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COROLLARY. If f is any epimorphism from G to a lotally ordered group,
or any realization of G then the decomposition f = f, o f, where f, is irre-
ducible and f, an epimorphism s essentially unique.

Remark. Proposition 5 is closely related to the fact that in certain
integral domains, e.g. the ring of entire functions on the complex plane,
each prime ideal is contained in exactly one maximal ideal [1].

6. Concluding remarks. In view of Proposition 1, the lattice-
ordered group G has no realization iff the union W of all normal prime
filters in P is smaller than P—{0}; K, = {#| <@, |z] ¢ W} is then the
1-ideal of G consisting of all those elements of & which vanish under
every homomorphism G—T, and G/E, is the largest quotient group
of ¢ which does have realizations. This does not, however, describe TV
and K, internally in terms of the elements of @, and it might be of
interest to have a characterization of this latter kind. [t is clear that
W consists of elements a ¢ @ such that no (z;+a—a;) A ... A (Tp+a—ay)
(e € G) can be 0, but whether, say, W 4s the set of these elements remains
an open gnestion.

Another problem which arises naturally here is that of the existence
of realizations G¢—[]T, where all T, are archimedean. It is easy to see,
for an epimorphism f: G =T, that T is archimedean iff Q(f) is a minimal
normal prime filter, and hence G has realizations of the said type iff
P—{0} is the union of all minimal normal prime filters in P. Again,
it seems desirable to have an alternative condition in terms of the ele-
ments of &, such as Proposition 3 provides for the existence of realizations
in general.

Finally, we remark that the present approach to realizations of lattice-
ordered groups might also be useful for the study of (analogously defined)
realizations of lattice-ordered rings.
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Some properties of algebraically independent sets
in algebras with infinitary operations
by
J. Schmidt (Bonn)

The purpose of this paper is to continue the study of independence
in algebras with infinitary operations as begun in [10]; in particular,
to generalize some results of Marczewski [5] on independent subsets
of finitary algebras. In Section 1, we discuss some notions of “neutral”
or “singular” elements which are actually different as is shown by ex-
amples; the resulting necessary distinction represents the reason for some
small complication occwring in the following sections. In Seetion 2,
Marczewski’s results on the relations between algebraic, lattice, and
closure-independence are generalized (the proofs using the technique
of algebraic operations here instead of Marczewski’s technique of trans-
formations of variables). In Section 3, the fundamental notion of element
basis is introduced in general, only two special cases having been con-
sidered hitherto: one in Steinitz-Van Der Waerden exchange structures
(MacLane [2], J. Schmidt [9]), the other in absolutely free algebras
(Lowig [1], Stominski [11]); the interrelations ave studied between the
existence of the element basis for element z and the representability
of # by algebraic operations depending on all variables. In Section 4,
the existence of the element basis for all elements % in the algebraically
independent generating set I is secured in the special cases of finitary
algebras and (reproducing a result of Lowig [1]) of absolutely free alge-
bras, whereas in Section 3, an example is given for an element 2 in an
algebra A (necessarily infinitary and not absolutely free) without element
basis in the algebraically independent generating set JI. The paper is
1easonably self-containing; in particular, it can be read without know-
ledge of [10].

1. Neutral elements of different types. In [10] § 1, we have
considered the natural one-one correspondence between elements of set A
and operations f type @ (empty set), i.e. nullary operations, on A. This
natural correspondence is angisomorphism from algebra A onto algebra
0°(A) of all nullary operations on set 4, the converse of this isomor-
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phism being the natural projection pr, (0 denoting the empty sequence,
i.e. the empty mapping, which is the only element of 4°) of direct power
0°(4) = A* onto factor 4, i.e. the mapping b —h(o) (h e 0°(4)). Passing
to subalgebra H°(4), the subalgebra of algebra 0%(4) generated by the
empty set which consists of the nullary algebraic operations, we had the

THEOREM 1 (*). There is one and only one homomorphism of algebra
H°(4) into algebra A. This homomorphism is an isomorphism onto algebra
C@, the subalgebra of A generatéd by the empty set; it is the restriction
to subalgebra H°(A) of the natural isomorphism of algebra O°(A) onto
algebra A.

CoroLLARY (3). C@ precisely consists of the values h(v) of nullary
algebraic operations h.

