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Proof. It is completely the same as in the case of u = 0, which i
classical and well known ([4], p. 113), whence omitted.

The above proposition had been given by Parovicenko in [8].

THEOREM 8. If X is an w, metric space and is compact (in the sense
of [9]), then X has a basis of power <s,., whence is bicompact (in the sense
of [9)).

Proof. By Th. 3, X is a (U)g,-space. Since X is compact, every
subset X' of power =x, has in X a contact point of order >2 (p, being
a contact point of X of order >2 means that for every neighbourhood
V(po) of p, the set X-V(p,) contains abt least two points of X, [10]), then
from Theorem of [10],} X has a basis of power <x,. Then Th. 8 follows
from Lemma 2 of [10] immediately.

Recalling Cor. 1 of Th. 6, we have the following

THEEOREM 9. For a Hausdorff w,-additive compact (in the sense of [9n
space to be w,-metrisable, it is necessary and sufficient that it have a basis
of power <.

Proof. Sufficiency. Follows from Th. 6 immediately.

Necessity. Follows from Th. 8 immediately.

The case u=0 of this theorem is the well-know second met-
risation theorem of P. Urysohn.

The author cordially thanks for the criticism and corrections made
the reviewier.

References

[11 L. W. Cohen and C. Goffman, 4 theory of transfinite convergence, Trans.
Amer. Math. Soc. 66 (1949), pp. 65-74.

[21 — ZThe theory of ordered Abelian groups, ibidem 67 (1949), pp. 310-319.

[3]1 F. Hausdortf, Grundeiige der Mengenlehre, Leipzig 1914.

[4] J. L. Kelley, General topology, New York 1955. ’

[5]1 8. Mréwlka, On almost metric spaces, Bull. Acad. Pol. Sei., CL III, 5.2 (1957).
pp. 122-127.

[6] — Remark on locally finite systems, ibidem 5.2 (1957), pp. 129-132.

[7] — A necessary and sufficient condition for m-almost melrisability, ibidem 5.6
(1957), pp. 627-629.

[8] 1. U. ITaposunenxo, loxnams: Axaz. Hayx CCCP 115 (1957), pp. 866-868.

[9] R. Bikorski, Remarks on some topological spaces of high power, Fund. Math.
37 (1950), pp. 125-136. .

[10] Wang Shu-tang, On e theorem for the uniform spaces, Sei. Record, New
Series, 2.10 (1958), pp. 338-342.

NORTHWESTERN UNIVERSITY
SIAN, CHINA

Regu par la Rédaction le 20. 8. 1962

©

icm

On lattice-ordered groups

by

B. Banaschewski (Hamilton, Ontario)

Introduction. We shall be concerned with a lattice-ordered
group @, written additively though not necessarily abelian, with the
set P of its positive (i.e. » > 0) elements, and with homomorphisms,
epimorphisms, etc. from G to other such groups (mainly totally ordered
ones and their products) which are always understood to be non-trivial,
and lattice-ordered group homomorphisms, i.e. meet and join as well
as sum preserving. If K C G is an l-ideal in G then G/K denotes the
quotient group as lattice ordered group, i.e. with the partial ordering
defined by the image of P under the natural mapping ¢—G/K, and
we recall that for lattice-ordered groups and their homomorphisms the
First Isomorphism Theorem holds, i.e. if f: GG is an epimorphism
and f = ¢ o h its factorization into the natural mapping A: G —G/Ker(f)
and the induced mapping ¢g: G/Ker(f) G  then 7 is an epimorphism
and ¢ an isomorphism (*). Our main object is to study the epimorphisms
from G to totally ordered groups 7', to obtain characterizing conditions
for the existence of “sufficiently many” of these and hence of embeddings
of @ into products of such 7, and to congider particular types of such
embeddings. Some of our results can be regarded as an extension of those
of Ribenboim [6] who restricted himself to the abelian case. The possibility
of this extension is suggested by Lorenzen’s theorem on regular lattice
ordered groups [5] for which a proof is given in the present setting.
The methods used here differ from the approach in [5] or in [6], the latter
since we are able to dispense with Jaffard’s notion of filet [4] in the proof
of Proposition 3.

