, and E,_, is the n—%k < n—Fk
unity matrix.

Suppose now that a normalization of the surface @ is given, i.e. n—k
vector fields ej.i,...,e, on ¢(M), linearly independent and comple-
mentary to the tangent linear space T(p(M)) in every point. Then the
mapping j: E—E’' which sends the frame consisting of vectors e, ..., e
in T(M) into the frame consisting of the vectors @ (e, ., @ (ex), efrry ... e
in Tom(A') is an immersion compatible with ¢ and A.

6.4. A more general immersion can be obtained if.a mapping
7zt T(M)—>T(M’) is given which, when restricted to To(H) with fixed e,
is a non-degenerated linear mapping T(M) >Tpaz(M'), and the normal-
ization is complementary to x(Tz(M)) in every point #. In this case the
mapping f: E—~E’ which sends the frame consisting of vectors ey, ..., e
into the frame consisting of y(e,),..., %(ex)s €1, ..., €, is an immersion
compatible with ¢ and & of the preceding example (8).

The previous immersion is a particular case of the last one with =g

6.5. An intermediate particular case arises when 2 F ¢ bhut
2(Ta(3)) = Typp(3)). In this case a mapping y: M —@ can be found,
sueh that y(v) = ¢'(v) h(y(z)) for e M and v < To{ ).

6.6. The set of all affine frames in the affine spaces tangent to I
forms a principal fibre bundle E whose group & is the group of all
E+1 x k41 matrices of form

1 a
o )

(*) This immersion corresponds, in essence, to the treatment of linear connections
by Galvani [2] used for the purpose of imbedding linearly connected spaces with non-zero
torsion into affine spaces.

The immersion of section 6.3 corresponds to the classical treatment (see, e.g.,
Norden [10], § 38).
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where @ is an 1 xk-matrix and 4 a nondegenerated % :« I:-matrix‘ (*).
Analogously, the set of affine frames on I’ forms a principal fibre
bundle B’ with a corresponding group &'.

The monomorphism % being defined by the formula

‘i1 1 a 0
h(( :))z (o 4 0 )
0 : 0 0 En—k
and given an immersion g: 1 -1’ and a normalization €j.;,..., e, as
in 6.3 (respectively in 6.4), the mapping f: E—E’ defined by the formula
(05 exy s €x)) =

(vespectively (¢(0), %(e), ---s z(€s); €k21; -, €4} is an immersion of prinei-
pal fibre bundles, 0 is the origin of the frame.

(W(O)Q ¢er); -y @iler), €1y ey e'?l)

§ 7. The invariant projection of Lie algebras.

7.1. Given two Lie groups G and & with correspondh_ng Lie zilge—
bras g and g’ and a monomorphism h: ¢ —G', a linear mapping w: g—>g
is called an invariant projection of Lie algebras if the following conditions
are satisfied

(28) a(h(1) =2 for Aeg,
(29) n(adj(h(g))z') —adjlg)=(a) for ge@ Veg
or, in other words, if the diagram
' )i ! —q
I(TQ)?? adi(h(e))
@) RN '
858 aim 8

(i denotes the inclusion map) is commutative. _ N
The commutativity of this diagram is obviously equivalent to the

commutativity of the diagram

FE xh(g)»gl;
|

(B)

whatever the manifolds B, B and the mapping f: B—E".
7.2. Given an invariant projection =, let us denote now

(30) oMy =X —h(=(), Aeg.

(® Cf. the notion of affine connection in Lichnerowicz [7].
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Clearly, ¢ is a linear mapping g'—g’ which has the following properties:

(31) Togo=0.

Really, for every 2"e g’ we have =g (1)) = n(l’)——n(h (m:(l’))) =x(})—

—a(A') =0 (cf. (28)).

(32) och=0.

Really, ¢(k(2) = h(/l)—h(:z(h(l)}) =n(A)—h{2) =0 for Leg.
oadj(h(g) = adj(h(g)) o ¢

Really, ofadj{k(g)- 7') = adj(h(g))- #' ~(x(adj(h(g))- 7)) = adj(n(g))-
-2 —h(adjlg) - = (1) = adj(h(g)) - ' — adj(r{g)) - h{m(2)) = adj(h(g)) - {2~
— hix(@))}= adj{i(g)) - o(¥), ¥ ey, g

Fram (30) the identity

K = ba(¥)) +o(2)
tollows which gives a decomposition of every vector 1’ eg’ into two
summands belonging to the linear spaces h(g) and ¢(g') = m, respectively.
Since these subspaces of g’ have only 0 in common (this follows from
(31) and (32)), @', as a linear space, is a direct sum
(34)

(33) for ge@G.

g =h(g)+m.