Now, all nullary operations are constant in the general sense that,
for any two possible argument sequences, the value always is the same.
Passing from type @ to an arbitrary type L, we may consider the set
C(4) of all constant operations (algebraic or not) of type L on set A.
One has the obvious

THEOREM 2. CX(4) is a subalgebra of algebra O™(4).

(In case L = @, one has CL(A) = OL(A), the same for arbitrary L,
if algebra 4 is of cardinal number |4] <1.)

COROLLARY. The set of values of all constant algebraic operations h
of a certain type L is a subalgebra of algebra A.

For this is trivial, if 4 is empty. If 4 is non-empty, there is a se-
quence a of type L on 4, and the natural projection h—>pry(h) = h{a)
maps set HL(A) ~ C"(4) of all constant algebraic operations of type L
on 4 onto the set of values of these operations: this set being the homo-
morphic image of subalgebra HL(A)r\ CL(A) Cc OL(A), it is a subalge-
bra itself.

THEOREM 3. Let L, M be two arbitrary non-empty sets. Then the sets

of walues of constant algebraic operations of types L and M respectively
are the same.

The proof is by means of “transformation of variables” as dealt
with in [10], § 5. Both L and 3 being non-empty, there is a mapping o
of L into M. Let ¢ be the value of a constant algebraic operation & of
type L, then the operation . of type M defined by

hg,n[(d,l] He M) == h(aa<;,,| A GI/) =

(*) [10], corollary 4 of theorem 5.
(%) [10], corollary 5 of theorem 5,
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has constant value ¢ by definition, moreover it has been proven to be
an algebraic operation. Because of the symmetry with respect to L
and 3, the theorem is proved.

Let C denote the set of values of constant algebraic operations of
a certain non-empty type L. By theorem 3, € is independent of 7, by
the corollary of theorem 2, ¢ is a subalgebra of algebra A.

THEOREM 4. In an arbitrary algebra A:

o) ' Coccocp,

where D denotes the intersection of all non-empty subalgebras of A.

COC 0 is trivial since C@ is the smallest of all subalgsbras of A.
To prove ¢ C D, we have to show that ¢ C B for any non-empty sub-
algebra B of A. In fact, let ¢ be the value of a constant algebraic oper-
ation h of non-empty. type L. There is an element a ¢ B, let a be the
corresponding constant sequence of type L, a(i) = @ (1 e L). Then ¢ = k(a),
but a being a sequence in B and B being closed with respect to all alge-
braic operation, ¢ e B.

According to the covollary of theorem 1, inclusion C@C ¢ states
that all values of algebraic operations of type & are values of constant
algebraic operations of a certain given type L, and C may be described
as the set of values of all constant algebraic operations of all (empty
or non-empty) types L (3). Yet the most important consequence of (1)
follows from the remark that B =@ or B = D for any subalgebra B C D:

COROLLARY. There are four possible cases:

I.oc CO=C=0D;
. 6=C@cC C=D;

1. 0 =C@=0C D;

IV. 9 =C0 = C=D.

In fact, all four cases occur, as is shown in the following examples:

ExampLt I. Remember that C@ 7 @ if and only if there are nullary
fundamental operations fi, i.e. if at least one of the types K; of funda-
mental operations f; is empty ([10], § 1.3), this obviously being a prop-
erty not only of algebra A, but of the entire species of type (Ki)ier.
An algebra, a type, a species of this kind has been called with constants
in [10], without constants otherwise.

ExAmprE II. Consider a group 4 as an algebra with multiplication
and inversion as the only fundamental operations, both non-nullary (%).

(*) Marczewski [5] p. 49; also [4] p. 612 (Marczewski also writes 0 = C(4) = Ay
also Nitka [6].
(*) This is a rather frequent interpretation of a group as a general algebra.
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Then -z -2~ represents a constant algebraic operation with the
unit element ¢ as constant value; and since {e} is a subalgebra, ¢ = {e}.
Nevertheless CO = @ since one has “forgotten’ to introduce the nullary
operation corresponding to the unit element e as fundamental operation
(as a matter of fact, this is an algebra ‘““without constants’ in the sense
of example I).

Exanpre III. Let A consist of two different elements a, b, let f be
the only non-trivial permutation of A considered as the only funda-
mental operation. Then there is no constant algebraic operation at all
and therefore ¢ = @, whereas D = A, since A is the only non-empty
subalgebra B.

Exsanmere IV. Any algebra of at least two elements such that any
one-element subset is a subalgebra (e.g. let 4 be a lattice, an affine
space, etc.).

