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Independent sets in topological algebras
by
Jan Mycielski (Wroctaw)

1. Introduction. In his well-known paper [14], J. von Neumann
has proved that the set of values of the function

fa) = D p(p(nal)—p(a), where p(t)=2',

n=1

over the interval 0 < & < oo is algebraically independent (i.e. for every
polynomial P(f, .., ta) with integral coefficients the equality P(f(ml),
ey flEn)) = 0 with 0 <@ < ... <& < oo implies P = 0). The function
f is obviously increasing and therefore, by well-known results, we obtain
that there ewists a perfect algebraically independent set of reals.

Von Neumann’s result has been applied in many constructions and
especially for obtaining independent sets of potency 2% of rotations
of the space K%, i.e. free subgroups of the rank o% of the real orthogonal
group O, and in other groups, sometimes satisfying some additional
conditions (see [4], [B], [6], [7], [13], [15] and [16]). Using the above
mentioned consequence of von Neumann’s result all these constructions
yield perfect independent sets.

It is the purpose of this paper to give a more general topological
construction of such sets (the proof of von Neumann has an arithemetical
character). E. Marczewski has introduced [10] a general notion of
independence which provides the proper schema for these studies.
His definition is repeated and slightly generalized in section 2. In
section 3 the main theorems on the existence of independent sets in
topological algebras are proved. In section 4 we give some applications,
e.g. to Lie groups, their relations to known results, and some open
problems.

2. Independence in algebras and relational systems. For
any set (space) A and any natural number n, A™ denotes the Cartesian

’ (topologieal) product of n copies of A.

Let R = <4, R) be a relational system, ie. A is a not empty set
and R is a set of finitary relations over 4, i.e. for every R ¢ R there is
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& natural number » called a rank of R such that RC 4" (). As nsual,
we will write E(#, ..., #,) instead of (z, ..., 2> e R.

A set X C 4 is called independent in R if, for every R ¢ R and every
sequence i, ..., z, ¢ X, the relation R (2, ..., 2,) implies R(]‘(wl), vy f(acr))
for every mapping f: {m, ..., z,} >A4.

Let A = (4, F) be an algebra, ie. 4 is a non empty set and for
every F' ¢ F there is a natural number s such that #: A%—-A (2).

A* denotes a relational system <4, R>, where A is the same as
in A and R is the set of all relations of the form

G(wh ey -'1"7') = H(Z’l, ey (Er) 5

where G and H are any algebraic functions of U (the set of algebraic
functions is the smallest set including F, all the functions E; (7 < 75
i,j=1,2,..), where B} is a function of j variables and Ei(z,, ey )
=i, and is closed under any superposition of functions).

A set X C 4 is called independent in (the algebra) A it it is inde-
pendent in A* (3).

A relation 8 C 4™ is said to be obtained by identification of variables
from a relation BC A™™ if § is of the form

S(Jﬂ]_, ey (Em)HR(;‘El, ooy By Lfy Lig1y oony Tip) (i, i<m).

By the oZ@u*e of a relational system R = (4, R> we mean a rela-
tional system R = (4, §), where S is the set of all relations obtainable
from the relations of R by repeated identification of variables.

A relation SC 4™ is said to be obtained by permutation, identifi-
cation, and eylindrification from a relation R CA™if § is of the form
S(rey ey @m) o RB(wpy, vy a1,)

where kge{l,..,m} for i =1, ..., n.

For any relational system R = <4, R> we denote by R =4 , 8>

a relational system, where S is the set of all relations obtainable from

the relations of R by permutation, identification and cylindrification.
The following elementary facts hold:

(1) For any algebra A we have N+ = T+ — *.

(2) LZet be R = {A,R), R= K4, 8> and X C 4; then the following
propositions are equivalent

() In the standart treatments one considers an indexed system {Ri}er rather
than a set R. But this would be redundant for the purpose of this paper.

(*) A remark analogous to (1) applies here. However this concept of an algebra
was studied by logicians, the fact that it is sufficient for a theory of independence is
due to Marczewski [10], [11].

(?) This definition of algebraic independence coincides with that of Marezewski
[10], f111.
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(i) X is independent in R;
(ii) X s independent in R;
(iii) X s independent in R;
(iv) For each S e S if 8@y, ..., ®s) holds for some different elements

Byy ooy g € X, then 8 = A°.

(3) If X C A is independent in (A, Ry and S is the closure of R
under arbitrary unions and intersections (of relations of the same rank)
then X is independent in (4, S).

