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Recursive objects in all finite types
by

A. Grzegorczyk (Warszawa)

1. The definition and general lemmas. The notion of re-
cursiveness can be extended to all finite function-types in the follow-
ing way. Let the natural number 0 be the type-index of the lowest type
congisting of natural numbers. If o« and f are type-indexes, then
(aB) = 2°(28+1) is the type-index of all functions mapping the type a into
the type 8. Hence every natural number is a type-index, and the ex-
pression: the object A belongs to the type a, will be abbreviated to: 4 e a.

In the following construction we shall use the notion of applica-
tion: (..., ...). If X e(aB), ¥ e, then (X, Y) is the value of the fune-
tion X for the argument ¥ and (X, ¥)ef (}).

DEFINITION OF RECURSIVENESS (of the class ‘R of the recursive objects
of finite types). ® is the smallest class satisfying two conditions:
1. If XeR, YeR, X e(af) and Y e a, then (X, ¥)eR.
2. The class R contains the following elements:
a. the number 0 of type 0 (0 ¢ 0),
b. the function § e (00) (successor)

(1) (8,2)=w2+1,

c. for every a the element /e (za) (identificator) such that for
every & e a (?),

(2) tyo)=m,

d. for every a and f# the element K ¢ (a(Ba)) (cancellator) such
that for every v ea and y e

3) ((K;m))y)=m;

() Our notation differs slightly from the notation introduced by A. Chureh in [2].

(%) The names ‘‘identificator”, “cancellator”, *“compositor”, “permutator”’, and
“duplicator” are due to H. B. Curry [1]. By analogy I put “iterator” for the ele-
ment B. For the sake of simplicity of the formulas I omit the type indices by the
gymbols /, K, B,C,D,R. Hence in the following two occurrences of the same symbol,
e.g. D, may denote two different duplicators. ’ ’
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e. for every 8, y, 6 the element 8"’ e((dﬁ) ((yé)(yﬂ))) (compositor)
such that for every we (68), y ¢ (yd) and # ey

(4) ({8, @), ), 5) =

t. for every B, y, 6 the element &™° ¢ ((ﬂ(y&)) (y(ﬂé))) (permutator)
such that for every we (B(yd)), yep, vey :

(8) (((6‘, x), z) ) ?/) = ((‘7’7 ), z} ’

g for every « and § the element 5% s((u(aﬂ))(aﬂ), (Auplicator)
such that for every « e (a(aﬁ)) and y e a

(6) ((0, @), ?/) == (("7’ ), ‘.’/) )

(, (v, 2),

h. for every « the element Ae (a((()(ua)) (Oa))) (iterator) such
that for every bea, ke 0 and ¢ e (0(uw))

(8, ), 9),0) =b,
u(”; b): 0)! (Sy 7‘7)) = ((07 k): (((”; b); C’)’ 75)) ®.

We shall deal with the class @ of polynomials built of the function
(..., ..) of application and of finite sequences @, ..., @, of objects belong-
ing to suitable types. We shall say that these clements @,, ..., @, are con-
tained in the polynomial. 4 is a subpolynomial of B if 4, Be® and
there exists a O'(2) e P such that B = C(w/d). (If we want to distinguigh
an object @ in the polynomial W, we write W(x).) If A, B, ¢ arve the
subpolynomials of a polynomial W and € = (4, B), then for geveral
types @ and f: A e(ap), Bea, and O ef. This relates of comrse to the
elements @y, ..., %, containing in the polynomial W since they are sub-
polynomials.

(M

stea,d(a)flfhm chi g.ieﬁn;':;ios of the class ¥ we assume the following condition h’. in-
of the condition h. then we obtain the class of primitive 1 i
A types indoces 56 fhe brgmemie, primitive recursive objects for

Y. for every ua the element ﬂ”e((ao)((a(O(OO)))a(OO))) such that for every
a < (a0) and b e(a(0(00))): '
((((H+, @), ), 1), o) =1,

((((”*, a),b),1), (8, n)) - (((b, B, ), ((((ﬁ*. a),b),1), n))

The element A of course belon,
s eie g8 to
the definition of the class % the element R®
iterator) defined in 2.3,

K. There is an open problem whether in
may be replaced by the element A (pure
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Let us note the following lemmas:

1.1. 9f W(x) is a polynomial containing the element z, only once then
there ewists an A € P such that A does not contain x and A contains all
elements contained in W'(z) different from z and some elements from the
sequences I°, B, P and A satisfies the equality

(8) Wm) = (4, ).

Proof Dby induction. (2) implies that the smallest polynomial:
o satisfies (8). Now suppose that (8) is satistied by a polynomial W(=).
A greater polynomial Wi(a) satisfying the supposition of our lemma may
have one of two forms

(i) W(w) = (W (), &),
(if) W(z) = (¢, W(a),

where G ¢ ? and @ does not contain the element x. In the case (i) accord-
ing to (5) and (8) we have

W(z) = (4, 0), 6) = (€, 4), ), a].
In the case (ii) according to (4) and (8) we have
W(a) = (& (4, ) = (((8, @), 4), a].

Thus W'(z) also satisfies the lemma.

1.2. If W(x) is a polynomial containing the element x arbitrarily many
times, then there exists an 4 e P such that A does not contain the element @,
A contains all elements contained in W (x) and different from x and some
elements from the sequences I°, B, €% D and A satisfies equality (8).