Thus, we have three definitions of singular elements of an algebra
which one might call neutral elements or even algebraic constants (°), these
three definitions connected with sets C@, ¢, and D, and coineciding in
a species with constants, yet actually different in general. The distinction
between these three notion plays a certain réle in the following sections.

2. Algebraic, lattice=, and closure-independence. According
to Marczewski, a subset M of algebra 4 is called an independent subset
of algebra A if and only if any A4 -valuation f of M can be extended to
a homomorphism ¢ of subalgebra CII into A; this is a special case of
the notion of independence as dealt with in [10] § 3.

THEOREM 5. Let M be an independent subset of algebra A, let My, M,
be subsets of M. Then

U AM, =0,

ce ;
ciu~Culs g
My~nd, 9.

| =C(M,~ I if

Proof. An arbitrary element ¢e C M, ~ C M, may be represented
in the form

¢ =g(a} aelM;)="n(b| be )
where g and b are algebraic operations of types 3, and M,, respectively (°).

In case MM, ~ M,=@, ¢ is constant, hence ¢ ¢ . In fact, let us consider
a sequence of arbitrary elements x,e¢ A (a ¢ M;). There is a homomor-

(%) In [7]and[8], the elements of D or C@, réspectively, have been called neutral
(with respect to closure), whereas Marczewski [4], [5] calls the elements of ¢ algebraic
constants.

(%) Cf. [10] theorem 5, corollary 1; also Marczewski [5] § 1.3 (ii).

icm®
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phism ¢ of subalgebra C X into 4 such that g(a) =z, for al a e 30y,
@(b) =D for all b e M,. We obtain

9{za) ae M) =glpla)| aeM) =glg(al aedly)) =eh(b] bell,)
=h{p(b)| bell) =n(b| bell,)=c.

In case M, ~ M, +# @, there is a homomorphism ¢ of C3I into A such
that @(a)e My, ~ DM, for all ae M, ¢(b) =0b for all be I,. The same
caleulation as above delivers ¢ = g(p(a)| a e M) « C(I; ~ I,). We obtain
CM,~CHM,C C(M, ~ M,); the converse inequality being trivial, even
equality holds.

Let us notice that the inequality holding in the first of the two
cases of (2) cannot generally be strenghtened to an equality. In fact,
if My~ JM,=@, we have

CocCM, ~CHM,CC,

the left-hand equality holding true if M, = @ or M, = @, the right-hand
one if M, # @ and M, @ since ¢ C D C C I, ~ CI, in the latter case (7).
Thus, if @ =C@C 0= D (corollary of theorem 4, case II), then CMyn
~CM, =0 if and only it M, =@ or M, =@, CIM,~CI, = C if and
only if M, # @ and M, # @. But for all other cases, we obtain the

COROLLARY (8). Let A be an algebra such that ¢ = C@, let M be an
independent subset of A, then

(3) CHM, ~CHM,=C(I, ~ 1)

for all subsets DM, M, C 1.

The hypothesis C@ = ¢ means that the sets of values of constant
algebraic operations of a certain type L and of type @ respectively are
the same (strengthening the statement of theorem 3); or as Co=¢
is equivalent with € C C@, we may simply say: any value of a constant
algebraic operation of arbitrary type L is the value of a nullary alge-
braic operation. This is the case if and only if there is no constant alge-
braie operation at all (C'= @) or there is at least one nullary fundamental
operation (C@ 3@, i.e. 4 is an algebra “with constant”). As a matter
of fact, this condition is a very weak one. For in the only case it -does
not hold originally (case II as quoted above), we may slightly alter the
algebraic structure of 4 by introducing one single new fundamental

(") Thus, if algebra 4 has an independent subset I of cardinal number | | =2,
then ¢ = D. .

(®) In the case of an algebra with finitary fundamental operations, ef. Marczewski
[5] p. 56 (vi). As Marczewski gives another definition of algebraic closure, the hypo-
thesis C@ = ¢ can be omitted, ef. footnote 9.
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operation, namely the nullary operation corresponding to a certain ele-
ment ee¢ O, thus obtaining an algebra ‘“with constants”, the closure
operator C* of which fulfils condition C*@ = ¢ (¢ having the same
meaning in the original and in the altered algebra) (°).