Particular subsets of P which will be of interest in the following are:

(i) the filters in P: the non-void subsets F C P with # Ay e F for
any x,y «F and x ¢ F for any >y where y ¢F;

(ii) the prime filters (3 in P: the proper filters ¢ in P for which
®+yeQ, » and y in P, implies <@ or ¥ €Q;

(*) Terminology as in [2] unless stated otherwise.

(*) We use the term “prime” with respect to the group operation here rather
than the lattice operation of forming the join. However, a prime filter in this sense
is also prime with respect to join since z+y >z Vy.
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(iii) the normal fillers in P: the filters F in P for which a4+F—~aCF
for each a ¢ G.

It will turn out that the normal prime filters in P play a key roéle
in the study of the questions we are concerned with.

1. Epimorphisms to totally ordered groups. Two epimor-
phisms f;: GG and fi: @G, will be called associated iff there exists
an isomorphism g: G, —>@, such that gof, =f,. The relation of being
associated is an equivalence on the class of all epimorphisms f: G —>&,
and the resulting equivalence classes correspond, of course, one-to-one
to the I-ideals of @. However, in the case of epimorphisms to totally
ordered groups, there are other entities within @ which are in one-to-one
correspondence with these equivalence classes and which may be pre-
ferable for eertain purposes, namely the normal prime filters in P. This
is the content of

PROPOSITION 1. Fer any homomorphism f of @ into a totally ordered
group T, Q(f) = {zlw e P, f(z) > 0} is a normal prime filter and Ker(f)
= {xlx e G, |z| € Q(f)}. Conwersely, for any normal prime filter @ in P,
there exists an epimorphism f from @ into o totally ordered group such that
Q = Q(f), namely the natural homomorphism G — QK where K is the l-ideal
{r| ze @, |x|¢ @)

Proof. That @(f) (which is non-empty by the exclusion of trivial
homomorphisms) is a normal prime filter follows readily from the general
observation that for any homomorphism h: -G and any such filter @’
in P, AYQ') ~n P is such a filter in P, and the fact that in a totally
ordered group the strictly positive elements (i.e. z > 0) eonstitute a nor-
mal prime filter.

Next, if x e Ker(f) then also f(|z|) = 0 and hence |2| € @ (f); conversely,
if jx|e Q(f) for x e G then f(|»]) = 0 and therefore also f(zx) = 0. Hence
Ker(f) = {z|lz <@, jx]¢Q (1)}

Now, consider any normal prime filter ¢ in P and the set K = {z| 2z ¢ G,
|z} ¢ @} determined by it. From |—z| = |#| it is clear that —x ¢ K when-
ever x ¢ K. To see that also x+y ¢ K for any =, y ¢ K, one observes first
that z+y <|x|+ly| and —y—2 < |y|+|z|, and hence |[z+y| = (x+y) VvV
V(—y—x) < o]+ |y +1y| +|=|; since @ is a prime filter, the last inequality
shows that |z|eQ or |yl e@ if |x+y|e@. It follows that K+K C K,
and thus XK is a subgroup of &. The normality of K is a consequence
of the normality of @ and the fact that |¢ +z—a| = a +|z|—a for any
a, ve@ Finally, if |z|e@ and |y] < |z| then, clearly, |y|¢@Q. In all,
this establishes that K is an I-ideal of @, properly contained in &
since @ #= @.

It remains to be shown that G* = G/K is totally ordered. Denoting
by «* the image of z ¢ @ under the natural homomorphism G--G*, let

On lattice-ordered groups 115

x* ¥ 0* In particular, one then has z¢ K and thus || e Q. Now, from
|z] = (2 v 0) +((—m) v 0) and the primeness of § it follows that # v 0 eQ
or.(—x) v 0 € Q. Since (v 0) A {(—a) v 0) = 0, the former would imply
(=) v 0 ¢ K and hence #* = ((z v 0)—((—a) v 0))" = (@ v 0)* = 0* which
contradiets the hypothesis. Therefore, onehas {(—z) v 0 « @, hencez v 0 ¢ K,
and finally —o* = (—&)* = ((—@) v 0—(z v 0))" = ((—2) v O)* > 0* This
shows that o* % 0* implies —a* > 0%, i.e. G* is totally ovdered.