Proof by induction. For the polynomials containing the element
once we have Liemma 1.1. Now suppose that the lemma is true for every
polynomial containing the element « less than s times. A polynomial
W (x) containing the element # n times has the form: W () = (F (), G(m))
where F(x) and G(x) contain the element less than n times. By the

- induetion supposition: F(») = (4, ») and G(z) = (B, x). Hence

W (@)= ((4, ), (B, ) = (¢, 4), (B, ), =)
- ((((B, (¢, 4)), B, a), w) = ((u, (8, (e, A)),B)),a;) :

THEOREM 1.3. If W{(wy, ..., %) € P where @y, ..., % are all elomonts
contained in Wi(my, ..., @) arbitrarily many times and ordered in an arbi-
trary way, then there exists an object F' e R (built from the elements of
the sequences /%, 87, € D"} such that :

(9) W@y ooy ®n) = (((F; 1), mz): ey wﬂ) :
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Proof by induction with respect to the number n. For o =1 it ig
Lemma 1.2. Now suppose (9) for n. We shall prove our theorem for n 1,

If W%, ey Zny Tn4a) € P, then by means of Lemma 1.2 there exists
a W(xy, ..., ) €? which does not contain the variable .., and is
such that

(10) W (@5 wees Bny Tygr) = (W(wlz ey &), mnﬂ) .

For W we have (9) by the induction hypothesis; thus from (9) and (10)
we obtain (9) for W'. (4)

1.4. If WeP and all elements contained in W are "R, then the value
of W iz R.

Proof: From Condition 1 of the definition of recursiveness.

THEOREM 1.5 (on A-definability). If W e

P ARG Yiy ey Yiy Bry ey Wy
are all elements contained in W, and 1y, ..., Yx € R, then Any, ..., oy W e R,
Proof. By Theorem 1.3 there exists an FeW such that

= ((((E, Yohyers Y2), @) ooy m,.). Hence according to the meaning of the
A-operator:
F=(EB,y),.. Jaa W .

Thus F e‘R according to 1.4.

7yk) = My .,

2. Primitive recursive functions on natural numbers. First
let us note two lemmas on the recursive schema.

2.1 (On recursion with a parameter). If a,b eR, then there emists
g € R such that

((Qa 1), )""(“ t)
(11) (gy1), (8, m)) = (((b, 1), n)) -

Proof. Foxr W(b,t,n,s) = ((( 1), ) (s, )) by means of 1.5 there
exists a ¢ ¢ R such that

(12) (((b,t) n), (s, t) =(((e n), 8), t).

Let us consider the element p = ((#, a) y0) € R, According to (7):
(®,0)=a and (p, (8,n)) = ((c,n), (p,n n)). Hence according to (5) for

g = (€, p) we have

(13) ((Qat)!o) = ((?70)’t) '=(a/:t)

and by (12)

(14)  (g,%), (8, m) =((p, (8, n), ) = ((( n)y (p, m), )
=‘((b,t),n )~((b 1, n), (¢, 1), n)‘)

(13) and (14) involve (11).

{*) This is a kind of completeness theovem for combinators, Cf. Curry and Feys [1].
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2.2 (on pure iteration). If a,bdeR,
that (g,0) =a and (g, (8, n)) = (b, (g, n)).

Proof. ¢= ((ﬁ, a), (K, b)) according to (3) and (7) satisties the
lemma.

2.3. For every o there ewists an R°ecR (pure ileraior) such that
R e (a((aa)(Oa))) and if aea and be(aa) then

(((EI; a), b)y 0) =0a,
(&, @), 8), (8, m) = o, ((#, a), 1), m)

Proof. It is true for A’ =((U; (8, B);R)):H)'

then there exists qe“R such

THEOREM 2.4. For every primitive recursive function f of one variable
there exists an object F' ¢ R such that

(15) (F,n) =fmn).

Proof. First we shall find the ®-objects corresponding to some
special auxillary functions: P (predecessor), +, —, -, 4%, y , B.
(P,0) =0 and (P, (8, n)) = ((X,n), (P,n) according to (3). Hence

by (7) P={(R,0),k). (+,0)=/ and (+,(8,n)=(8,8),(+,n)
=(((/(, (8, 8), 1), (+, n) therefore + = ((8, 1), (K, (8, ®)), by (7).
Thus ({(+, 2), y) = @+y. Similarly (=, 0) =/ and (=, (8, n))

((( (8, ),n),(-‘—,fn,)), whence by (1) = = ((8, ), (K, (8, P))} and
(=2),9) =y = @ (-,0)=(K,0), (,(8,n)=1(((8,0),(8, +),(,mn)

because ((-, n-+1), y) = ((+, (-, n), 9)), y) = ((((B, +), (5 m)s 9)s y}
— ({2, (B +), -, ), y). Thus by (7) - = (&, (&, 0), (K, (8 ), (8, +)))
and ((-,%),9) = ®-y. Let us put, similarly, Pot = ((ﬁ, (x, (8, 0))),
(%, (8, 0), (8, - )))); then ((Pot, »),y) = y= We put also F; = ((8, (Pot, 2)), 8)
and F,= ((8, 8), Fy}; then (F,,9)= (y+1)*-+1. Hence: Y0 =0 and
VI, = (/41 4+3) = (8,m) + V= [+ (= (8,m), 22, V) V).

According to 1.5 there exists an Fj such that

((Fsy n), 70) = ((+; (('.‘; (9, '"')); (T, k)))’ k’) .