As a consequence of (33) the subspace m is inveriant under transfor-
mations of the group adj{k(@)), i.e.
(33) for

adj(r(¢g)- mCm ge@.

7.3. Let us recall the notion of a weakly reductive homogeneous
space (°). If &’ is a Lie group and H its subgroup, then the homogeneous
space G'[H is called weakly reductive if the Lie algebra g’ of @, as a linear
space, is a direet sum

g =b+m,
where }) is the Lie algebra of H, and m is a linear subspace invariant
under the transformations of adj(H).

THEOREM. An invariant projection m: §'—>g exists if and only if
G'[h(@) 1s weakly reductive.

Moreover, there is a one-to-one correspondence between the projections
and the decompositions of o' into a direct sum, namely

m = p(g’).

(%) See Nomizu [9]. The notion of weak reductivity was introduced by Koszul
and independently by Rashevsky [13].
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Proof. It is clear, in view of (34) and (35), that the weak reductiv-
ity of G'/h(G) follows from the existence of an invariant projection z.
Suppose now that @'[h(G)is weakly reductive, and decomposition (34)
is given. Then every element 1’ e g’ has a uniquely determined repre-
sentation in the form )
V= al@) B,
where a(i') e h(g) and B(2’) e m. The mapping =: ¢’ —g defined as
a2y = Ha(2)
is the required invariant projection, and o = B. ) _
The decomposition (34) for a given weakly reductive ¢'[k(G) is not
necessarily unique and so is the invariant projection =: g’ —ag.

7.4. Now consider the bracket operation in g and g'. . .
First of all, since % is a monomorphism of Lie algebras, the identity

(36) B([A, &) = [h(4), 2(Z)]

holds. ) )
Further, if Aeg, and g(t) is the path in G tangent to 7 at e, then

we have, for any element 1 eg’,
adj{n(g(0))- o2) = e[adi{t(g(0))- 7) -
Both sides of the above identity are paths in g'. Passing to the tangent
vectors to these paths at ¢ = 0 (remember that g" is a hnea.r space anq
tangent vectors of g’ can be identified, in a natural way, with elements
of g’'), we obtain the identity
(37) [R(2), e(X)] = e((R(A), X)) -
Hence, in view of (31),
7((h(2), e(2)]) = 0

and, in particular,

(38)

for Jleg, Aeg

a([h( () o)) =0, H,Meg .
Now let us caleulate =([4, A1]). We have
(2, 241 = a([Bl(a) + e (3), ha(40) + e (2)])
= [ (), e ( (0)]) = {4 Rl 2]
([ ()5 0(A)]) +={le(2); e(R)]) -

The second and the third terms of the right-hand side of this equation
are 0 in view of (38), and hence

(4, K1) = [a(), w()]+x{le(H), e(4)])
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which yields
(39) [2(3), (28)] = =(( M, 21— Lo (A1), o(A)]) -

75. Let o be a g'-valued - exterior differential p-form on A"
We define wa’ by the formula
(@) (g ey Tp) = (@' (Try ey To))s  Tay ooy To e Tol M),
and g¢a’ by the formula
(0a')(zyy cuny Tp) = g(a’(rl, . rp)) .

Then za’ is an exterior p-form on M with values in g, ga’ is an exterior
p-form with values in g’, and

(40)
(41)

d(na') = ada’,
[, na’] = w([a, ']~ [od', 0a]) -

To prove this let us introduce a basis 4, ..., 4+ of the Lie alge-
bra g’. Then

"

A'(Tyy ey Tp) = @i(Tyy ooy To) Al T =1,..57",

where o, ..., ¢ are number valued p-forms.
Further,
() (Tyy ony Tp) = Q{Tyy ey Tp)(Aa)y  E=1,..,1",
d{ma')(Tgy vy Tp) = dai(Tgy «ry Tp)w(A) = (wda)(Tgy oor 5 Tp) 5
which shows (40). Formula (41) follows immediately from (39).
§ 8. Examples of invariant projections.
81. G = GL(n), G = GL(k), k< n. The elements are represented
by non-degenerated matrices of the form
A B
(¢ »

) and A,

respectively, where 4 is a non-degenerated square matrix of rank %,

D a non-degenerated matrix of rank n—=%, B is a matrix with % lines’

and n—k rows, and C a matrix with #—Fk lines and % rows. The mono-
morphism k: G-@ is defined by the formula

h(d) = (;‘ %ﬂ_k).