The relation between epimorphisms f: ¢ -7 and filters in P stated
in Proposition 1 permits some further remarks about such epimorphisms.
Let f: G—T be called composite if there exist epimorphisms f': G—T"
and y: T"—T with f = gof' and Ker(g) # 0, and irreducible otherwise.
Then, one has the following characterization of irreducibility:

COROLLARY 1. An epimorphism f: G—T s drreducible iff Q(f) is
a maximal normal prime filter in P.

Proof. If f: G—1T' is composite and f = gof as above, then Ker(f')
C Xer(f) since Ker(g) # 0, and thus @(f) C@Q(f), i-e. @(f) not a maximal
normal prime filter in P. Conversely, if there does exist a normal prime
filter @ D Q(f) in P for an epimorphism f: G—T then f induces a map-
ping ¢: T"—T on the totally ordered group 7' = G/K for K= {z|z @,
|z} ¢ @}, in view of K C Ker(f), which is readily seen to be an epimor-
phism with non-zero kernel, and f = gof where f': @ —>T" is the natural
homomorphism. Hence, f is composite.

Another consequence of Proposition 1 is the following factorization
statement:

COROLLARY 2. For any epimorphism f: G—1' there exists an irre-
ducible epimorphism foo G—>Ty and an epimorphism fi: To—T such that
f=tficfo- .

Proof. The set of all normal prime filters in P is inductive.

Of course, the f; in Corollary 2 will be an isomorphism iff f itself
18 irreducible. .

Remark. One may wonder whether the normal prime filters in P
might not all be maximal, since the significance of the above corollaries
hinges on this question. However, one can readily obtain examples which
show this not to be the case. Let & be totally ordered abelian and nomn-
archimedean and consider any a,b e @ such that 0 <a €D (i.e. na <
for all n = 1,2, ...). Then, the set @ of all # > a in G is non-void, is
a normal filter in P, and furthermore prime, for if r < na and y < me
for z and y in P with suitable » and m then # +y < (n+m)a, and hence
z,y ¢ Q implies x+y ¢ Q. Since Q C P and P itself is a normal prime
filter,  is not maximal. It might be added that there is a fairly obvious
relation between the orders of magnitude in @ and the prime filters in P
in this case [1].
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2. Subgroups of products of totally ordered groups. We
now consider the product [] T, of a family (T.)eer of totally ordered
groups, i.e. the group of all functions u: I JT, with #(a)e T, under
funetional addition and the partial order given as usual by the condition
that « > 0 iff %(a) > 0 for all a eI, and assume throughout this section
that G is a full subgroup of []T., i.e. a subgroup (and sublattice!) such
that at each a eI the u ¢ G take on all available values in T,. With each
2 e @ we associate the subset S(u) = {«| u(a) 5% 0} of I. Since @ is full,
it follows that I = {JS(u) (v € @), and the fact that the T, are totally
ovdered implies that §(u A v) = S(u) ~ 8(v) and S(u v 2) = 8(u) v 8(v)
for any u,v >0 in G. Since u ¢ @ implies |u| ¢ & and 8(u) = S(jul), the
sets S(u), e @, therefore form the basis of a topology O in I. If the
S(u), ve @ are all closed in this topology, besides being open by defi-
nition, then @ will be called zero-dimensional. We are interested here
in obtaining a criterion for ¢ to have this property.

PROPOSITION 2. G is zero-dimensional iff, for each o el, the normal
prime filter Qo = {ulu e P, u(a)> 0} in P is an ultrafilier.