Hence V/(S,n) (<Fa, n), Vn) and V= ((8,0),Fy). Bl@)=uv-=(/a)
= (~ ((Pot, 2), 1/‘ ), then according to 1.5 there exists an F

such that (E w)
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According to B. M. Robingon [9] the clags of primitive recursive
functions of natural numbers is the smallest class containing §, ¥ and
closed under superposition, addition and iteration. We have our theorem
for § and H. Now suppose that ¥ satisgfies (15) and similarly: (¢, n) = g(n);

then. f(g(n)) = (7, (&, m) = (B, F), &), n); {(n)+g(n)=((+ (T, ), (¢,m))
= (H,n) for some He¥R according to 1.3; and f*(0) =(((H',0),F),n)
according to 2.3.

THEOREM 2.5. For every primitive recursive funotion f(nyg, .., n)
with & arguments there ewists an I e R such that

(16) (((F M), )7 ’”k) = f(nyy vy W) .

Proof. For f there exists a primitive recursive function ¢ with one
argument such that

@an 10y oes ) = g[Pafm; v, Pamims; ma) ..},
where Pa(z, y) = 2% (2y +1) = 1. Then
2o, 1) = ((=,2), (1 ((Pot, ), 2], (5, (¢ 21,91

Hence by 1.5 there exists a Pa e R such that

(18) ((Pa' @ 7@/) z, Y).
According to 2.4 there exists a @ ¢ R such that
(19) (Gyn) = g(n).

From (17)-(19) we obtain
Flongy ey i) = (Gr ‘(Paw Tig)y ey ((Pﬂ‘a Ng-1) 5 nk))) .
Thus (16) follows from 1.5.
3. Pairing functions and simultaneous recursion. Now we
shall define the pairing function Pa* and their converse functions st
and 8nd” satisfying the equalities

(Pst™, ((Pa”, v), y), =2 for wea,yef,

(2)
(80d%, (Pa”, 0),9)) =y for wea, yep.

First we define a natural function @(n, k) such that

((Paw’ ‘”)7?/) €p(a,8) for wea, yep.
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Hence the types of these elements will be the following:

< (alBle(a, 0))),

Fst? e (p(ay B o,

8nd* ¢ (p(a, B)B) .
¢(0,0) =a,
p(a,0) = a,

p((aB), (y9)) = (p(a, M) (B, 0)) .
Pirst we need the constant function for every type:
0,=0,

Opy=Ax0; for every wea,

put

the pairing functions for natural numbers:
Pa® =Pa (defined in (18)),
Fst® = Azexp(2, 2 +1), (%)

21
o (Tsta) -1
Snd® =42 ——m—=F—r |

2

Lt

9

They belong to ‘R according to 2.5 and satisfy (20) and (21). Now we
define others induetively:

{23)

Every type « can be represented in the form:
a = (oo (20 0) ...)) 5
Pa™ = 22 a2 -+ Weu|(P2™, @), ((fay Yeu) s +o01 Vo) »
Pa® = 22y Wa . lyan((Pa s ((Far Ya) s wves ?/a,‘)) , wo),
Fst™ = 20a(Fst, ((ges 0u); - Oay)) 5
Sd™ = Agatla, ... Wa, (304", ((ga) Yar)s s Yan))
Tst®® = Ay M, - iyan(Fstm’ ((Ga Yy +ve» Yeu)) 5
Snd™ = Aga(Snd™, ((ga; Oa), -5 Oy))

PaP ABapy XY (y0) Azov(ur)((P a, (w s (Bst”, z))); (:'/9 (Snd*, z))) ’

Pt = Ao ((op)sv23) Mba (Fstﬁda (g ’ ((Pa,"’, %), Oy))) ’

Snd®"0? — }-gv((cﬂ):(wﬂ))zuv (Snd’”’ (y ’ ((P 2™, 04) u))) .

(*) exp(2, %) = the exponent ¢ such that 2w and ~(2°x).
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TrEoREM 3.1. The clements Pa™, Fst” and Snd¥ belong to R and
satisfy (20) and (21).

Proof. It is evident that these elements satisfy (21) and by 1.5
they belong to ‘®. It remains to prove. (20). The proof is inductive. For
the pair of types 00 it is the familiar property of pairing functions. Now
we examine the pair O0a and a0:

(Fgff‘“, ((Paf)“, @), ]‘a)) = (I«‘st‘”, ((Pa‘m; @)y ((fa Ouy)y v Oﬂn))) = Ly

(Snd0a7 ((Pa‘ua’ D)5 fu)) = Moy o+ Moy (Sndoo’ ((Pf\f)‘)’ %) 5 ((fay Yay) s oors .7/4:1.)))

= M/tu ;'yan((fav "./ux)s (] ’!/a,.) = /u )

(B, (2, ), ) = (5% (P, (e 9 3

= Mjay e l?/ﬂn((fa: Ya)y ooy ya») = fu,
(Snduoy ((Pa‘ao; fa)s mo)) =(Snd007 ((Pa‘ooy )(f; 0gy)y ey Oﬂn))’ mo)) = g -

Then suppose that (20) is true for the pairs ay and pd; we ghall
prove that (20) is true for the pair (af)(yd):

(Fst‘“‘”("‘”, ((Pa(aﬁ)(vd)’ Tapy),s ?/(ya)))

= m(mﬂ”, (Az¢(ay)((Paﬂ5, (=, (B, %)), (v, (Snd?, z))), (P2, ua), oy)))

- zua(m“, ((Paf", (w, (Fst™, ((Pa™, wa), Oy))))’ (’y, (sna, ((Pa”, w), oy)))))
= l"‘u(FSt’ﬂdy ((Pa'ﬂdy (®, '“'a)), (¥, Oy))) = Mbo(, ) =,
(S0, (o, 54y), yom))

- m,(sm“, (az,,(a,) ((Pa“, (o, (®st”, 2))), (y, (Sna®, z))), ((Pa®, 0,), u,,))>

= M,,(Snd””, ((?aﬂ‘, (w, (Fsﬁ"”, ((Pa®, 0,), “vm)’('-’/ ) (Snd“", (Pa, 0,,); u,,)))))

= Au,(Snd"f, (Pa‘ﬂdy (2, 0,,)), (¥, '“w))) =AY, Uy) =y .

