On a certain result of Leray

by

A. Deleanu (Bucharest)

The result to which we refer is Lemma 8 on page 121 of [5]. We propose to obtain a more general result by using a modern proof based on the theory of spectral sequences. We then derive as a corollary the well-known theorem on acyclic coverings due also to Leray.

The theory of coverings has been set up by Leray in [5] and [6]; good accounts of it may also be found in [1] and [7]. We recall some basic definitions from this theory and refer the reader for the basic facts concerning spectral sequences to [6], [4], or [3].

Let A be a ring and X a topological space. An A-complex C on X is an A-module with whose each element $c \in C$ is associated a closed subset of X, called the carrier of c and denoted by $\text{S}(c)$, such that the following relations hold:

\begin{enumerate}
\item[(S1)] $\text{S}(0) = \emptyset$ if and only if $c = 0$,
\item[(S2)] $\text{S}(c+c') \subseteq \text{S}(c) \cup \text{S}(c')$, ($c, c' \in C$),
\item[(S3)] $\text{S}(ac) = \text{S}(c) \cap S(a, a \in A, a \neq 0)$.
\end{enumerate}

If C is graded and if c, c' are homogeneous of different degrees, we require that equality hold in (S3); if C is differential, then we must have

\begin{enumerate}
\item[(S4)] $\text{S}(dc) \subseteq \text{S}(c) \cap S(c, c \in C, d$ is the differential operator).
\end{enumerate}

Let Y be a subspace of X and C an A-complex on X. Let C_{X-Y} denote the elements of C whose carriers are contained in $X-Y$. We denote by YC the A-module $C Y_{X-Y}$ and by Ye the image of $e \in C$ under the natural homomorphism $e \rightarrow Ye$. It is easily seen that we may define for YC a structure of A-complex on Y by setting $\text{S}(Ye) = \text{S}(e) \cap Y$.

If M is a graded differential A-module, we denote as usual by $H^q(M)$ the q-th cohomology module of M.

By an A-cover of X we mean a graded differential A-complex K on X such that the degrees are ≥ 0, the differential raises the degree by 1, and for each $x \in X$ the following conditions are satisfied:

\begin{enumerate}
\item[(1)] It should be noted that our definition is more general than the usual ones (cf. [6], [1], [7]) in that we do not require K to have the structure of an algebra or its elements to have compact carriers, nor that K have a unit relatively to each compact subset of X.
\end{enumerate}
(i) There exists a canonical isomorphism \(\psi_p \) of \(A \) onto \(H^p(\mathbb{Z}K) \).

(ii) \(H^p(\mathbb{Z}K) = 0 \) for all \(p > 0 \).

The intersection \(C \cap C' \) of two \(A \)-complexes on \(X \) is defined as follows:

For each \(\gamma \in C \cap C' \), define the carrier \(S(\gamma) \) to be the set of points \(\gamma \in X \) such that \(\langle p\gamma, \bar{p}\gamma \rangle \neq 0 \), where \(p : C \to \mathbb{Z}^n \) and \(\bar{p} : C' \to \mathbb{Z}^n \) are the natural homomorphisms.

Then \(C \cap C' \) is the factor module of \(C \cap C' \) with respect to the sub-module consisting of the elements with empty carrier. For any \(\gamma \in C \cap C' \), the image of \(\gamma \) under the natural homomorphism \(C \cap C' \to C' \) is denoted by \(\gamma' \).

Let \(A \) be a ring and \(X \) a topological space. An \(A \)-complex \(L \) is said to be free, if there exists a family \((l_i)_{i \in I} \) of elements of \(L \) such that each element \(l_i \in L \) may be written uniquely as

\[
l_i = \sum_{a \in A} a l_i \quad (a \in A),
\]

where all but a finite number of the \(a_i \)s are equal to zero; moreover,

\[
S(l) = \bigcup_{a \in A} S(l_i),
\]

where the union is taken over all indices \(i \) for which \(a_i \neq 0 \) in the above representation of \(l \). The family of elements \((l_i)_{i \in I} \) is said to be a base of \(L \).

Let \(A \) be a commutative ring with a unit element and \(K \) an \(A \)-cov-erature on \(X \). If \(Y \) is a subset of \(X \), an element \(u \in K \) is said to be a unit relatively to \(X \) provided that for each \(\gamma \in Y \) the element \(ku \) of \(K \) is homogenous of degree 0, it is a cocycle and its homology class in \(H^n(\mathbb{Z}K) \) corresponds to the unit element of \(A \) under the isomorphism \(\psi_n \) given by the definition of an \(A \)-cov-erature.