Proof. First, let & be zero-dimensional and take any w e P such
that % ¢ Q,, i.e. u(a) = 0. Then, a ¢ §(u) implies by hypothesis the exist-
ence of a v e @ such that ae S(») and S(v) ~ S(u) =0. Of course, v =0
may be assumed since S(v) = S(|v]), and this shows that v e @, with
u A v =0. It follows that @, is an ultrafilter.

Conversely, let @, be an ultrafilter for some particular ael and
take any « e P such that a¢ S{«). This means #(a) = 0 and hence % ¢ Q.
By hypothesis, it then follows that v A v = 0 for some v € @,, and one
therefore has that a e S(v) and S{u)~S(v) = 0. Hence, for any ael
whose @, is an ultrafilter, if a¢ S(«) then « does not belong to the clo-
sure of S (u), either. Now, if all Q, are ultrafilters, this latter statement
holds for all ael, and then each S(u), % € G, is closed in the topology ©.

The following example shows that a large subgroup of a product [] T,
need not be zero-dimensional. Let G be the additive group of all conti-
nuous real functions on a completely regular connected Hausdorff space E,
partially ordered as usual. Then, & iy a large subgroup of [] T, (x<E)
where T, = R, the additive group of reals in its natural order. For each
% e @, S(u) is open and the topology of E is generated by these sets;
hence no S(u) distinet from 0 and ¥ is also closed since ¥ is connected.
Thus, G is not a zero-dimensional subgroup of [] T,. The spaces B for
which G s a zero-dimensional subgroup of [T, constitute a well-known
class: they are the P-spaces of [3]. Moreover, if E iz chogen suitably
(e.g. B = R) then each = ¢F belongs to the boundary of some S(u),
% e @, and in this case, none of the normal prime filters @, is an ultra-
filter in P. In actual fact, in this case the wultrafilters in P can be seen
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to correspond to the maximal filters M in the lattice of all open sets;
for any such M, {u| S(u)e M, u > 0} is an ultrafilter in P, and all ultra-
filters in P are of this kind.

. 3. Realizations by totally ordered groups. A monomorphism
f of G into the product of a family (7T.).c; of totally ordered groups for
which the image f(G) is a large subgroup of [[ 7. will be called a real-
ization of G by totally ordered groups or, simply, a realization of G. If (&)
is, moreover, a zero-dimensional subgroup of [] 7T, then the realization
f will be referred to as zero-dimensional. According to Ribenboim [6],
G does have zero-dimensional realizations if it is abelian; to what extent
this remains true for arbitrary G will be settled by (*) ’

PROPOSITION 3. The following conditions are equivalent:
(i) G has a zero-dimensional realization.
(il) G has a realization.
(iii) No strictly positive element of G is disjownt from any of its con-
jugates.
(iv) Each ultrafilter in P is normal.

Proof. (i)=(ii) is obvious.

(ii) = (iii). By hypothesis, [Ker(f) = 0 where f ranges over all
homomorphisms f: G->T, or perhaps better over a representative set
for the different classes of associated epimorphisms @—>T. Hence P — {0}
= |J Q(f) where the @(f) are normal prime filters in P by Proposition 1.
It follows from this that each non-zero a e P belongs to a normal proper
filter in P and therefore cannot be disjoint from any x4 a—a.

(iii) =(iv). Let U be any ultrafilter in P and suppose that # +a—z¢ U
for some a e U and x ¢ . Since U is an ultrafilter and P a distributive
lattice, there then exists a b ¢ U such that (x+a—x) A b = 0. Now con-
sider ¢ = a A b which belongs to U and hence is not 0; ¢ < a implies
z+ec—s<ox+a—wx and from ¢<b one then obtains (z-+e¢—a) A ¢
<(@+a—x) A b =0, hence (¥ +¢—a) A ¢ = 0. This contradicts (iii).