The elements of the corresponding Lie algebras g and g’ are also re-
presented by matrices (not necessarily non-degenerated), and the cor-
responding monomorphism of Lie algebras is

. M 0

( )“ 0 0 .
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The mapping =: g’ —g defined by formula

(e o -

is an invariant projection, since

avcan [p o) ==(7 2 ][+ I 5

- n([ﬁl _’fﬂl Ag]) — AMA™ = adj(A)n([‘g ZD

(42)

The mapping ¢ is given by the formula

el of ~[r o]

82. & = O(n), G = O(k), the elements of ¢ and G represented
by orthogonal matrices, the elements of the corresponding Lie algebras
g and g’ by squew-symmetric matrices. If & and =z are defined by the
same formulas as above, = is an invariant projection.

(43)

8.3. Now, let G’ be the group of affine transformations of the affine
n-space 4", and @ the group of affine transformations of 4%, k< n.
The elements of the group G can be represented by matrices of the form

1l a
0 4]’
where @ is a 1 :k-matrix and 4 is a non-degenerated k » k-matrix.

The elements of @ are represented in an analogous way.
The corresponding Lie algebra g consists of matrices of the form

0 m
0 M|}’
and the elements of g’ ave represented analogously.
The monomorphism % is defined by the formula

0 m 0
R

Then the linear mapping

0w N
. * - oM

(46)
0 P R
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is an invariant projection, because

1 a 0 m p 1 a0 0m plfl a 0 -1
s,<adj(h[0 A].OMN):W<OAO 0o M N|[o 4 o )
0 P R 0 0 E,,.{lo P R|[0 0 E,_;| |
(0 a4 abid WN) 0 mA”  amd™
=al|0 4MA AN =( o )
pL0 P4™! R 0 AmMA

[1 a] [o m [1 a]"l d,([1 a]) < g Z"'; g )
= = adj 1 .
0 Af}0 M][0 4 0 A4 o P Q

8.4, Let G be the k-dimensional real projective group represented
by equivalence classes of non-degenerated k-1 xk-+1-matrices under
the equivalence relation A~t4 (t real), and let G’ be the #-dimensional
real projective group (k << m). Consider, for even k, the monomorphism
h: GL(k+1, R)->GL(n-+1, R) defined by the formula

A 0
h(d) = [0 (et A)‘”““En_k] :

This monomorphism maps equivalent matrices into equivalent mat-
rices, hence it defines a monomorphism of @ into @&

The corresponding Tie algebras g and g’ consist of equivalence
classes of k41 x %k +1-matrices, respectively n-+1 x #+1-matrices, under
the equivalence relation M~ M--tE, where ¢ is a real number, E the
unity matrix, and the induced monomorphism of Lie algebras is

(47)

M 0
(M) = 1

(48)
0 k+1

t'r(M)En—k ’

where tr(M) denotes the trace of the matrix M.
The linear mapping defined by the formula

|z gl) =

maps equivalent matrices into equivalent matrices, and therefore it can
be regarded as a mapping z: g’ —g. This mapping is an invariant pro-
jection since

(49)

M 0 ;
n(h(M)):Jt( 0 1
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and
M

= (adj (n(4)) [P
A 0 -1
Z][o (detA)”““En_J )

ol
A Q M
= T([0 (detA)l”"‘lE“_,,] [p
AMA™? (det A) VT AN o ) M N
=z ([(det A g 0 ]) = AMA™" = adj (A):r[(P Q]) .
The mapping p is defined by formula
0 N

M- N
g([P Q])Z P Q—kiltr(M)En‘k :

8.5. In the case of odd % there is no monomorphism of the k-di-
mensional projective group into the n-dimensional projective group of
a similar form. Really, suppose that a mapping of the form

A 0
hid) = [0 p(4) EJ

(4 a real function of the matrix A) defines a monomorphism of the pro-
jective groups. Then p should satisfy the conditions

(51) #(AB) = u(4)u(B),
(52) p(td) =tu(d).