Thus (20) is true for all pairs af.
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THEOREM 3.2 (on simultaneous re};ursion). If Opy ooy On € R and

Ai€ Gty Pryor, PreR and pie (al(... (anas) ...)), then gu,..,qneR and
qi € (0az) where qu are defined as follows:

(g1, 0) = ar,
(25, (8, B) =((ps, (@1, B), o (gns B) -
Proof. We define by means of pure iteration a function -
(¢, 0) = |(Pa, a,), ... (Pa, ag—y), a”)),
(95 (8, ) = ((Pa, 1y, ... (Pay, Tau), 72))

where
7y =( ((pi, (Fst, (g, k), (Bst, ($nd, (g, k)))), . {Snd, ... (Snd, (g, %)) ))
By ?;.2 and 3.1 ¢geR and

(@1, &) = (Fst, (9, ) ,

(42, b) = (Pst, (Snd, (g, k) ,

................

(Gumr, ) = (Fst, (snd, ... (Snd, (¢, ®) )) ,
(gn, ) = (Snd, (Snd, ... (Sud, (¢, B)) )) .

4. An equivalent definition. The class 2 may be characterized
as having only 0, § and I® as generators and Deing closed under six
operations.

TaEOREM 4.1. ‘R is the smallest class containing 0, 8, and I* for
every type a and closed under the following operations:
a. if FeRa, then there ewists a G <R such that for every xef

(25) (Gyo)=1T;

b if e R ~ (a(p(yd))) then there evists a G e R ~ (aly(p8))) such
that for any wea, yef, ey

(26) ({6 @), 2), 9) = (((F,2),9), %) 5

c. for every K e R ~ (p8) and G € R ~ (a(By)) there exists an H R
~ (a(Bd)) such that for every wea and yef

@) (&, @), 9) = (7, (&, ), 9)) ;

Fundamenta Mathematicae, T, LIV 6
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d. for every I eR n (a(ﬂ(ﬁy))) there exisls a D e R ~ (a(ﬂy)) such
that for every wea and y e f
(28) ((D’ @), 1’) = {((F; @}, f’/)r f!/) H

e. for every FeR A (af) and G eRn (a(O(f)ﬂ)}) there ewists an
HeR A («(0p)) such that for any tea and neN

((H’ ), 0) =(¥,1),
((E, 0, (8, ) = (((6 1), n), ((H, 2), m)) 5 )

. for every F e R ~ (af) and G € R ~ a, (F, G) e K.

Proof. From 1.5 and 2.1 it follows immediately that the class R
_gsatisfies the conditions a.-f. Conversely starting from a.-f. we can con-
struct the elements K%, 8, ¢, 0, and A°

¢. From b. it follows that for / there exists a € ¢ R such that by (21)

(((_ca z), z)a ;1/) = (((’7 @), ?/)7 z) == ((“"7 ")y z) .

B. From the preceding result, c., b. and f. it follows that

(o, (v, ) = (1,9, (¢, ), 8) = ({8, 0, (U, 0, ), )
= (((H7 %), z); a/') = l((G, Y), .’I)) y z) == (“(0’ @), ""‘) y '3/)’ z)
2(((3550):?/)’2); for B=(¢,@).

(29)

¥. From a. we infer that for / there exists a & such that (@, y) =/,
Hence

x=(l,a) = ((Gy Y, w) = (((07 G); w)a ?/) = ((,(: %), ?/) for K= (¢, ).
0. From d. it follows that for / there exists a 0 such that
((0,2),9) =(((/, @), 9), 9) = (@, 1), 9) -

A. For every a the element A" may be constructed in the following
way. First let us note that using schema (29) we can obtain all primitive
recursive functions on matural numbers. Thus also Pa®, Fst®, and
8nd®. Hence by means of the preceding results involving 1.5 we find
that for every type o and § the elements Pa'™, 1t Snd¥ defined
in (23) belong to R. According to 3.1 for the types « and f = {0(aa)

) .(“‘) If we assume the condition e. only for f =0, then we obtain the class of
primitive recursive objects mentioned in footnote ®
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the elements Pa™, Fst*™”, Snd“” satisty (20), and (22). e. implies that
for F=Fst® and ¢ = Snd™ there exists an H e satisfying (29).
From (22) and (29) it follows that for every bea and ¢ (0(aa)):

(2, (®a, 1), )}, 0) =3,

(12, (®a, ), 9), (8, m) = @0, w, (2, (B, 0}, d),9).

Hence using 8 we prove inductively that the element # = ((3, (8, H)), Pa)
satisfies (7), because

(0,0 = ((((2, @, 20), ), 1), ) = {((8, 7), s, ).