(iv)==(i). Apart from being normal by hypothesis, any ultrafilter U
in P is also prime: if @,y ¢« P do not belong to U then # A a =y A b =0
for suitable @¢,be U, and for ¢ =a A be U one has (x+y) A ec=0 [2],
i.e. z+y¢ U. Now, let 2 be the set of all ultrafilters in P, and for each
U e consider the l-ideal K(U)= {#wlze@, |#|¢ U} and the natural
homomorphism hy: G ->T(U) = G/E(U). Then NE(U)(U ef) =0 since
each non-zero @ ¢ P belongs to the proper filter [, —] in P and thus
to some ultrafilter. It follows that the mapping h: G =[] T(U) (U Q)

(®) The equivalence (ii)<-(iii) is due to Lorenzen [5] who calls a lattice-ordered
group regular iff it satisfies (iii).

Fundamenta Mathematicae, T. LV 9
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defined by A(z) = (hU(-:c))Um is a realization, and since U = {z|w ¢ P,
hy(x) > 0}, h is zero-dimensional by Proposition 2.

In analogy to the definitions in Section 1, let a realization f: @[] T,
(a e I) be called composite if there exists a realization f': @—=[]T: (a < I)
and a family of epimorphisms ¢,: T5—7T, such that g = Il g. has non-zero
kernel and f = g of', and rreducible otherwise. Then, the following char-
acterization of irreducibility is a ready consequence of Proposition 3.

COROLLARY 1. A realization f: G—[] T, is irreducible iff it is zero-
dimensional.

Proof. Let f,: G—T, be the epimorphism determined by f and the
projection of the produet to 7,. It is then clear that f is irreducible iff
each f, is. By Corollary 1 of Proposition 1 this holds iff each §(f.) is
a maximal normal prime filter, and since G has a realization here this
holds, by Proposition 3, iff each Q(f,) is an ultrafilter. The assertion
now follows from Proposition 2.

Another consequence of Proposition 3 is:

COROLLARY 2. Any realization of G can be factored into an irreducible
realization followed by a suitable epimorphism.

Proof. With the same notations as above, let f, = g.ofz be a de-
composition of f, such that fi: G—=T, is an irreducible epimorphism.
Then, f =g of where f is the realization @z—(fa)),., and ¢ the epi-
morphism and []g., it follows from our previous results that f is
irreducible.

Finally, the proof of Proposition 3 leads to the following observation:

COROLLARY 3. If G has any realizations then h: G—[[T(U) (U e Q)
is universal in the sense that for any realization f of G, f=goh with
suitable ¢.

Proof. The epimorphism g can be described as first projecting
[1T(T) (UeQ) onto a suitable partial product and then mapping the
factors of this onto the factors which occur in the product for the re-

presentation f. Incidentally, % is, of course, essentially characterized

by this property of universality.

We close this section with an example of a lattice-ordered group
without realizations. Let H be the group of all increasing mappings
of the real unit interval I onto itself, under functional composition
(written multiplicatively) with « ¢ H taken as positive iff w(z) > x for
all eI, ie. u>e (¢ the identity function) in the usual partial order
of real-valued functions [2]. Now, let we<H be given by the straight
line segments in IxI from (0,0) to (}, %) and from (%, 1) to (1,1),
and take any v ¢ H such that X = [0, ][4, 1] is its set fo fixed points
and e <v<w, eg. v given by the straight line segments from (0, 0)
to (},1) and (1, %) to (1,1) and suitably low circular arc above the
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straight line segment from (4, }) to (4, §). It follows that «(X) = [0, §]v
u (%), 1], hence I = u(X)u X, and thus also I =X v uX). Now,
take any a el. If a € X then a4 = v(a) and hence u(a) = (uv)(a); on the
other hand, if ¢ ¢ 4=3(X) then u(a) e X and w(a) = (vu)(a). The function v
being positive, one always has’ u(e) < (uv){a), (vu)(a) and what has just
been shown therefore amounts to the fact that «(a) is always the
smaller one of (uw)(a) and (vu)(a), i.e. w = (uv) A (vu). This implies that
e=v A (wtou) although v >e.