There is an easy lattice-theoretic interpretation of (3). Instead of
set A, we may consider the family of principal subalgebras C{a} gener-
ated by elements a e /. Then (3) may be written

.
4) D Ciayn 3 Ciad= D Cia,
ay€3; ase My aeMyn My

where X denotes join (sum, compositum) in the complete lattice of sub-
algebras; (4) vepresents a rather strong form of lattice-independence.
This lattice-theoretic property of algebraically independent sets still can
be strengthened, due to

THEOREM 6. (*°) Let A be an algebra of cardinal number |A|# 1;
then an independent clement a is not the value of a constant algebraic
operation.

Here, the independence of element ¢ naturally means the (algebraic)
independence of set {a}.

Proof. Let us assume o to be the value of a constant algebraic
operation % of, let us say, type L. Let 2 be an arbitrary element of A.
There is a homomorphism ¢ of principal subalgebra C{a} into 4 such
that @(a) = . Selecting an arbitrary sequence of type L in A, e.g.
a;, =a (AeL), we obtain

% =q@(a) =op(h(a] A eL)) = bp(a)] AeL) =a,

hence |4| =1, contradicting hypothesis.

In case |A] =1, the conclusion of theorem 6 becomes false, the
only element a ¢4 being independent and at the same time the value
of a constant algebraic operation (all operations on A4 being constant).

(*) The subalgebras in the new sense are precisely the non-empty subalgebras
of the original algebra and O (in [7], the author did the same with D instead of C,
calling the subalgebras in this sense *“ideals”). Marczewski [5] p- 49 always uses closure
C* instead of O, i.e. this restricted notion of subalgebra. The trouble is that even then
we cannot generally define a subalgebra as always being non-empty (as Marczewski
wanted o do [5] p. 49): cf. cases III and IV in the corollary of theorem 4. Moreover,
Marczewski [5] p. 50 has hinted upon the relative character of closure C*, whereas
closure C is of absolute character.

(%) In the case of an algebra with finitary fundamental operations, cf. Marczewski
[56] p- 55 (i). The converse is not generally true: there are “self-dependent” (Nitka [6])
elements which are not algebraic constants, cf. Marczewski [5], p. 55.
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COROLLARY. Let A be an algebra of cardinal number |A| #1; then
g 3
(5) C{a}D0C

for any independent element a e A.

For C{a}D D by definition of D, hence C{a} D C by theorem 4.
But equality would imply @ ¢ ¢ which contradicts theorem 6 (1).

In other words: all principal subalgebras C{a} generated by inde-
pendent elements, in particular by elements of an independent set
MC A (), are different from subalgebra €, which is the zero of the
lattice of all subalgebras in the regular case CO = C.

From “lattice-independence” as laid down in theorem 5 and the
corollary of theorem 6, we immediately derive closure-indepenience:

THEOREM 7. () Let A be an algebra of cardinal number [A]| #1,
then any algebraically independent subset M of A is closure-independent,
ie. @ minimal generating subset of subalgebra CI.

Proof. Let us assume the existence of a proper subset M’ C M
such that C M’ = CM: we find an element a ¢ M—M’, and since a « C{a}
and a e CHM’, we obtain @ C by theorem 5, contradicting theorem 6.

3. Element basis and algebraic operations depending on
all variables. Considering an algebra 4, an independent subset MM,
and an element e CHM, we have a unique coordinate representation
of # in the form @ = h(a| @ e M), where k is an algebraic operation of
type M (¥). Notwithstanding this uniqueness, there might be a proper
subset M,C M such that z e CMy we should obtain another unique
coordinate representation x = ¢(a| @ e M), where g is an algebraic oper-
ation of this smaller type M,. In other words: the first unique coordi-
nate representation # = k(a| a ¢ M) might be redundant, it might con-
tain superflous ‘“variables”.

The question arises: is there a least or at least a minimal subset
M, C M such that z<CM,, and what would be the meaning of the cor-
responding unique coordinate representation?

() As a matter of fact, @ ¢ is equivalent with Cia} = C, hence the corollary
states essentially the same as theorem 6. )

(**) Any subset of an independent set being independent, cf. Marczewski [5] p. 53
(for finitary algebras), J. Schmidt [10] theorem 7.3. ) )

() In the case of an algebra with finitary fundamental operations, cf. ]}Iff,rczewskx
[5] § 2.3 (v) and (vii), the converse not being generally true according to ibid. p. 56.
In the infinitary case, a direct proof (without reference to our theorems 5 and 6) has
been given in [10] theorem 23. . .