= (&, (®a, 1), d). (")

5. Recursive functionals taking natural values. Now we
shall consider a class of recursive functionals F(, ..., #s) = k of many
arguments assumning only natural numbers as values. The types con-
sidered will be the following: 0 =the type of natural numbers; if
T1y «oey Tn 8T€ types, then <z, ..., 7,> is the type of all functions of n argu-
ments mapping the produet 7; X .. X7, in natural numbers. We shall
define the recursive funectionals for all these types.

5.1 (The definition). The class Rec is the smallest class which con-
taing 0, 0(z) =0, 8(x) = x+1, and for every type v = (z, ..., ), the
element I" for which

(30) X, Xy oy Xoy) = XXy, oy Xoy),

and is closed under the following conditions:
a. if FeRecnv and 7 = {7y, ..., 7s), then there exists a & e Rec
such that for every xef and wy, ..., ¥a (Ysewy):

(31) G(®; Y15 ey Yu) =F (Y1) e, Yu)

b.if FeRecnt and 7= <{m,0,0,7,..,7 then there exigts
a G e Rec such that G ¢ (w, 0, 0,7, ..., 7> and for all elements z, y, #,
Uy ..oy Un Of guitable types:

(32) Gy 8y Y,y Uny ooy Un) =T (B, Y, 2, Ugy ovey Un)

this condition comprises the case in which F' has only three arguments
T = {=n, o, 6> formula (32) then assumes the form:

(82%) G, 2,y)=F(,y,2);

(") Proving the analogon of 4.1 for the class of primitive recursive objects men-
tioned in footnotes (?) and (®) we construct the element R* joining the parameters
a,b,t of h'. in one by using the pairing functions.

6%
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¢. for every FeRec~vand GeRecn{m, 0,01, 0n, i 7=<0,7,...,5)
and o = {0y, ..., Onp, then there existy an I[eR(Wn Ty 05 Tey vry T
such that for all clcments of suitable types:

(83)  H(m, §, tyy ooey ) =T (281 oo e G (@, Uy 21y oy Bn), Uy ooy U5

this condition comprises also the cases in which = = (o) or G e {m, o)
and o = 0; this gives three gpecial cases: )

(33) - Hx,vy) =:]_T'(Az1 M’WG(W} Yy &y ey @“71,)) ’
(38") H (@, Yy sy ooy ) = F (G0, 9), 20,0y ) 5
(33") H(w,y) =F(G(0,9)) ;

d. for every F e Rec m (m, 0, 0, Ty, ..., Tay Ghore oxists an H < Rec A
Ay 0y Ty -y Tuy SUCh that

(34) H(m,y, g ooy Un) = F (@, 4, Yy thy ooy Ua)

this condition comprises also the cage in which I has only throe argu-
ments Fe {m, 0, o) and

(34)) H(w,y) = F(@, 4,9 ;

e. for every F e Rec ~ {m, Ty, vy Ta) a0d ¢ e Rec ~ (o, 0, {7y, oy Tad)
there exists an H e Rec n {m, 0,7y, ..., Tu) such that '

(35) H(t, 0, Upy oy Un) =Tty Uy, vry Un),
Ht, 0L, gy oy Un) = G (b, 0y Aty e Mt FL(E, 0, gy ey Un) y Uy g evey ) 5
this condition comprises also the case in which F has only one argument
F € {n); then schema (35) hag the form:
H(t,0) =F(1),
H(t,n41) =G (¢, n, Ht, n)) 5 (8)

(35")

f. for every FeRecn<{m, 7y, ..., ) and G eRec ~m there exists
H ¢ Rec ~ {7y, ..., Tup such that

(36) H(tyy vony thn) = F(Gy Uy, oov ) Un) 5

this conditions comprises also the trivial case in which F is a function
of one argument F ¢ (x) and H is a natural number:

(36) H=1@).

(*) In oxder to obtain the definition of the class of primitive recursive functionals

for all types described at the beginning of Section 5 we assume only the spcscm.l cage (30 )
of the induction schema instead of (35).
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Remark. We do not need to specify certain other special cases,
which are nmatural with regard to the expected amnalogy with the char-
acterization of the class 9% in 4.1. (This analogy will be the object -of
theorem 5.2.) All natural special cases follow from those mentioned in
the definition. First the function I%«) = z may be defined by using (35'),
(36) and (31): namely I%n) = I(0, n) where

I(ta 0) = O(t) 3
I(t, n+1) = 8(t,n, I{t,n),

where S(t, n,y) = 8(n,y) = 8(y) according to (31). -

Ag regards condltlon a. if v = 0 schema (31) gives the constant func-
tions Gx(w) = k. But every Gr may be defined by using 0(z), , (36)
and (33""). Of course Gi(z) = Gw(0, ), where Gx(t,z) = S( O(t w)))

%

As regards condition . it may be remarked that in order to per-
mute the later arguments (not only the second with the thrid, as is al-
lowed by (32)) we must first define the pairing functions and using them
join the preceding arguments in one.

It may be remarked also that the function I°(n) =m, as well as
the other primitive recursive functions of natural numbers, may be
obtained by using schema (35) without using the simplified form (35").
Hence without (35’) we can obtain the pairing funections and we can
show that (35) may be reduced to (35) according to the following idea:
if H is defined by (35"), then H (t, n) = H(t, n, 0) where: H(t, 0, u) = F(t),
and H(t,n-+1,u) = G(t, ny IO (AuH (&, 0, u), u)) .