3. Independent sets in topological systems.

THEoREM 1. Let R = (4, {Ry, Ry, ...}) be @ close.d relational sg/ste‘J.IL
(i 6. R = R) with a denumerable set of relati:)_ns, whe;je Aisa c_o‘mplefc fr)Lft;;z
space dense in itself and, for each i, R; = A" or Riis of the first co ‘ei‘o; J,,wn
A" (v; denotes the rank of Ri), and let Gy, G, ... be a sequence of f)p(};/mm_,
empty subsets of A. Then there exists @ sequence of non empty perfect ¢

o« -
pact sets Fy C Gy such that \J F 4s independent in R.
L =

Proof. We represent each R; in the form

[=]
(=) Bi= Ny,
i=
is vher: w in A" or each Ny = A"
where each Ny is nowhere dense in C - )
The relational system <4, {I\Tij}i,j=1:2,_,,> is not ‘nece,sisanly zcgorbej
but, since R is closed, using (2) ((i)~{iv)) we obtain for any X
the following proposition

and each sequence of different elements @, ..., & € X )

(%) If for each 4, ] e e e

the relation Nuj{my, ..., or) implies Ny =4
ent in R.

First, we will define inductively a system of open»non empty sebs
C 4, where i;=1,..,j and m =1, 2, ..., such that

Vl'l.m,fm = co .
(1) V; . C Vi1 im for ‘i,;1+1 < m—+1 (4) and Vih...,im,m+1_ m+1y
Toeensiis == Joues ' ) " y .
(ii) Voigesimimas O Vil stiitng ™= 0, for (Tgy -y Intt) 7 (81 oy Ima1)
TovemsTmatnet sereslills
. (5
(iif) B (Vipin) < 1jm s (5)

it 1,7 : a ' mbers of r; different sets
(iv) if 4,5 <m and &, .., T, are any el b @

- S AT, AT
Vil,...,im then N'L]'('X"u ey mn) “npheS “\h =A4"

We put V, = G,.

(%) ¥V denotes the topological closure of ¥ in the space .
(5) (V) denotes the diameter of V.
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) Suppose that all Vy,.;, arve already defined and satisfy (i)-(iv).
Since 4 is dense, we immediately obtain sets ¥ ?1,,,,,fm,fm « sabisfying (1)-(iii)
Let Ny, ..., Ny denote the sequence of all these Ny, with 4,7 < m, Whi(:];
are nowhere dense. Let r(i) be the rank of N;. Since N, is 150where

dense a: : X it 7O v T0 : .
se and each product Ii, a4 ’<Vi"1’ s open in A" then
1 met p o Tand1 !

U
NAT e T
1 gl N AV ey oy = 0.
7 md Ry

Hence t he system Vzl'.‘ """ i Satisties (i)-(ii)) and (iv) pertaining to N,.
Repefatmg this operation s times we obtain a system Vi ;. (=V2 1)
satisfying (i)-(iv), which concludes our i ivi ofmin V= Vi i
tem ¥ ’ s our inductive definition of the sys-

TyuensTig *
Now we put
Py = D jCJl hing 7 i+l m—1
! = D U - Lf_J V1sl'z»~--,i7—1;:/',1'j+1,1‘j+=,...J'm

Bince 4 is complete, and by (i)-(iii i
y (i)-(iil), we see that ¥, is perfect and com-
pact (a homeomorph of Cantor’s discontinunm) and Fjlf' Gy. s

Now we have to prove the supposition of (x) for the set X — [ ] #;
?
J=1

Le.if @, ..., m, ave different elements C

y weey T, 3 sof |JF;t Nia impli
o ' ' jL=)1 s then Ny, ..., ) implies
> ejntg - 3y (iii) there is an m > 1,7 such that no two of these ele-
H, : :llle in the. samne set Vi, i,. Then, by (iv), we get this fact
ence the conclusion of (%) concludes our proof. ‘
s ?nemavr};:s. 1 It can be seen on the examples given in section 4
ert‘: n %el}ua,lﬂllf an independent set is borelian or only has the prop
alre, then it must be of the first category i i s
a denumerable basis then we ca in an indegendor ettt
. S 3 n obtain an set se in A
(taking 28 6, 6 PSRy independent set dense in A

5 ) o .

- ‘:1. FF‘]lle supposition ‘4 is metric and complete’ could be replaced
: 05]10111@12110‘0;]1}" eompaf,ct’ and then the theorem would be valid, if the
§ 5 are perfect and compact’ is repl ¢ o-
onen . erfect b placed by ‘F; are of po-
E(;]}C) 2 °’: ‘Thls ‘?odlflcatlon can be obtained by nearly thej same pr%)of
dyt(ﬁmdm.on (iif) should be replaced by ‘each set ¥, . is compact’

! : ey wetm ac
an e definition of ¥; should be replaced by ‘F; is :Llny choice get for

the family of sets |/ T .o ) :
v ) {WQJ“""’{”‘*7'1’127'“ is any infinite sequence with

=i and e fl, .., j - k—1} for & —1,2,..J.