(#) [10] theovem 11; this is essentially the original definition of independence
given by Marczewski in [3] and [5].
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Let us consider an operation % (algebraic or not) of type L, let L,
be a subset of L. Then  depends on L, if there are sequences a, b of type
L which do not differ on L—L, (i.e. a(d) = b(4) for all 1 eL—1L;) such
that h(a) 5= h(b); I is independent of, i.e. does not depend on L,, other-
wise. These definitions are frequently used in the special case L, = {4};
then we also say that h depends on or is independent of the ‘i,th var-
iable” (1¥). Let us consider the system J of all subsets L, C L of which
h is independent. It is easy to see that J is an ideal: @ €3J; if LyeJ and
L,CLy, then LyeJ; if Ly, L,e3J, then L, v L, eJ. We call § the inde-
pendence ideal of operation h. There are two extreme special cases: J = {@}
means that & depends on all (its) variables; J = B(L) means that h is
constant.

THEOREM 8. Let 4 be an algebra such that ¢ = CO, let h be an alge-
braic operation of type L on A, (az)ier o Sequence without repetitions of
type L in A. Let its range M, be minimal for the generation of © = h(a,| 1 € L),
ie. v ¢ CU' for all proper subsets M'C M,. Then h depends on every of
its variables.

Proof. Let us assume the existence of an index 4, ¢ L such that
h does not depend on 4,. In case L = {4}, I would be constant, hence
zel, ie. 1eCO by hypothesis, contradicting the minimality of a7,
= {az,} # 0. In case L # {4}, we might define a transformation ¢ of L
onto K = L—{}} which carries A, into A, 5 2y, leaving fixed all other
elements of L. As the sequences (a;)ier and (@ow)ier only differ on the
argument A = J;, by assumption we obtain

& =h(a} AeL)="n(axy Ael),

hence xe CI’, where ' = {a,3 AeL}. But as sequence (a;)ier is
without repetitions (i.e. A—+a, one-one), a; ¢ IM': I’ is a proper subset
of 1M,, again contradicting the minimality of 3/,.

In the special case of an algebra with finitary fundamental oper-
ations, we obtain the

THEOREM 9. (%) Let A be an algebra with finitary fundamental oper-
ations such that C = C@, let M be an arbitrary subset of A. Then any
element z « CAL can be represented in the form x = h(az| A € L), where h is
an algebraic operation of type L depending on every of its variables, (@1)ier
a sequence without repetitions of type L in M. We may choose L = M,,
where My is a finite subset of M, and a; = A for all 2 e L = JM,.

Proof. Due to the finiteness property of closure, there exists a finite
subset F C M such that ze CF, and as in its power set 9 (¥) the minimal

(1) Marczewski [4] p. 611.

(1) Cf. Marczewski [5] § 1.3 (iii).
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condition holds (Tarski’s finiteness criterion), there is a minimal subset
M,CF sueh that 2« CHMy: @ can be represented in the form 2 = 2{a)
1eL), where h is an algebraic operation of type L, (@i)ier a sequence
without repetitions of type L in M, (e.g. we may take L = My, a, = 2)
and therefore in M. By theorem 8, & depends on every of its variables.

The theorem cannot be generalized to arbitrary algebras with in-
finitary fundamental operations, as we shall see later.

Let us still notice that we did not need the algebraic independence
of M, in theorem 8, as will be the case in the converse

TurorEM 10. Let A be an algebra such that € = C@, let & be an
alyebraic operation of type L on A which depends on all its variables, let
(@3)ier, be a sequence without repetitions of type L in A. Let its range I,
be a subset of the independent set M. Then M, 15 the minimum subset of I
for the gemeration of @ =h(a;| Ael), ie. 3, C M for all M C M such
that » e CIM'.

Proof. First, let us assume the existence of a proper subset 1’ C 1/,
such that @ e CI. There would be an index A, e L such that a;, ¢ M'.
Therefore e Cla,| »e K} where K = L— {4}, hence z = g(a,| = ¢ K)
where ¢ is an algebraic operation of type X on 4. Let v be the identical
transformation of K into I, then

Iaz) 2el) =2 =g(a) xcK) = glagl keK)=grrlaa] 1eL).