Now we shall compare the present notion with the previous one.
We shall show that they are isomorphic. First it is easy to see that there
exists a one-to-one correspondence ¥ between all funetions of many
arguments assuming natural values whiech we are considering and all
functions of one argument considered in the preceding sections. First
we establish a one-to-one correspondence between the types:

7(0) =0,

it @ = (o (20) ...)) then 7(a) = {v(a), o, T(an)> (a; o, oy ot Will vo-
main for the types deseribed in Section 1).

For n € 0 we put ¥(n) = n. Now, if f is a function of one argument,
f € a according to the notation of Section 1 and u = (al(...(a/,,O) )),
then the corresponding element F = ¥(f) is defined as follows:

BT PN Fawny s L) = {2 P Eew)s o P X)) -

THEOREM 5.2. f e R = ¥(f) ¢ Rec.
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Proof. We use the definition of ® given by 4.1. The mapping ¥
transforms the initial elements 0, 8, I® of the eclass % into the initial
functionals 0, 8, ' of the class Rec. It is evident that 0 = ¥ (0) and
8 =W(S). The formula P(I*) =I"” follows from (37), (2) and (30):

YI(IG) (Xt(a) 1] Xt(mh LA -‘Y'!((m)) = (((Ia} Yl—l(‘ f(fl))) ? llT_l (X‘r(ﬂx)) [RE] Y‘,_I(Xw(u”))
= ((W_I(Xr(a))v le(Xr(al))); reey Y/—-J‘(fY‘t(an))) = lP(?l]ml(A:r(oz))) (J “E(ag) g er g -z(an))
y Xion) = F(a)(-Xv(u); Koty s ooy Xetany)

Now we shall prove that an element H ¢ ‘R is obtained from ¥ and §
by means of one of the operations a.-f. mentioned in 4.1 if and only if
Y(H) is obtained from ¥(F) and ¥(@) by means of the corresponding
operation a.-f. mentioned in 5.1.

a. If FeRnaand P(F) e Rec besides G satisfies (25) and G satis-
fies (31) with the substitution F/¥(F), then @' = V({). Indeed, if
a = (... (220))), then (25), (37) and (31) imply that (&, 2), vs), s )
= ((F7 Y1)y ey ﬁl/‘n) = P(F) (y/(yl)’ vy &”(g/,,,,)) = Gl(gj(m); (), s T(?/n));
whence by (37) & =W(@).

b. T F e R n(ap(y8), 6 = (8, (820))), P(I) ¢ Rec, & satistios (26)
and @ satisfies (32) with the substitution F/¥(F), then & = ¥(@).
Indeed, (26), (37) and (32) imply that

(((((G’ z), ﬂ)) y)7 ul)! ey '“"rl) = (((((F; ), ?/)7 z):'u'l), ey 'u'n)
= Y(F)(¥(@), P(y), P(2), ¥lu), ..., P(um)
= &P (@), P(a), P(), P(w), ..., ¥(un)),

whence according to (37) @ = ¥(@).

e. E FeRn(pd), G cPnrialpy)), H satisties (27), & = (84(.-- (80))),
¥(F) ¢ Rec, V(@) e Rec, and H' satisfies (33) with the substitution B (I
and G/¥(&), then H' = W(H). First let us note that (37) implies the
equalities

= Xt (Xeag) -

‘I’(lzl e 186, 20, ) 1) . z,.))(Zl, s Z)
- ((ul e 1a(((€ ), 9), ), . z,.),&l”“‘(Z)), " W(z,,))

=(((@, 2,9), ¥*z), .., w2y
= T(G)(W(w)s Y(y), Z, ..., Zﬂ)

=My AZHG) (¥ (0), YY), B, e, Zal(Zry oy D)
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hence
08) (e 2@ 0), ), &), . )

= By o M P (O E (@), P()s Fay oy z,;) .

Now if y = (3. (a0))) the formulas (27), (37), (38) and (33) imply
the equalities

((((H, ®), ), 'lll), . u,c) = (((141’ (&, ), y))’ "lq), - uk)
= (((17', yER. Azw,((((G, x), ), zl), e z,,)), ul) y s uk)

- W(F)(T(Zzl Az,,(({(G, ), 9), &)y z,,)), Yy, s W(uk))

= V(B A%, ... AP (@) (P (@), P (Y), Buy oy Za)y Ftr), ey P ()
= H'(P(x), (@), ¥(w), ..., P(ux)) ;

thus H' = P(H) by (37).
A It FeRn(2(B(B)), ¥ = (7l (s0)), P(F)eRec, D satisfies

(28), and H satisfies (34) with the substitution F/¥(F), then H = V(D).
(28), (37) and (34) imply that
((((D, @), ), fu,), 'u-n\) = (((((F, @), ), y}, ul), un)
= V(F)(¥ @), P), W)y V() ey P(thn))
= H(¥(2), P(y), Pl), -, W (i)
whence indeed H = ¥(D). |

. It FeRA(uf), GeRA(a0(BB)) B= (Bl (B0))), H satisties
(29), Y(F) e Rec, ¥(G) e Rec, and H' satisfies (35) with the substitution
F/P(F) and G/¥(@), then H' = P(H). Indeed, from (29), (37), (38) and
(35) we obtain the equalities

((((H, 1), 0}, %), ..., u,,) = (((F, 1) 20) 5 -ery u,‘,)

= P(I)P ), P, .y ¥lus)) = H'(P(@), 0, P(ug)y e W (un))