4. Filets. A comparison of our method of proving Proposition 3
with the technique used by Ribenboim [6] in the abelian case can be
obtained by making a few remarks about filets. Since everything needed
for this purpose is purely lattice theoretic, i.e. independent of the pre-
sence of the group operation, we shall consider first any arbitrary distri-
butive lattice I with least element o (in place of P). If D(a) = {z| w e L,
aAx=0) for each aeL then D(a Vv b)= D(a) ~D(b), and D(a A b)
is the smallest D (@) D D(a) v D(b). Therefore, the set of all [a] = {z| D(x)
= D(a)}, i.e. of the equivalence classes with respect to the equivalence
relation D(z) = D(y), can by partially ordered by setting [a] < [b] iff
D{a)D D(b) and is a lattice with respect to this ordering, the lattice § (L)
of filets of L, such that @: ©—[x] is a lattice epimorphism from L to §(L).
F(L) is distributive, has [0] as its least element, and is disjunctive, i.e. if
[a] < [b] then there exists a non-zero [¢] < [b] disjoint from [e]; in ad-
dition we remark that any lattice homomorphism f of L onto a disjunctive
distributive lattice Z' which maps only 0 to 0 induces a lattice isomor-
phism ¢: §(L)—=L' such that f =go®.

& induces a one-lo-one correspondence between the wulirafillers in L
and those in §(L). First, one observes that for any ultrafilber U in L,
ae U implies [a] C U since be[a] and b¢ U would lead to b Az =0
for some #e¢ U and hence to a A z =0 by D(b) = D(a). Now, &(U)
is clearly a filter in F(L); moreover, [a]¢ ®(U) means [a]~U =@ and

. hence a¢ U, which implies a A =0 for some zeU and therefore

[a] A [&] = [0]. This shows that @ (T} is an ultrafilter, and from U= U[a]
(a e U) it follows that U—~®(U) is one-to-one. It remains to show that
this correspondence is onto. If BCF(L) is any ultrafilter in §(L), then
@YD) is a filter in L, proper since B is proper, and for any ultrafilter
UD®(B) in L one has #(U) I B and therefore &(U) = B.

As an immediate consequence one sees that the collections of sub-
sets (| w e L, x ¢ U} and {o| x ¢ L, [#]¢ B} of L, U ranging-over the ultra-
filters of L and B over those of § (L), are the same. For the lattice-ordered
group @, this shows that the family (T(0))y., of totally ordered groups
used in the previous section is essentially identical with the family of
totally ordered groups employed in [5].

g%
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In order to obtain some information about the effect of a realization
of the group & on its lattice of filets (meaning §(P)), we again consider
first the lattice L (as above). If 4 is any set of proper filters in L, we
shall eall the topology on 4 generated by the sets d(a) = {F|a e F e A}
the natural topology on 4, and denote the associated closure operator
by I'. Clearly, the restriction of the natural topology on the set ¥ of all
proper filters in L to any 4 C ¥ is the natural topology on 4. A subset
AC W is dense (in W) iff L—{0} = F (Fed).

For any dense subset A of ¥, the sets A(a) (a eL) are closed in A,
besides being open by definition, iff each member of A is an wlirafilter.
Let U e 4 be an ultrafilter and a € L. Then U ¢ 4(a) implies that a A z =0
for some 2 ¢ U, and hence U e A(x) and 4 (z) ~ 4(a) = O; thus if Ue 4(a)
then also U ¢ I'4(a). Therefore, if all members of 4 are ultrafilters then
all A(a) are closed in 4. Conversely, assume that ¥ ¢ 4 is not maximal
and take a e L such that a¢ F but a A o 5= 0 for all x ¢« F. Then 4(a) ~
~d(z) = 4(a A 2) # O, the latter since 4 is dense, for all z ¢ F; thus
F belongs to the closure of 4(a) in A4 but not to 4(a), i.e. 4(a) is not
closed.