Hence, ¢, being an algebraic operation of type L as well as By (@1)ien
being a sequence without repetitions in the independent set M, we obtain
I = ¢z by Marczewski’s independence criterion (7). But then 7 does
not depend on Ag; for let (22)iez and (y2)iez be sequences of type L in A
which only differ on 2,, then

R(xa) A eL) = goplaa] AeL) == g(x.| % e K) =gy = eK)
= gep(yal 2 el) =h(ys 2 el),

contradicting hypothesis. Thus, as e CM,, M, is a minimal subset
I C 3 such that e CM’. Bubt then M, even is the minimum of these
subsets M’; for as algebra A is such that ¢ = C@, by (3) we have
weCMHy~ CM' = C(M,~ M), hence My M’ = M,, i.e. My C M.

We call the minimum of sets M’ M such that zeCM' the
element basis for x in M (). By combination of theorems 8 and 10,
we obtain

() Cf. footn. 14. )
(18) For the speeial case of exchange structures, of. MacLane [2] theorem 35,

J. Schmidt [9] p. 243. In the case of absolutely free algebras, Stominiski [11] p. 49:
support.
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THEOREM 11. Let' A be an algebra such that C = C@, let M be an
independent subset of A. Then for an element © e CM, the following prop-
erties are equivalent: i

1. the element basis for x in DM ewists;

2. © can be represented in the form x = h(a| ae M,), where h is an

algebraic operation on A depending on every of ils wariables,
of type M,C M.
Moreover, this representation of x is unique; in particular, M, is the
element basis for » in M (uwnique irredundant coordinate representation).

Proof. 1+2: Let M, be the element basis for  in M; because of
x# e CM,, = can be represented in the form z = h(a| a ¢ M,) where h is
an algebraic operation of type M, in A. But sequence (a)gep, being
without repetitions, its range M, being a minimal set M’ such that
2e CH’, 1 depends on every of its variables according to theorem 8.

2-»1: The algebraic operation % depending on every of its variables,
sequence (a@)qesr being without repetitions, its range M, being a subset
of the independent set M, M, is the element basis for z in M according
to theorem 10. This also proves the uniqueness of M, in this represen-
tation of z. Taking another representation z = g(a| @ ¢ M,), where ¢ is
an algebraic operation (depending on all its variables), we obtain & = ¢
by Marezewski’s independence criterion: the above representation of «
is completely unique.

Let us note that the notion of element basis only depends on the
closure operator C, theorem 11 thus establishing a connection between
algebraic structure and its derived closure.

In many forthcoming cases, it will be useful to have a closely related
closure-theoretic notion: C being an abstract closure operator on set A
and 2¢CH, we call an element ae M indispensable for x in I (¥) if
x ¢ C(M—{a}). We have the purely closure-theoretic

THEOREM 12. Let A be a set, C a dosure operator on A, I a subset
of A. Then for an element @ CH, the following properties arve equivalent:

1. the element basis for x in M exists;

2. 2eCM(x), where M(x) is the set of all elements indispensable
for x in M.

In this case, M (x) is the element basis for x in AL

Proof. If #¢ CBI', where M’ C M, then M () C M’; for if e M —II",
then M' C M —{a}, hence &< C(M —{a}), i.e. a¢ M (x). Thus, if z« C M (),
M () is the element basis for 4 in M. Conversely, let 3, be the element

() Cf. Lowig [1] p. 71. We may conclude that z ¢ C(M’— {a} for all subsets
M’'C M, in particular if x e CI". CL also J. Schmidt 8] p. 34.
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Dbasis for @ in M; because of e CM,, we have M (x) C 3M,. Here equality
holds, for if @ ¢ M —M (x), we obtain « ¢ C(M — {a}), hence M, C M —{a},
ie. aé .

4. Element basis property. As we shall see later, the element
pasis for # in M does rot always exist: x e CHM (z) is not generally true.
It seems natural to study those subsets M such that 2 e CI (») holds
for all x« CM. For sake of shortness of reference, we may define this
purely closure-theoretic property of M as the element basis property.
Again, we have the purely closure-theoretic

THEOREM 13. Let A be a set, C a closure operator on A, M a subset
of A. Then the following properties are equivalent:

1. M has the element basis property;

9. operator C is completely meet-preserving on P (1), d.e.

(6) CNM;=NCM:
teT teT

for any non-empty () family (Mp)er of subsets M:C M (®).