But, according to Kucharzewski [6], 4 must be of form u(4) = p(det4),
where ¢ is a multiplicative function, whence

plid) = p(t*det 4) = (1) () .
On the other hand, for odd &, ¢(f*™") = tp((-—t)k+1) and, consequently,
it cannot be ¢(t**') =t, and condition (52) eannot be satisfied.
8.6. For geometrical applications (), the following construction may

 be important.

Suppose that «: 6" >@ is an involutive automorphism of @', i.e. the
conditions ) )
a(gigh) = algi)alg) and ala(g)) =g
are satisfied. i o

The set G ={g: a(g) =¢, g G} is evidently a subgroup of &'

It is easy to prove the following theorem.

(1) Some applications of the invariant projections of sections 8..7, 8.8 and 8.!,),
which are based on the construction of this section, are given In the author’s
paper [4].

Fundamenta Mathematicae, T. LV 12
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THEOREM. The homogeneous space G'|G is weakly reductive with
(53) m={A: a(A)+4 =0, Veg}.

If we take the inclusion monomorphism as h, then the invariant projection is

(54) ally= 3 +al@)),
and, consequently,
(53) : o(X) = (¥ —a(i)).

Proof. The subalgebra g of g’ consists of all the elements Aeg’
for which «(1) =4 For every element A’ eg’, it is §(2'+a(d)) eg, be-
)+ ) = 2 {(A +a(@).
mapping ¢ —g. If 2eg then =(2) = §(2-+a(d)) = L(A+24) = 4, which
proves the condition {(28).

Further,

2 (adj(g)- ¥) =

cause a(%(a(A Hence m(1)eg and = is a linear

afadj(g)-¥') +adj(g)- ¥ = adj(g)- (a(2
2adj(g)=(1")
since the automorphism a commutes with the adjoint automorphism
adj(g). Hence the condition (29) is also satisfied and = is an invariant
projection.

This theorem gives rise to the following examples.

)+ )

8.7. @' = GL(n, R) represented by matrices, the automorphism «
given by
(56) a(d) =
It is clear that thiz is an automorphism; to show it is involutive
let us compute a{a(4)):

(det 4)7>"4 .

afa(4)) = (deta(4)) " a(4) = [det ((det 4) 7" 4)] 7" a(4)

= ((det A) " det 4) 7" (det A) "M = 4.

The subgroup G consists of matrices of determinant 1 or —1. Its
Lie algebra g consists of matrices M with trace tr(M) = 0. The induced
automorphism of the Lie algebra is given by

(37) a(M) =M—-§tr(M)-Eﬂ,

which yields the following invariant projection m and mapping o

a(M) =M-— %tl’(M)En s
(58)

o(M) = %U(M)E,, )
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8.8. Let us consider the matrix

)
0 'En —m.

where the fixed wm is one of the numbers 0,1, ..., n.
Let now G' = GL(n, R); then the mapping o defined by the formula
(59) a(d) = (477,
A" being the transposed matrix of 4, is an involutive automorphism.
Really, B(4) = (A7) is clearly an automorphism of @, whence
« is the composition of the automorphism g and an inner automorphism
of G'. Moreover, « is involutive, because

afa(d)) =I{(I(47) 1)) 7T = ITATD T = IIADI = 4.

The subgroup G consists of matrices of rotations of the n-dimen-
sional pseudo-Euclidean space of signature 2m—n, l.e. of linear trans-
formations preserving the quadrat-ic form
(xﬁl)
in particular, for m = n, the subgroup consists of matrices of rotations
of the Buclidean n-space (orthogonal matrices).

The Lie subalgebra g consists of matrices M which satisfy the
condition

2

(1:1)_+ m 1)

— (@)

M2IMI =0,

and the invariant projection m: g’ —g is given by the formula

(60) a(M)=§M—IMT).
Consequently,
(61) o(M) = }(M+IM'T).

Tn the Buclidean case (m = n) the subalgebra g consists of all squew
symmetric matrices, and the matrix I is the unity matrix.
8.9. For n = 2m, consider the matrix

0 E,
Tl-E. o)
An easy calculation, with use of the identity JJ = —E, shows that the
mapping « defined by the formula
(62) a(d) =—J(4)T, Ae@,
is an involutive automorphism of GL(2m, R) = @’. The subgroup &
consists of the matrices of the transformations of R‘ , which preserve
the exterior quadratic form
PN S S L N
' 12*
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The corresponding automorphism of Lie algebras is given by formula
(63) a(M) =JM"J,

and the invariant projection is

(64) (M) = §(M +JM"]).
Further,
(65) o(M)=3M~—JM]).