Lemma. Let \(A \) be a commutative ring with a unit element and \(X \) a Hausdorff space. Let \(K \) be an \(A \)-cov-erature and \(L \) a free differential \(A \)-complex on \(X \), satisfying the following conditions:

(i) For each element \(l_i \) of the base of \(L \), there exists a unit \(u_i \in K \) relatively to \(S(l_i) \).

Let \(l = \sum l_i \) be an arbitrary element of \(L \). Then the element \(\sum u_i \cdot a l_i \) of \(K \cdot L \) does not depend on the choice of the units \(u_i \).

The mapping defined by

\[
f(l) = \sum f(l_i) = \sum u_i \cdot a l_i\]

is a monomorphism of the differential module \(L \) into the differential module \(K \cdot L \).

Proof. Let \(\psi_n^0 \) be a second unit of \(K \) relatively to \(S(l_i) \). Since \(\psi(K \cdot L) = \psi(K \cdot \mathbb{Z}X) \), and since for \(\gamma \in S(l_i) \), \(\psi_{\gamma} = 0 \) and for \(\gamma \in S(l_i) \), \(\psi_{\gamma} = \psi_{\gamma} \), we may write for any \(\gamma \in X \):

\[
x(\psi_n \cdot a l_i - u_i \cdot a l_i) = \psi_{\gamma} - \psi_{\gamma} = 0.
\]

Hence \(S(u_i \cdot a l_i - u_i \cdot a l_i) = 0 \) and, by (8), \(u_i \cdot a l_i = u_i \cdot a l_i \).

Assume now \(f(l) = \sum u_i \cdot a l_i = 0 \). This means that, for each \(\gamma \in X \), we have

\[
\sum u_i \cdot a l_i = \sum \psi_{\gamma} = 0.
\]

But \(u \cdot L \) is a free module having as base the elements \(u_i \) such that \(u \in S(l_i) \). It follows (2), Exp. XI, p. 3, that \(\psi(K \cdot \mathbb{Z}X) \) coincides with the group of finite formal linear combinations of elements \(u_i \) with coefficients in \(\mathbb{Z}K \). Hence we have for each \(\gamma \) such that \(\psi(\gamma) \in S(l_i) \), \(u_i \cdot \psi_{\gamma} = 0 \), i.e. \(u_i = 0 \).

As the point \(\gamma \) is arbitrary, we infer that \(u_i = 0 \) for all \(i \), and therefore \(f(l) = 0 \). Thus \(f \) is a monomorphism.

We now prove that \(f \) commutes with \(d \). We have

\[
d(f(l)) = d(u_i \cdot a l_i) = d(u_i \cdot a l_i + u_i \cdot d l_i).
\]

Since \(u_i \cdot \psi_{\gamma} = 0 \) for any \(\gamma \in S(l_i) \) and \(d l_i = 0 \) for any \(\gamma \in S(l_i) \), we have \(d(u_i \cdot a l_i) = 0 \) for any \(\gamma \in X \) and therefore \(d(u_i \cdot a l_i) = 0 \).

Hence

\[
d(f(l)) = u_i \cdot d l_i.
\]

On the other hand, if \(d l_i = \Psi B_i \), we have

\[
f(\psi_{\gamma}) = \sum f(B_i) = \sum u_i \cdot a l_i.
\]

Let \(\gamma \) be an arbitrary point of \(X \). We may write

\[
x(f(l) - f(\psi_{\gamma})) = x(\sum u_i \cdot a l_i - \sum u_i \cdot a l_i) = \sum (u_i \cdot a l_i - u_i \cdot a l_i).
\]

If \(\gamma \in S(l_i) \), we have \(u_i \cdot a l_i = 0 \); on the other hand, since

\[
S(l) = S(\psi_{\gamma}) C S(l_i),
\]

\(u_i \) is a unit relatively to \(S(l_i) \) for each \(i \), so that for \(\gamma \in S(l_i) \), we have \(u_i \cdot a l_i = 0 \). It follows that \(x(f(l) - f(\psi_{\gamma})) = 0 \), whence \(f(\psi_{\gamma}) = f(\psi_{\gamma}) \).

We conclude that \(df = fd \), i.e. \(f \) is a homomorphism of differential modules.
We call f the canonical homomorphism of L into $K \ast L$.