Proof. 1-2: CN M. CN\CHM; is trivial. In ovder to prove the
converse inequality, let us consider an element z () CM,. As T is non-
empty, there is a t, ¢ T, and we have & € C Myy; as My C M, we a-lsq have
z ¢ CM. By hypothesis, there exists the element basis M, for z in M,
and we have M, C M;forall ¢ e T, hence M, C [ M;; because of z e C1M,,
we obtain ¢ C\ My: N CM: CCM M.

2 51: Let M, be the system of all M’ M such that » e Ca’; since
@ « CM, M, is non-empty, hence z ¢ ((CHM' = CN\M': My= M« D,
i.e. M, is the element basis for & in M.

Thus, the element basis property may be considered as a very strong
form of lattice-independence analogous to (4). ‘

Now, there are some special cases in which the algebraically ullde—
pendent subset M of an algebra A has the element basis property. FI:-L‘Sﬁ,
as an immediate consequence of theorems 9 and 11, we have the im-
portant

TuEoREM 14. Let A be an algebra with finitary fundamental opera-
tions such that ¢ = C@, let M be an independent subset of A. Then Mf I?a,s
the element basis property; moreover, the element bases fer o in M are finite,
for all elements x e CHm.

As it is usual to restrict the types L of finitary operations to initial
intervals of natural numbers, I = {1,2,...,n} (n=0,1,2, ...), We may

() T # @; in case T = @, (6) may be considered as true by adequate agreement
about the (velative) intersection of the empty fa.mi.l}f. ) . ) .

(#1) This is a transfinite strengthening of (3) first considered in [9] p. 248 (I). '
10
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give the unique irredundant coordinate representation in the case con-
sidered in theorem 14 as follows:

THEOREM 15. (2) Let A be an algebra with finitary fundamental oper-
ations such that ¢ = C@, let M be an independent subset of A. M may be
totally ordered by an ordering relation <. Then any element v e CM can
be represented in one and only one way in the form x = h(ay, ..., ay) where
ho is an algebraic operation of type L = {1, ..,n} depending on every
of its variables, and @y, ..., an € I, moreover a; < a, <... < ay in the given
total ordering of M.

For the element basis M, of x» in I is totally ordered by the re-
striction of <; therefore, 3, being finite, there is one and only one
order-isomorphism 1—a; from an interval {1,..,n} onto Ji,.

It is not possible to drop the finiteness hypothesis of theorem 14
without introducing other assumptions instead. For instance, there is
the strongest possible independence assumption on IM: M is called an
absolutely independent subset of algebra A if and only if, for any similar
algebra B, any B-valuation f of 3 can be extended to a homomorphism ¢
of subalgebra CM C A into B. It can be shown that in an algebra 4
with the fundamental operations f: (¢eI), of types K;, respectively,
subset M is absolutely independent if and only if the following Gener-
alized Peano Awxioms (*) hold:

P1. for any sequence a of type K; in CIM: fia)¢ M;

P2. for any sequences a and b of types K; and K; in CI:

fia) = f4(b) implies ¢=4j and a="5.

THEOREM 16. (¥) Any absolutely independent subset M of any alge-
bra A has the element basis property.

Proof. According to theorem 12, we have to show that xe C M (x)
for all e CJ{; this will be done by algebraic induction on 2. Inductive
beginning: x ¢ CA (%) for all z ¢ M. In fact, if # ¢ M, then even » e M (z),
i.e. w¢ C(M —{z}) (*): else we should obtain z e M —{x} or z = fia) for
some fundamental operation f; and some sequence a of type K; in
C(M —{z}) (*6), the first being impossible, the latter contradicting P1.

() Cf. Marczewski [5] § 2.2 (iv); Marczewski even uses this unique coordinate
representation for the characterization of independent subsets.

() Lowig [1] p. 62 (2.1) and (2.2), Stomisiski [11] p. 21 (L.a,) and (L.ay).

(#) Lowig [1] theorem 3.6. Slomiriski [11] p. 49 tacitly assumes this theorem
for granted.

(%) In other words: we show that an absolutely independent subset M (in fact,
we only need Pl) is closure-independent, without the hypothesis |4] # 1 as in
theorem 7.