§9. Induced connections.

9.1. Consider two prineipal fibre bundles E (3, G, p) and E(M', &, p’)
and an immersion f: E—E’' compatible with ¢: 3 -3’ and the mono-
morphism h: G —>G. Suppose, moreover, that there is an invariant pro-
jection z: g’ —g.

Let the g'-valued linear differential form o' on £’ be a connection
form, in other words, let it satisfy the conditions (22) and (23) of sec-
tion 5.1. Then the following theorem holds.

THEOREM. The g-valued differential linear form
(66)
is an infinitesimal connection form on E (2).

Proof. Look at the following diagram.

7(E) g

» @
DL\ aaj«q")/

o = af*o’

v

(£ ) ————————>

(@]
\ i /
@ Jz
£xg

foo |l fh V PO I P
E'xh(s)
‘ [ I )
1) ¢
Divey v adj(h(g))’\‘
() = : g

The commutativity of I and II follows from the definition of the
immersion (diagram (C), section 6.1), that of III and IV from the de-

(**) The notations are explained in sections 2.3 and 7.5.
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finition of the infinitesimal connection o' (diagram (A), section 5.1),
and the commutativity of V and VI is a consequence of the definition
of the invariant projection = (diagram (E), section 7.1). The commu-
tativity of the two identical rectangular diagrams is nothing else than
the definition of . Thus the diagrams VII and VIII commute, whence
o is an infinitesimal connection form on E.
The infinitesimal connection on E defined by the form o = af*e’
is called the induced connection (*3).
9.2. The curvature form
Q =do+i[o, v]
of the induced connection o can be expressed in the form
(67) Q = ap*Q — alof*o’, off '],
where Q' is the eurvature form of the connection o'
Really, it is
0O = daf*o' + i[affo’, af*e’] .
As a consequence of (39) and (40) we have
0 = af*do’ +Lia([f*o’, ffo’l—[o*e’, of*0'])
= gf*de’ - Laf o', o] —i=xlof*o’, of*’]
= f*(do’ + [0, 0']) —kalgf*o’, of*v’]
— af*Q —Yalof*o’, of*o’],
Q.E.D.

The curvature form of the induced connection is split into two paxrts.
We call the first part,

(68) .QC = yrf*.Q' 3
the coerced curvature, and the second part,
(69) Qr = —§alof*e’, of*’],

the relative cwrvature of the induced connection. The curvature form
of the induced comnection is a sum of the coerced and the relative
curvatures.

Formula (69) can be also written in the equivalent form
(70) Qr = o, o]—alf*o’, ffo]) -
(%) The difference thetween this notion and the notion of induced connection,
used by Kobayashi in [5] and other papers, is that in our case the induced connection
is defined in a bundle with another group than the original bundle, whereas other
authors consider only the case when both bundles have the same group.
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§10. Change of the immersion.

10.1. The following theorem is quite obvious.

THEOREM. If f: E—E is an immersion of principal fibre bundles
compatible with ¢: MM and h: GG, and y': E->G' saiisfies the
conditions
(71) Y'(29) = h(g™")y"(2)h(g),
then the mapping F: E—~E' defined by the jformula
(72) Fz) =1(2)y'(2)

is also an immersion compatible with ¢ and h.

geG, zc¢E,

Therefore we call the mapping »': E-G' the change of the im-
mersion, and F the immersion changed by y'.
10.2. Let us compute now the derived mapping of the changed

immersion, i.e. F': T(E)—=T(E'). We have
F(r) =f(z)y ) f@)y(2)
=[()7'(2)+1(2)y'(2)y'(2)y"(x)
=f(r)y (3) +F(z)y (&) 7y(x),

The veetor y'(2) "y (z) is tangent to G' in ¢, hence it is an ele-
ment of g’
Consequently, if o' is a connection form in &', then

Fro'(r) = o'(f(x)y'(2) = ' (F(2) /() (7))
= adj(y' ()™ jro'(r) + /()

zeFE, te1,(E).

y'(t), 2eE, veTy(E),

or

(i3 Fro' = adj(y' =)o +y'dy’.

If we denote the induced connection form for the changed immer-
sion F by o, then we have

(74) o = zadj(y ) ffo’ +ay -1dy .