((((Hi t), (8, '”’))7 “1)7 vy 'Mﬂ) = (((((Gi t, W’)’ ((H: t)y 'n'))a 7"1)9 Xy} 'L‘;ﬂ)z
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= (((((G, 1), m), Aty ... /lun(({(ﬂ, 1), ), ul), e un)), u1>, ey un)
b4

i

(G)(yf(z), win), ![’</1u1 ({0, ) )y u,,,,)), ¥iny, .., ‘I/(u,,))

i

(G)(W(t); Y(n),AU,... AU, W(H)(W(t), F(n),Usy ..., U") 1P (), ey Yl(un))

w
P(6)(P0), 1, AT, . 4T (((H, ), ), PHT), oy T,

() ¥ ()
hence, supposing that

69 (@0, ), )y e ) = (20, 0, W), ., W),

we obtain
((((H, B n+1), 1), oy u,,) |
= V(A P(0), n, ATy oo ALH (P (), m,y Ty, e, Un)y Pt), ooy ()
=H(P(t), n+1, P(w), .., P(un)) ;

thug by induction we find that equality (39) is true for every nedN;
this means that H' = ¥(H).

L FeRn(of), GeRAa,f= (ﬂl(...(ﬂ,.O))), Y(F) e Rec, W(G)
eRec, and H satisfies (36) with the substitution T[P(F) and G/P(G),
then H = ¥((¥, @)). Indeed (37) and (36) imply that

(7, @), ), ..., un) = V(1) (P(@), Plwy), ..., ¥ (1))
= (HY (wy), ..., V(un)) ;

hence H = ¥Y(F, &), which completes the inductive proof.
(The special cases for #n =0 or % =0 are evident.) (%)

6. Comparision with Kleene’s recursive functionals and
application to G3del's interpretation of intuitionistical aritme-
tie. Theorem 5.2 shows that practically the recwrsive objects of Section 1
may be identified with the recursive functionals defined in Section 5.

T]'le presentatign of Section 5 is more convenient o compare our notion
with other notions of recursiveness.

(*) Using the definition of primitive
we obtain the analogon of the theorem
in footnote (3). Cf. footnote o).

recursive functionals mentioned in footnote (°)
5.2 for the primitive recursive objects defined

icm®

Recursive objects in all finite types 89

Let KR be the class of primitive recursive functionals defined by
Kleene in [5]. It is evident that

6.1. KR C Rec.

Proof. The only difficulty is connected with the possibility of per-
mutation of arguments. Let U; be a permutation of the n-tuple A of
arguments. If p(2;) belongs to Rec, then, if we take ¥ '(y) according
to 1.5, there exists an f « R such that ((‘If_l(y;), % a,,) = ((f, B1), e, bu)
where Dy, ..., bu is & permutation of a, ..., au corresponding to the per-
mutation of U into A;. Hence by 5.2:

P A) = p (W) .

This remark immediately shows that the class Rec satisfies S1-S8 of
Kleene. (1)

But there is no restricted converse inclugion. Already in the domain
of-functions on natural numbers the class Rec is larger than KR, because
it contains functions defined by means of the multiple recursion schema
while the class KR contains only primitive recursive functions on natural
numbers. Let @G be the function defined by double recursion by R. M.
Robinson in [8]:

M) G0,0)=A(),
(i) G(8n,0)=0,
(i)  G(Sn,8x) = ¢(n, Blw, G(Sn, 2))),

where 4 and B are some primitive recursive functions.

6.2. G e Rec and G ¢ KR.

Proof. The second part of 6.2 follows from Kleene’s Theorem VIII
of [5], because @& is not primitive recursive, as was proved by R. M.
Robinson in [8].

We construct the function ¢ in the following way. We start by
I{a, ) = a(x). Using (31), (36), and (32) we obtain I* guch that

(40)

(41)

Mo, o) =130, 2, a) = I2(v, %, a) = I}, a, #) = I(a, x) = a(z),
then by means of (33"') we obtain f such that

(42) f(ﬁ,:l/,(z)'»"—‘I"(B(;E,Q/),a);

we permute the arguments in the same way as in (41), and we obtain ¢
such that
(43) gla, @, y) = f{®, 4, a);

(**) KR are also primitive recursive in the sense determined in footmote (*) but
they contain a smaller wealth of types.
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now by the induction schema (35°) we define H such that
Ha, 0) = 08a) = 00, ) == 0%=, a) == 0 (4w, a)) =0,
H(a,8%) =g(a,», H(a, @) .
Formulas (41)-(44) imply that

(44)

(45) H(a,0) =0, H(a,8x) = a(B(@, H(s,a))).
Next, using (31), we obtain H such that
(46) ’ He(t,m, @, a) = H' (n, a,6) = H(«,x).

The most essential is the following definition by means of (35):
({1, 0, @) = A'(t, 2) == A(a),

41 ,
(1) (L, Sn, @) = 21, 0, @' (t, n, @), @) = H (A6 (t, n, z), 2 .

Then we can prove that @ (n, @) = G'(0, n, &) sabisties (40). (i) is evident,
(ii) follows immediately from (45)-(47). To prove (iii) from (47) and (45)
we obtain

(48) &(Sn, 83) = H(06'(0,n, ), Sx)

= Jw@(0, n, ) (B(a;, H (ho6(0,n, @), w)))

- (0’%7<B(w,H(sz'(o,n,w),w))))

= G<n, (B(m, H(a@(0, n, x), m)}))

(iii) follows from (47) and (48).