Independent sets in topological algebras 143

3. In the proof of Theorem 1 and of the above modification the
axiom of choice was used (e.g. in the construction of the system Vi)
On the supposition that A is metric and has a well-ordered basis (e.g.
a denumerable one, as in most applications given in this paper) and if
the system of decompositions (=) is effectively given (e.g. in the proof
of Theorem 2), then the axiom of choice is not needed in the proof.

A topological algebra is an algebra U = (4, F7, where 4 is a Haus-
dorff topologieal space and all the functions F ¢ F are continuous.

We will consider topological algebras with the following property:

@. If G and H are any algebraic functions of » variables and there exist
open non empty sets ¥y, ..., ¥, C A such that @@y eeesp) = H (g, 0y )
tor any @, eVy, ..., eV, then G =H.

THROREM 2. Let U = (A, ‘Fy, T, ..} be a topological algebra with
properly P, where A is a complete metric space dense in itself, and let

Gy Gy, ... be a sequence of open non empty subsels of A. Then there exists

00
a sequence of non emply perfect compact sets Ty C Gy such that \J F; is
i=1

independent in UA.
Proof. In topological algebras property £ implies that for any
algebraic functions G and H the relation

G (g ooy Br) = H @y, ey )

is equal to 4" or is nowhere dense in A". Hence, by (1), the relational
system U* satisties the conditions of Theorem 1 and by this theorem
we get Theorem 2. Q. E.D.

Remarks. 4. Theorem 2 has an obvious refinement in the spirit
of Theorem 1 (to suppose only that U* satisties the conditions of Theo-
rem 1). But the actual form seems natural and is adequate for applic-
ations.

5. Modifications of Theorem 2, analogous to the modifications of
Thecrem 1 given in Remarks 1 and 2, are also valid.

6. Remark 3 applies here also.

4, Applications and open problems. 1. The conditions of
Theorem 2 arve obviously satisfied if 4 is a connected real (or complex)
and all the functions FeF are analytic map-
ase of such algebras as the ring of real numbers
Hence, in

analytic manifold

pings. This is the ¢
R = (R, {+,-}> or a connected Lie group & = <§, {-, 7}
both cases we obtain perfect independent sets, of course in the case of N
this is an alternative proof of the consequence of von Neumann’s result

mentioned in section 1.
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It was proved in [12] that any connected locally compact group
has property 2 (). Hence, by Remark 5, all such groups have indepen-
dent sets of potency 2% (7). It is interesting that, in view of Remark 6,
for the case of Lie groups this theorem is obtained without the axiom
of choice, and the independent set is borelian (8).

This result on Lie groups (or connected locally eompact groups)
suggests the problem of studying the algebraic structure of their sub-
groups gemerated by the independent sets. It is clear that these sub-
groups are reduced free groups, i.e. they are of the form F|N, where
F is a free group (of the rank 2%) and N is a fully invariant subgroup
of F (the group of words vanishing on ). It is also obvious that they
have no elements of finite order. Moreover, by the results of [2], if ®
is non solvable (e.g. compact and non abelian) then such subgroups
of ® are free. Hence, in general, these subgroups arve free or sovable.
Of course, some of these solvable groups are also nilpotent but no classi-
fication of these groups seems to be known (however it should be quite
related to known results in the classification of Lie groups). ()

2. If Y is a set of irrational numbers of the first category on the real
line then there exists a perfect algebraically independent set X (and an
independent dense union of such sets) such that the field generated by X
is disjoint with Y.

Proof. Consider the relational system R = (R, R>, where R is the
real line and R is the set of all relations of the form

QLyy ooy @) =0 or L@y oy ) <Y,

Q(”B17 rery ‘v")
where P and @ are any polynomials with integral coefficients, n =1, 2, ..,
It is easy to cheek that R satisties all the suppositions of Theorem 1,
and that the field generated by the independent set given by this theo-
rem is disjoint with Y. Q. E. D.
The problem is open if the above result can he established with
the supposition ‘Y is of the first category’ replaced by ‘Y is of meas-

(°) In fact, the result of [12] is slightly stronger, but the problem if every con-
nected topological group has property £ is still open. )

(") A special case of this result was proved in [2] (for non-solvable groups).

(®) While the method employed in [2] (even in the case of non-solvable Lie
groups) was essentially non effective and yield only sets of potency 2%. The proof
of [2] used also a refinement of the method of category for the case of analytic sets
in analytic manifolds given in [1], and the present proof does not need this tool.
However the result of [1] seems essential in another construction given in [3] quite
related to those of the present paper.