For any dense set A consisting of prime filters (%), the relation 0:
[#] >T'4 (x) is a one-to-ome join preserving mapping from F(L) to P(4).
Since 4 is dense, one has CD(a) = {#|a A @ £ 0} = | F(F € A(a)). Hence
D(a)C D(b) implies | JF(F e 4(D)) C UF(F ed(a)), and this leads to
TAD)C I'd(a) since I'd{z)= (G| Gecd, GC UF(Fed(n)). Al steps
being reversible, one therefore has that [b] < [a] iff I'4(b) C I'4 (a). This
proves that 6 is, in fact, a mapping from F (L) to B(4), one-to-one and
order preserving. Concerning joins, one has 6([a] v [b]) = 6([a v b]
= 4(a v D), and since 4 consists only of prime filters, one has A{a v b)
= 4(a) v A(b) and therefore also 8([a] v [b]) = 6([a]) v O([D]).

Combining the last two remarks, one now obtains: For any dense
set A comsisting of wultrafilters, the correspondence z—>A(x) is a lattice
monomorphism from §(L) into P(4).

We now return to the lattice ordered group G. If f: G—[[T, (ael) '

is a realization of ¢ then the set I is in an obvious correspondence (not
necessarily one-to-one) with a dense set 4 of prime filters in P such that
the natural topology on 4 corresponds to the topology determined by
F(@) on I as described in Section 2. Denoting now by S(a) the subset
of I consisting of those « for which f(a) has non-zero value and by I’
the closure operator in the given topology on I, one has, as an immediate
consequence from the above lattice theoretic considerations, the following
generalization of Lemma 1 of [6]:

(*) In the absence of other operations, “prime” here refers to the join in the
lattice.
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ProPOSITION 4. For any realization G—]] T, (a € I), the correspondence
[2]-+T'8(x) is a one-to-one join preserving mapping from the lattice of filets
of G to B(I); in particular, if the realization is zero-dimensional this cor-
respondence reduces to x—S(z) and is a lattice MOROMOTPhism.

5. Complete lattice-ordered groups. We now assume that the
lattice-ordered group & under consideration is complete. As is well known,
G is then abelian [2]; hence all prime filters in P, and in particular the
ultrafilters, are normal and G possesses realizations. The completeness
of @ has certain interesting consequences for the epimorphisms f: G —T,
and, analogously, for the realizations of & which we shall investigate
in this section.

In the following, a~b will stand for D(a) = D(b) where a, b e P.

LEMMA. For any a, beP, if a <D then b has a unique sum decompo-
sition b =u-4v with w and v in P, u~a and uw A v =0.

Proof. The set {#| # < b, x~a} is non-void and bounded and hence
has a supremum which will be denoted by . From « > o it follows that
% Ay =0 implies a A ¥y =0 for any y ¢ P. Conversely, if a A y = 0 for
yeP then w Ay =9y A Vo(a~z<b) =V (y A 2)la~z<b) =0 by the
infinite distributivity laws which hold in & [2]. Therefore, one has u~a.
Now, » < b implies that b = %-+v with » ¢ P. In order to see that
% A v =0, consider u -+ (u A v). Clearly, # + (% A v)~u, and by u+ (% A )
<b and the resulting %+ (u A v)~a one has u-+(u A v) <u; hence
%A v=0. As to the uniqueness of this decomposition, let b = z+y
with #~a and # A y = 0 for any #,y ¢ P. By definition of 4 one has
o < u, and by x~wu also u A y = 0; from b = 2+y = & v ¢ it now follows
that 4 =4 A z <w, and thus v =2 and v=y.

We remark that, as a consequence of this lemma, the lattice of filets
of @ is relatively complemented and hence a Boolean lattice (without
unit, though).

PRrOPOSITION 5. FHach prime filter in P s contained in exactly one
ultrafilter.