Theorem. Let A be a commutative ring with a unit element and X a \mathcal{H}-complex on X, satisfying the following conditions:

(A) There exists a base $(i)_{i \in I}$ of L such that for each $i \in I$:

(i) There exists an isomorphism φ_i of A onto $H^p(S(i)_0K)$ such that for each $x \in S(i)_0$ the diagram

$$
\begin{array}{ccc}
A & \xrightarrow{\varphi_i} & H^p(S(i)_0K) \\
\downarrow{\otimes} & \downarrow{\otimes} & \downarrow{\otimes} \\
\otimes H^p & \xrightarrow{\otimes} & H^p(\otimes K)
\end{array}
$$

is commutative, where p^* is induced by the natural homomorphism of $S(i)_0K$ onto $x \cdot K$ and φ_2 is the canonical isomorphism of A onto $H^p(x \cdot K)$ given by the definition of \mathcal{T}.

(ii) $H^p(S(i)_0K) = 0$ for all $p > 0$.

Then condition (i) stated in the above lemma is satisfied and the canonical homomorphism of L into $K \ast L$ induces an isomorphism of $H^p(L)$ onto $H^p(K \ast L)$.

Proof. For each $i \in I$, select an element $u_i \in K$ such that

$$\varphi_i(u_i) = S(i)_0u_i,$$

where 1 is the unit element of the ring A.

By the commutativity of the above diagram, we have for each $x \in S(i)_0$

$$x \cdot u_i = p^*[S(i)_0 \cdot u_i] = p^*[\varphi_i(u_i)] = \varphi_2(u_i),$$

hence u_i is a unit of K relatively to $S(i)_0$ and condition (ii) is satisfied.

We now introduce the module $T = K \ast L$ a filtration by means of the following submodules:

$$T^p = \sum_{i \in I} K \ast L,$$

where p is an arbitrary integer.

On L we consider the null-filtration; we then have in its spectral sequence:

$$E_r = L (r < 0), \quad E_r = H(L) (r > 0).$$

The canonical homomorphism f is compatible with the filtrations and with the differentials, so that it induces a homomorphism of the spectral sequence of L into that of $K \ast L$.

The following relation holds in the spectral sequence of $K \ast L$:

$$T^p = C^{\infty}_p = K \ast L + T^{p+1}.$$
whence
\[da_i^{p-1} \cdot l_i = a_i^p \cdot l_i. \]

Since this relation holds for each \(i \in J \), it follows that
\[z = d_1 \left(\sum_{i \in J} a_i^{p-1} \cdot l_i \right), \]

hence \(z \in D(K^p \cdot L) \).

Finally we have
\[Z(K^p \cdot L) = D(K^p \cdot L) \quad (p \neq 0). \]

b) If \(p = 0 \), there exists an element \(a_0 \in A \) such that
\[\varphi(a_0) = S(l_0) \cdot a_0, \]

where \(u_0 = 1 \) is the unit of \(K \) relatively to \(S(l_0) \) defined by
\[\varphi(1) = S(l_0) \cdot u_0, \]

whence
\[S(l_0) \cdot a_0 u_0 = S(l_0) \cdot a_0, \]

i.e. \(a_0 \in f(L) \).

Conversely, let \(z \in f(L) \), i.e. \(z = \sum_{i \in J} a_i u_i a_i l_i \). Then
\[d_1 z = \sum_{i \in J} d_1 a_i u_i a_i l_i. \]

For each \(x \in X \), we have
\[x d_1 z = \sum_{i \in J} x (d_1 a_i u_i a_i l_i). \]

If \(x \in S(l_i) \), then \(x(a_i l_i) = a_i d(x l_i) = 0 \). If \(x \notin S(l_i) \), then \(x \cdot d(u_i) = d(x u_i) = 0 \), because \(x u_i = y_0 u_i \), so that \(x u_i \) is a cocycle of \(x K \).

Consequently, for each \(x \in X \), \(x d_1 z = 0 \). Hence \(d_1 z = 0 \), i.e. \(z \in Z(K^p \cdot L) \).

Finally we have
\[Z(K^p \cdot L) = f(L). \]

From the above considerations we infer that we have in the spectral sequence of \(K \cdot L \):
\[E^{p}_0 = f(L), \quad E^{p}_{p-1} = 0 \quad (p \neq 0). \]

Since \(H(E^{p}_{p}) = E^{p+1}_{p} \), this implies that \(E^{p}_{r} = 0 \) for \(r > 0 \), \(p \neq 0 \), hence \(d_r = 0 \) for \(r > 0 \). Therefore
\[E^{p}_1 = E^{p}_2 = \ldots = E^{p}_{m} = G(H(K \cdot L)), \]

where \(G(H(K \cdot L)) \) is the graded module associated to the filtration of \(H(K \cdot L) \).