On the other hand, the class R of recursive objects may be con-
sidered as identical with the class of recursive functionals mentioned
by Gdodel [3] and Kreisel [6]. (They also vemarked that the functional
recursive schema (in our notation (11)) includes “‘all ordinal recursive
functionals of order <&, while Kleene’s functionals are only priinitive
recursive’.) (1)

The class R of recursive objects is convenient for an exact formu-
lation of Godel’s inbterpretation of intmitiomistic arithmetics. Primitive
recursive functional are unsufficient for this purpose (#). We need to
have the functional recursion gchema (11), which implies the multiple
recursion (36) (**). Using our recursive objects, we may desceribo Godel’s
interpretation as follows.

() See Kreisel [6], p. 110 and 112, However, it seems 1o me that Kreisel's ar-

gument presents rather an open problem,

(") For example, the formula Awz\/y®(w, 2,y) (where & is an arithmetic formula
strongly representing the function ¢ defined in (40)) is not primitively recursively
true in the sense clemly analogous to 6.3,
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Let HAr be the system of Heyting’s elementary arithmetic of nat-
ural numbers. First we define a translation 7 of the formulas of HAr
into the formulas of AT: the arithmetic with the whole simple theory
of types formulated by means of the notion (...,...) of application. The
translation T refer to all formulag of AT. (The formulas of HAT may be
considered as belonging also to the formulas of AT.) Every variable
Vi of AT has a type-index f and a shape-index «. Both indexes are
numerals. We begin by the definition of the translation 7 for the for-
mulas of the form: :

(50) F =[The matrix M of quantifiers] (the formwla A without
quantifiers),
We assume that T'(F) = F if M contains at most one quantifier. Now
suppose that the funetion 1" is defined for all formulas of the form (50)
with the number of quantifiers <#; if the formula ¥ having n-+1 quanti-
fiers Dbegins with an existential quantifier F = \/vjd, then we put

T(F) = Vv T'(4);
if the formula ¥ begins with a general quantifier ¥ = A vj4, we put
T'(F) = A vsT'(4) it T'(4) begins also with a general quantifier,
T(E) =V oy T'(A B (05, (Whon, ) i T(4) = \/ o} B(e§, %),
Now we define the translation 7
T(F) =F if F is anatomic formula .

Now suppose that F and F are two formulas and the function 7 is
already defined for ¥ and F and

T(B)=Vog .. Vo NG .. Aok 4,

TF) =Vt Ve A2 A\ B,
where 4 and B do not contain any quantifier; then (1)

T(MEB) = T"(Avg - Adg Vi .. Vo T14),
T(BAF) =TV Vo Vg V vgm A S AtEA DS Avst(4 A B)) ;
T(EVF) =T (Voo Vo Vs Vit oTm A ot A BE A 0% A 02
(A A2 =0)A(BAm=1)),

T(B~F) = T'(\vg Avi Vot VG Av7 e AN B V(A —>B)),
T(VvE) = TV T(B),
T(AGE) = T'(A\vT(B)).

(*) In the sense of R. Péter [7].
(%) If some quantifiers fall out of the representation of 7'(E) or T(F), they also
fall out of the representation of T(ME), T(EAF) and so on.
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Hence for every formula I of AT the translation has the form

(51) T = \/ vt Vot Ay - Al A
where A does not contain any quantifier. .

Godel’s interpretation of intuitionigtic arithmetic may be formulated
in the following semantical way: o '

6.3 (The definition of recursive truth). If I salisfying (51) is a closed
formula of AT, then we shall say that I is vecursively true if and only if
there ewist Vi, ..., Vi e R of types indewed by Py ., Pu such that they
satisfy the formula ‘

AvE . Ak A

in the stondard modsl of ATT.

6.4 (The theorem on the recursive truth of TAv). If ¥ s a theorem
of TAr, then T(F) is recursively true.

The proof consists of verifying all axioms and rules of inference
of HAT. The caleulations are all fairly easy. The required recursive objects
may be directly constructed from the injtial elements of the class R.
To verify the induction rule (proving 0.4) we necd the simultaneous
induction schema, but according to 3.2 the class ‘R is closed under this
kind of recursion. To verify the propositional rules

(p—0)~>((g->7) (7))
((p~>a) A r—g)) (@ v 7)->q)
we need to make use of the following property 6.5 of the clags “R:

6.5 (Conditional definability). If f,¢,jeR,f, g« (01( (anﬁ))) and
je{oy( . (@0))), then there exists an heR (al(... (anp))) such that

(@) @) when  ((f, &), ., @) =0,
(52) (B @), ., 2n) = t (g @)y ooy a)  when  ((j, @), -y ®n) # 0.

This property results from 1.5 and 2.5 in the following way. Let
B = (8- (Bx0))); then (52) implics that
((((hywl); “'1“7”) ayl) PR 1?/70): ((((17"”'1)7"':{””) ) .7/1) ’ '-'79/"-‘) ! (1’:"((?-7(1}1)7 e w”‘)) -

+ ((((_(j, By)y ey m,.), ?/1): vy yiﬂ) : (1”"(1_"((7" B1)y e w”))) )
Hence 2.5 and 1.5 imply that h e R. ()

(**) The aim of this paper has been only to point out the definition of the class ‘X
(stated at the beginning) which seems to be elegant, and to prove 3.2 (simultaneous

recursion theorem) in order to make easier a precise proof of Gidels’ interpretation
theorem.
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