10.3. The change of the immersion is called inessential if & — o
for any connection o’ on E'. It is not difficult to find some practical
sufficlent conditions under which the change of an immersion is in-
essential.

Denote by K the smallest subgroup of ¢ generated by y'(E). If its
Lie algebra f is contained in m — p(g’), then wy’~'dy’ = 0, and

(75) o = madj(y’" o' .
If, moreover,
(76) zadj(k) == for every kK,
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then the change of the immersion is inessential, since ’
o = zadj(y"~)*e = af*e’ = o .
Particularly, the following theorem holds.
THEOREM. If all elements of K commuie with all elements of h{G), and

(77) adj{kymCm for keK,
then the condition (76) holds. If, moreover, IC m, then the change of the
imanersion 1is inessential.

Proof. It suffices to prove the first part of the theorem. It follows
from the commutativity of ke K and h(g), ¢ @, that adj(k)- 2’ =%
whenever ke K and 2 eh(g). Consequently, for an arbitrary i'eg,
we have

adj(k)- h{m(i") ) +adj(k)- o(A),

¥ = adj(k)- (bl (2) + 0(2)) =

éince 7(A)eg.
On the other hand, adj(k)- o(%') e m, hence z{adj(k)- o(1')) = 0, and

x(adj (k)
which shows that (75) holds.

10.4. Recalling the immersion of section 6.3 and the invariant
projection of section 8.1 we see that the group K of matrices of the form
E. 0
o 5}
where B is a non-degenerated n—#k x n—Fk-matrix, satisfies the sup-
positions of the theorem of the preceding section. Consequently, any
change of the immersion with »'(E)C K is inessential and does not

change the induced connection.

Geometrically, this change of connection means a change of the
normalization in such a way that the subspace spanned by the normal-
lzmg vectors epsr, ..., €, does not change. Hence, given a connection
o' on E', the induced connection depends, in faet, only on the n—k-di-
mensional subspaces of the normalization, and not on the particular choice
of bases in them.

10.5. Another simplification of formula (74) arises, when K Ch(G).
In this case we have y'(2) = h(y(2)) for an appropriate mapping y: E—G.
Now it is

xadj(y)- fro’ = madj(h(y))-[*o’ = adj(y) af*o’ =adj(y)- o

¥) = a(x)

and
ay "idy’ = ah(y~idy) = y~idy -
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Hence
(78) w=adj(y) - o+ydy.

10.6. Since the curvature form 2’ is a tensorial form of type adj,
we have
F*Q' = adj(y' 1) - f*Q".
This can be also easy proved by direct calculations using formulae (25),
(18) with y = f*o’, (17) and (21).
Consequently, for the coerced and relative curvature forms Q¢ and Op
of the changed induced connection we obtain the formulae

(79) Qe = madj(y' ) 12
and
(80} Qp = —%aloadj(y' ) f*o', 0adj(y" ) f*o'].
In the case when (76) is satisfied we have
.:c = Qc .

If the change of the immersion is inessential, in particular when the
suppositions of the theorem of section 10.3 are satisfied, we have 2 = Q
and hence we have also

|

R:-QR-

X

10.7. In the case considered in section 10.3, when K C h(@), we
have y'(2) = h(y()), and @ = adj(y™)- @ +y~'dy. By direct computations
we obtain in this case
(81) 0 =adj(y Q.

Since, on the other hand, in this case

(82) D¢ =2dj(y™)-Qc,
we have also
(83) Op=adj(y™) Qg. .

§11. Two generalization.

1L1. To apply our procedure of induecing connections two condi-
?ions‘are required; first, we need an immersion f: F—E'; secondly, an
invariant projection =: @' @ is necessary, which exists if and only if
G'/h(G) is ‘weakly reductive. However, our procedure can be modified
in such a way that it covers also some cases when those requirements
are not satisfied.

11.2. It may happen that there is no immersion j: E'—E com-
patible with ¢: M M’ and h: ¢ -G but there exists a covering {U,}
of the basic space M of E and a system of immersions f.: »~(U,) ~>Iv;‘-’

e ©
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compatible with ¢|U,: U,~M’ and h: ¢—@ and satistying the following
condition: If T, ~ U, # @ then, for zep U, ~ U;), the relation

fd2) = fa(2)yid2)
holds, y4(2) being an inessential change of the immersion ;| p~ (U, U3)-

Provided we have an invariant projection z: g’ —g, we can define
the induced connection form o, on p~*(T,). Since the change of immer-
sion by yi i8 inessential, the connection forms w, and o, coincide on
the intersection of p—%(U,) and p~YU,). Hence the induced connection
is well defined on the whole bundle E.