But
\[G(H(K \cdot L)) = H(K \cdot L). \]

Accordingly, let \(v \in C^{-p} \). Then \(v \) is of the following form:
\[v = w + \sum_{i} a_i^{p} \cdot l_i, \quad w \in T^{-p+1}, \quad a_i^{p} \in K^p. \]

But
\[d_1 v = d_1 w + \sum_{i} d_1 a_i^{p} \cdot l_i + (-1)^{p} \sum_{i} d_1 a_i^{p} \cdot l_i = 0. \]

Since \(K \cdot L \) is the direct sum of its submodules \(K^i \cdot L \), it follows that
\[\sum_{i} d_1 a_i^{p} \cdot l_i = d_1 \left(\sum_{i} a_i^{p} \cdot l_i \right) = 0. \]

However, we have proved above that for \(p > 0 \), \(Z(K^p \cdot L) = D(K^p \cdot L) \), which yields a \(i \in K^{p-1} \cdot L \) such that
\[d_i l = \sum_{i} a_i^{p} \cdot l_i. \]

We may therefore write
\[v = w + d_i l = w + (-1)^i d_i l + dt, \]

where \(d_i \) is the partial differential of \(K \cdot L \) with respect to \(L \).

We have
\[dt \in D^{-p}, \quad w + (-1)^i d_i l \in C^{-p+1}, \]

since
\[w + (-1)^i d_i l \in T^{p+1}, \]

and
\[d(w + (-1)^i d_i l) = d(w - dt) = dv - dt = 0. \]

The inclusion \(C^{-p} \subset C^{-p+1} \cdot D^{-p} \) is thus proved.

The canonical homomorphism \(f \) induces a homomorphism of the spectral sequence of \(L \) into that of \(K \cdot L \) according to the above lemma, it induces an isomorphism of \(E_n = L \) onto \(E_n = f(L) \); it induces therefore an isomorphism \(f^* \) of \(H(E_0) = E_1 = H(K \cdot L) \) onto \(H(E_1) = H(K \cdot L) \).
This concludes the proof of the theorem.
We may derive from the theorem the following

Corollary (Theorem of Leray on acyclic coverings). Let X be a locally compact Hausdorff space and let A be a principal ideal ring. Let U be a locally finite covering of X consisting of compact subsets such that for each finite non-void intersection F of members of U the relations

$$H^p(F, A) \approx A, \quad H^p(F, A) = 0 \quad (p > 0),$$

hold, where $H^p(F, A)$ denotes the p-th Alexander-Spanier cohomology module of F with A as coefficients.

Then the simplicial cohomology module based on finite A-cochains of the nerve of the covering U is isomorphic to the Alexander-Spanier cohomology module of the space X with compact carriers and A as coefficients.

Proof. Let L be the differential complex of finite A-cochains of the nerve of U where the differential is the usual coboundary operator and the carriers are defined as follows: to each simplex σ^p of the nerve we associate a compact subset $S(\sigma^p)$ of X, namely the intersection of the members of U corresponding to the vertices of σ^p. For each finite A-cochain $\omega \in L$ we define its carrier $S(\omega)$ to be the union of $S(\sigma^p)$, where σ^p runs through all simplexes on which ω is not zero. As easily checked, L is an A-coverture and at the same time a free differential A-complex on the space X.

Now let K be a fine covering of the space X ([7], p. 141). For each element l_k of the base of L, $S(l_k) - K$ is a fine covering of the space $S(l_k)$. According to our assumptions on $S(l_k)$ and to the uniqueness theorem of [7], p. 153, condition (A) in the above theorem is fulfilled. The theorem then yields an isomorphism ψ of $H(L)$ onto $H(K \cdot L)$. On the other hand, according to [6], p. 54, $K \cdot L$ is a fine covering of X, so that, again by the uniqueness theorem, $H(K \cdot L)$ coincides with the Alexander-Spanier cohomology module of X with compact carriers and A as coefficients.

Since $H(L)$ is nothing else than the simplicial cohomology module based on finite A-cochains of the nerve of U, the proof of the corollary is completed.

References