(*) General conclusion: x ¢« CM implies % ¢ M or = = f,(a) where fi is a funda-
mental operation and a a sequence in CM, of the same type as f,.
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Inductive hypothesis: #, e CM (x,) for some sequence of elements z, e CHM
(% e Ky); inductive conclusion: ¢ C M (%), where # = fi(z,]| » ¢ Ks). In fact,
for any x e K;, we obtain M(z,) C Mz). For if a e M —2M(2), we have
2 eC(M—{a}), hence e M—{a} or & = fi(y.] »e K;) for some funda-
mental operation f; and elements y, e C(M — {a}); whereas the first again
contradicts P1, the second delivers ¢ = j and @, = ¥, ¢ C(M —{a}) accord-
ing to P2 (*"), hence a ¢ M(z,) (xeK;). Thus we have CM(x,)C CHM(2),
hence by induetive hypothesis z, e CM (2), hence z e CM ().

There is a well-known close connection between absolutely free alge-
bras, i.e. algebras A with a (necessarily unique) absolutely independent
generating subset M, and formal languages: M consists of the “variables”,
A of all “formulas”, the element basis of formula & then consisting of
all variables “occurring in 2.

5, A counter-example. In an algebra A with infinitary funda-
mental operations f;, an independent subset I/ need not have the ele-
ment basis property. The counter-example we are going to construct
is related to the fact that there ave infinitary operations i not depending
on any variable but nevertheless non-constant: the independence ideal
of 1 contains all one-element and therefore all finite subsets of the index
set L, but does not coincide with the ideal P(L) of all subsets of L.
The most simple example of such operation & is given by an arbitrary
(not too trivial) Fréchet-Urysohn limit-space A; selecting a certain ele-
ment a ¢ 4, we may define i of type L = N = set of all natural num-
bers by ’

lima, if (%)~ is convergent,
hiz,| veN)=1*>
a if  (@)en is divergent.
In order to prepare our counter-example, we state the following counter-
part to theorem 10:

THEOREM 17. Let b be a non-constant algebraic operation of type L
on algebra A which does not depend on any of its variables, let (ax)zer be
a sequence without repetitions of type L in A, let its range M be an inde-
pendent subset of A. Then the element & = h(as] 2eL) (which belongs
to CM) does not possess an element basis in M. )

Proof. Let us consider an arbitrary subset M,C M such that
s eCM,. Let K be the set of all xeL such that a,e My then M,
= {a, #eK)}: there is an algebraic operation g of type K on A such
that & = g(a,] » e K). Let v be the identical transformation of K into L.
As in the proof of theorem 10, we obtain h = g1, 1.€.

el Ael) = g(@] %K)

(*") In fact, we only need a yelatively weak part of P2.
10*
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for any sequence (21).cr of type L in A. Therefore, since h is non-con-
stant and does not depend on any of its variables, so it is with ¢. One
concludes that the type K of g is infinite, in particular, K contains two
different elements x, and »,. We define a transformation o of K onto
K — {x,} which carries x, into #;, leaving fixed all other elements of K.
As in the proof of theorem 8 (), we obtain

2 = g(tpw| zeK),

hence # € CM', where M’ = {ay| # € K} = My—{a,} is a proper subset
of M, M, is not the element basis for » in M.

We are now ready to construct our counter-example. Let us con-
sider the class U of all algebras A with precisely one fundamental oper-
ation, this fundamental operation being of type N (set of natural num-
bers) and not depending on any of its variables. As is easily shown, the
class A is a closed class in the usual sense that direct products, subalge-
bras, and homomorphic images of algebras belonging to % again belong
to U; moreover, A is non-trivial in the sense that A contains at least one
algebra of more than one element. Therefore, as is well known, there
is an algebra 4 U which is A-freely generated by N: NC 4, even
CN = A, moreover N is an A-independent subset of A, i.e. for any alge-
bra B e, any B-valuation § of & can De extended to a homomorphism
¢ of CN (= 4) into- B. The fundamental operation f of 4, which does
not depend on any of its variables, is non-constant. In fact, there is
& countable algebra B <%, the fundamental operation g of which is non-
constant (e.g. take the algebra of rational numbers with the ordinary
limit-operation extended with the help of 0 as selected element); there
is a mapping f of N onto B, which may be extended to a homomor-
phism ¢ of A onto B: as ¢ is non-constant, so is f. Let us consider the
sequence without repetitions (v),enx, the range N of which is an inde-
pendent subset of algebra A. According to theorem 17, the element
% = f(v| » e« N) does not possess an element basis in ¥: N does not have
the element basis property.
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