11.3. This is the case, for instance, with E being the space of ortho-
normal frames on the Mobius band J/, and E’ the bundle of frames of
the Buclidean 3-space J’. Here, G and G are the orthogonal groups
of 2 and 3 dimensions, respectively, and ¢ is the imbedding of the Mbobius
band into the 3-space.

There is, of course, no continuous normalization of the Mdbins band
as a whole, therefore no immersion of the kind described in section 6.3
can be found. Nevertheless, we can apply the generalized procedure
of the previous section in this case.

11.4. Suppose now that there is given an immersion j: E—FE but
&/h(@) is not weakly reductive, and hence there is no invariant pro-
jection =: g’ —g.

Tix 2 e I and consider the fibre p~i(w), its image f(p~(x)) and the
set f (p'—l(’l’x(l[ ))) of tangent vectors to E'. It may happen that the values
of ’, when restricted to the last set, lie in 2 certain subalgebra gz of g
which corresponds to a subgroup G of @' containing (@), and that
G4h(@) is weakly reductive. Consequently, there is an invariant mapping
7zt ga—g which can be applied to define the induced connection form
o = m;f*w’ on p~Yx). If z; can be chosen for every x in such a way
that the above form is differentiable on FE, an induced connection is
obtained in the whole bundle E.

This procedure is more general than the former one but, at the
same time, it is more complicated, since the family of invariant pro-
jections = can depend essentially on the connection o’ on E.

Vutatis mutandis this generalization can be combined with the
piecewise immersion considered in section 11.2.

{1.5. A trivial but characteristic example of the sitnation dealt
with in the previous section is yielded by the homomorphic connection (*).

Tet M = M’, p be the identity map and f: E—=E' an immersion
compatible with ¢ and &: G-+@ (a homomorphism of principal fibre
bundles); f is then a one-to-one mapping E-—f(E). The form « being

) Cf., fo;xample, Nomizu [8] or Kobayashi [5].


GUEST


174 A. Goetz

a connection form on E, we define the connection form o' on E’ by set-
ting it to be equal f *w on f(E) and extending it by means of for;nulae
(23) of section 5.1. Then the values of o’ on f(I'(E)) are contained in
h(g), and =z is simply identical with 7' (it does not depend on w in
this case). The induced connection coincides with the given connection
o on E.
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An arc is tame in 3-space
if and only if it is strongly cellular *
by
R. H. Bing (Wisconsin, USA) and A. Kirkor (Warszawa)

A set Z in Buclidean #-space E" is tame if there exists such a homeo-
morphism f of E® onto itself that f(Z) is a polyhedron. There are known
some necessary and sufficient conditions of tameness of an arc in E3,
e.g. [4] and [5]. We shall give here another one based on the reinforced
notion of a cellular set [2). A set Z in E" is strongly cellular if there is
an n-cell ¢in E" and a homotopy h: € :I-0 such that, if hi(x) = h(2,1)
and 8§ =Bd( is the boundary of (', then

(1) ho = identity mapping and h|Z = identity for all t,

(2) hel8 = homeomorphism for 7 <1,

(3) ha(8) ~ he(8) = 0 for t =1,

(4) hy(C) =Z.

The set Z will be said to be a strong deformation retract of the cell C.
By M. Brown’s generalization of the Schoentlies Theorem [2] there will
be no loss of generality if the cell C is assumed to be a ball.

THEOREM 1. An arc is tame in EP if and only if it is strongly cellular.

COROLLARY. An are A in E® is tame if and only if there are two con-
centric balls B, and B, B, C IntB, and a mapping f of B into E® such that

(1) /B —B, = homeomorphism, ,

(2) F(By) = 4.

Proof of the Corollary. It is obvious that the conditions of the
Corollary ave necessary. In order to prove that they are also sufficient
Jet us observe first that f(B) is a 3-cell by M. Brown’s Theorem 1 of [2].
Then assume C = f(B) and next consider the homotopy 12 BxI—+B
retracting B to B,. Now define the homotopy h: €' xI—( in the follow-
ing way:

B, t) =fe[f ), f] for wel—d,
for xed.

* Work on this paper is supported by contract NSF-611665.
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