(*) See also the problem stated in [2] section 6.8, which is still open.

~
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ure 07 (19). The only known result in that case is the existence of an alge-
braically independent set of potency s, generating a field dzsyo:mt with ¥
(unlike the previous result, this one requires the axiom of choice).

Proof. This follows by an obvious induction based on the axiom of choice and
the following lemmas: B

If U is a denumerable real field disjoint with a set ¥ of measure 0 then there is
a number x transcendental with vespect to U and such that the field generated by U v {z}
is disjoint with Y. -

Proof. Let 4 be the set of numbers algebraic in U. Of course, 4 <% Let & b.e
the set of all rational functions of one variable with coefficients in T. Oé e;ln‘.se D < h]:

I~ = U. 5 enoug

and mes(p—1(T)) = 0 for every pe®. Hence mes(d uw&,lm(p 1(T)) i g

to take z ¢ 4 v U1 (¥). Q.E.D.
peED

In connection with this, since the set of Liouv.ille numbers is of
measure 0 but not of the first category, the foll(?m{lg problem of P.
Erdés remains open (if the continuum hypothesis is not. supposgd).
Does there exist a real field of power 2% which does not contam.any Liou-
ville number? Another simple question of that kind (mine) is the fol-
lowing. Does there ewist a perfect set of real mmnbm."s F su.oh that the
set of all mwmbers w—+y with »,y eF is disjoint with a given set of
measure 07 . o
" 3. Let (' be the complete metric space of real continuous periodic
functions with period 1, the métric being mj,xl F(@)—g(3)]. Let Rulf, g)

{m=1,2,..) denote the following relations:

There ewisi a real number ® and a natural number n such that, for
every h >0 .

’ [f (@ +h) —f (@)™ < |g (@ +R) —g(@)| +nk .

It is easy to check that R, ave of the first category in (xC (111)
and, of course, Ru(f,f) holds for every f e C. Therefore, by Theforem‘
we get a set X C O perfect and compact and such that for eve15:
f,9eX, f#4¢ and m=1,2,.. we have non-EBn(f, g). The set' é
h7as gre;bt singularities, e.g. none of the functions fe.X has ‘botl? 11'g :
derivatives finite and the same holds if we consider derivatives o
one of these functions with respect to another ().

i thi i re kindely com-
i robl d the following remarks of this point were nde ‘
muuié:gefl[‘ 2105 nliéo}la)vellxi‘,l. E(L; Straus. See also his review of a paper of P. Erdds in Math.

. 1956), p. 460. -
ey (}17) Eﬁ!omp)arg [9], § 30, VIII (references to related ;e;ul? a(.lm §vi: Eﬁél]ereA).pmb_
b wit logous properties was constructed by J. de Gro . !

O i anﬂ'efﬁ givfu iIl)l [1] section 4.2 is still open. Note about II.)Ia,pex gS]

y i ; b )

that like several papers quoted in section 1 it uses von 'Nteum.a.un §tf1‘mctmr]1j.ed c:)vl:;a; o

in opposite to the other papers, in [8] this is not essential since it is a.pg fed only o
get ﬁpfamily of potency 2% of almost disjoint sets of natural numbers and this

done in a more elementary way (see, e.g., [17] p. 77).

lem concerning this subj
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4. Other algebras satisfying the conditions of Theorem 2 are: (1) con-
nected metric complete abelian groups (see [12]); (2) Boolean algebras
of measurable sets divided by the ideal of sets of measure 0 with the
metric mes((4 v B)\(4 ~ B)).

5. Finally we give an application of Theorem 1 which has a more
geometrical character in opposite to the algebraic character of most of
the previous applications. A relevant case of this result was proved
independently by A. Lelek.

If X is a set of the first category on the real line, 0 ¢ X, and if A is
a complete separable metric space such that for any open non-empty sets U,
V' CA the set {dist(z, y)| xe U, y €V} has inetrior points, then there ewists
a denumerable union of perfect sets, say U, which is dense in A and such
that dist(x, y)é X for any x,y e U.

Proof. Since the closure of the relational system <R, {R}>, where

Rz, y)— dist(z, y) e X

satisfies the conditions of Theorem 1.

An analogous theorem is also valid:

If A is a complete connected infinite metric space and X is as above
then there exists a perfect compact set FC A such that dist(z,y)¢ X for
any ¢,y e F.

The proof is quite analogous to that of Theorem 1, but this result
is not a special case of the theorem. In fact, here a refinement with
a sequence F, F,, ... satisfying some conditions like in Theorem 1 would
not be valid in general.
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