Proof. Let § be any prime filter in P, U any ultrafilter contain-
ing @, and @* = {x| x~a for some ae@}. From the previous section
it is clear that @* C U. Now, for any b e U, take an arbitrary ¢ ¢ @ and
consider the decomposition ¢ =w-+v where u~bA ¢, uAv=0 and
%, v e P. Then it follows from b Ace U and (b A ¢) A v=0 that v¢ @,
and hence u ¢ since @ is prime. Therefore, one also has b v u ¢ @, and
since b A 2z =0 implies bAc)Az=0, thus uA2z=0 and finally
(b v u) A & =0 one obtains b~b v u, i.e. b e @* This proves that U = @*;
hence Q* is an ultrafilter, and thus the only ultrafilter containing @.

As an immediate consequence of this proposition one now has the
following
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COROLLARY. If f is any epimorphism from G to a lotally ordered group,
or any realization of G then the decomposition f = f, o f, where f, is irre-
ducible and f, an epimorphism s essentially unique.

Remark. Proposition 5 is closely related to the fact that in certain
integral domains, e.g. the ring of entire functions on the complex plane,
each prime ideal is contained in exactly one maximal ideal [1].

6. Concluding remarks. In view of Proposition 1, the lattice-
ordered group G has no realization iff the union W of all normal prime
filters in P is smaller than P—{0}; K, = {x| <@, |z] ¢ W} is then the
1-ideal of G consisting of all those elements of & which vanish under
every homomorphism G—T, and G/E, is the largest quotient group
of ¢ which does have realizations. This does not, however, describe TV
and K, internally in terms of the elements of @, and it might be of
interest to have a characterization of this latter kind. [t is clear that
W consists of elements a ¢ @ such that no (z;+a—a;) A ... A (Tp+a—ay)
(e € G) can be 0, but whether, say, W 4s the set of these elements remains
an open gnestion.

Another problem which arises naturally here is that of the existence
of realizations G¢—[]T, where all T, are archimedean. It is easy to see,
for an epimorphism f: G =T, that T is archimedean iff Q(f) is a minimal
normal prime filter, and hence G has realizations of the said type iff
P—{0} is the union of all minimal normal prime filters in P. Again,
it seems desirable to have an alternative condition in terms of the ele-
ments of &, such as Proposition 3 provides for the existence of realizations
in general.

Finally, we remark that the present approach to realizations of lattice-
ordered groups might also be useful for the study of (analogously defined)
realizations of lattice-ordered rings.
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Some properties of algebraically independent sets
in algebras with infinitary operations
by
J. Schmidt (Bonn)

The purpose of this paper is to continue the study of independence
in algebras with infinitary operations as begun in [10]; in particular,
to generalize some results of Marczewski [5] on independent subsets
of finitary algebras. In Section 1, we discuss some notions of “neutral”
or “singular” elements which are actually different as is shown by ex-
amples; the resulting necessary distinction represents the reason for some
small complication occwring in the following sections. In Seetion 2,
Marczewski’s results on the relations between algebraic, lattice, and
closure-independence are generalized (the proofs using the technique
of algebraic operations here instead of Marczewski’s technique of trans-
formations of variables). In Section 3, the fundamental notion of element
basis is introduced in general, only two special cases having been con-
sidered hitherto: one in Steinitz-Van Der Waerden exchange structures
(MacLane [2], J. Schmidt [9]), the other in absolutely free algebras
(Lowig [1], Stominski [11]); the interrelations ave studied between the
existence of the element basis for element z and the representability
of # by algebraic operations depending on all variables. In Section 4,
the existence of the element basis for all elements % in the algebraically
independent generating set I is secured in the special cases of finitary
algebras and (reproducing a result of Lowig [1]) of absolutely free alge-
bras, whereas in Section 3, an example is given for an element 2 in an
algebra A (necessarily infinitary and not absolutely free) without element
basis in the algebraically independent generating set JI. The paper is
1easonably self-containing; in particular, it can be read without know-
ledge of [10].

1. Neutral elements of different types. In [10] § 1, we have
considered the natural one-one correspondence between elements of set A
and operations f type @ (empty set), i.e. nullary operations, on A. This
natural correspondence is angisomorphism from algebra A onto algebra
0°(A) of all nullary operations on set 4, the converse of this isomor-
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