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Local invertibility *
by
P. H. Doyle, J. G. Hocking and R. P. Osborne (Lansing, Mich.)

This report is a continuation of the study of invertible spaces
(2], [3], [4], [8]). In particular, the material presented here stems from
seminar discussions held at Michigan State University during the spring
and summer of 1962. A good part of the credit for the final form of
several results here is due to Mr. M. D. Guay and Mr. H, V. Kronk who
also worked under NSF Grant GP-31.

Throughout this paper we use the notation 9(8) to denote the group
of all homeomorphisms of a topological space § onto itself.

DeFINITION 1. A topological space § is said to be invertible about
a point p e 8 if, for each open neighborhood U of p, there exists k ¢ 9(S)
such that h(8—U) lies in U. Such a point p is called an énvert point of S.
The set of all invert points of § is called the nvert of § and will be denoted
by I(8).

As an example we point out that the n-cube I" has non-empty invert
and that, indeed, I(I") = Bd(I") = 8"". (The equality of two topological
spaces denotes topological equivalence.) Also we remark that I(8) = §
if and only if § iy invertible.

The following characterization is an obvious generalization of Theo-
rem 6 of [3].

TEEOREM 1. A space § is invertible about a point p € 8 if and only if,
for each closed set O in S—p and each open meighborhood U of p, there
ewists he 9(8S) such that h(C) les in U.

Proof. If 8 has the assumed property, then § is evidently invertible
about the point p. Suppose then that § is invertible about p and that
the sets 0 and U are given. Since U — € is not empty, then U— C is itself
an open neighborhood of p. Hence there is a homeomorphism h e J(8)
such that (8 —( U-—0)) lieg in U—0. Cleatly, h carries ¢ into U.

Note: We must make the restriction that O lies in §—p. For if
8 = I', then the closed set 0 w1 cannot be carried into any proper open
neighborhood of the invert point 0.

* The research reported here was carried out under Regearch Grant GP-31 from
the National Science Foundation.
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TaEoREM 2. If 8 48 o T,-space, then I(8) contwins O,1,2 or an
infinite number of points.

Proof. Assume that I(8) has a finite number % > 2 of points and
let p ¢ I(8). There is an open set U such that p e U and such that U ~
~[I(8)—p] is empty. Let » be an inverting homeomorphism for T,
Since h(8—7T) lies in U, the n—1 points in I(8)—p are carried into U.
But this implies that U containg an invert point other than p, contra-
dicting the choice of U.

TEEOREM 3. The invert I(S) of a space S is an invertible subspace of 8.

Proof. Let peI(S) and let ¥ be any open neighborhood of p in
the subspace topology of I(8). Then there is an open set {/ in 8 such
that U ~ I(8) =7V. Since U is a neighborhood of p, there exists h e T(8)
such that & (S—U) lies in U. Let g = h|I(8) be the restriction of i to I(8).
Since I(8) is carried onto itself by elements of 9(8), it follows that
g €9(I(8)). Clearly, ¢[I(8)—V] lies in U~ I(8) =7V and hence I(8)
is invertible.

TEEOREM 4. The invert I(8) of a space 8 is a closed subset of S.

Proof. Let p be a limit point of I(8). Then any open neighborhood
U of p contains an invert point. Hence there is an inverting homeomorphism
for U and it follows that p is also an invert point,

CororrAry. If I(8) is dense in S, then 8 is inveriible.

THEOREM 5. If the invert I(S) comtains & non-empty open subset of
the T,-space 8, then 8§ is invertible.

Proof. Suppose that the non-empty open set U of § is contained
in I(8). Then each point of 8 can be carried into U by some element
of 9(8), whence each point is in I(8).

CoROLLARY. Hither the T.-space S is invertible or its invert I(8) is
a closed nowhere dense subset of S.

The characterization of the #-sphere given in [2] can be stated in
the present terminology as “The only n-manifold without boundary
which has a non-empty invert is the n-sphere”. It is not surpriging perhaps
that the following characterization should also hold.

THEOREM 6. Let M™ be an n-manifold with non-empty boundary B.
If I(M") is not empty, then M™ is a topological n-oube.

Proof. If p is an invert point of M then p must be a point in the
boundary B because an element of 9(M™) cannot carry a boundary point
into an-open n-cell neighborhood of an interior point of M™.

Next we show that the boundary B ig an (n —1)-sphere. Bach element
of 9(M"™) carries B onto itself, of course. If V i an open neighborhood
f"f p e I(M™) in the subspace topology on B, then there is an open get U
in M such that U ~ B =7V. By assumption there is a homeomorphism
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heJ(M") such that A(M"—T) lies in U and clearly h|B carries
B—V into V. Thus B is an (n—1)-manifold which is invertible about
the point p. By the characterization theorem stated above, B is an
(n—1)-sphere.

Now let 8" " x [0, 1) be mapped be a homeomorphism g onto a collar
on the boundary B, i.e., ¢ is an imbedding of §**x [0, 1) into M™ such
that _q(;S’”'1 x 0) =-__B. (See [1].) Let U be an open neighborhood of the
point p such that U is a closed 5-cell. Then there is an element & « 9(M™)
which carries the (n—1)-sphere g{8"™* x1/2) into U. Clearly hg (8™ x1/2)
lies in U ~ IntM™ (the interior of M"). The bi-collared sphere hg(S"* x1/2)
separates U into an open n-cell 4 and a half-open annulus U—4, Tn any
case, h(4) is a closed n-cell bounded by ¢(8"* x1/2) and so M™ is the
union of h7'(4) and the obviously compatible annulus ¢(8"™ x [0, 1/2]).

To indicate a direction in which pogsibly fruitful results may be
obtained we include the following definition and theorem.

DEFINITION 2. A space 8 is invertible about a subset A of 8. if, for
each open neighborhood U of 4, there exists h e I(S) such that h(S—T)
lies in U. The subset .4 may be called an inversion subset. The inversion
subset A of 8 is minimal if § is not invertible about a proper subset of 4.

TeroREM 7. Let T be a metric space which has a bi-collared simple
closed ourve J as a minimal inversion subset. Then T is a torus or the
Klein bottle.

Proof. By definition there is an imbedding f of 8§ x(—1,1) into
I such that (a) f(8*x0)=4dJ and (b) f[8*x(—1,1)]= U is an open
neighborhood of J. Obviously 7' is locally euclidean in two dimensions
at each point of U and by the assumption of invertibility about J, any
point of I’ can be carried into U by a homeomorphism h e 9(T). It follows
that 7' is a 2-manifold but 7' is not a 2-sphere because each minimal
inversion subset in a 2-sphere is a single point.

Now in the bi-collaxr U on J we select an open parameter annulus 4
bounded by parameter 1-spheres Jy = f(8'x —1/2) and J, = f(8*x1/2).
Since J lies in A there exists h e 9(1') carrying T'—4 into A and thus
I'—4 is a compact 2-manifold with boundary Jy v J,. Since h(T~4)
lies in the annulug 4, it follows that I'—4 is itself a closed annulus.
Hence 1' i the union of two closed annuli joined along their common
boundary Jy w Jy.

Our interest in suspensions, which one sees in several currently
ungolved problems, led us to the following results.

TrROREM 8. The suspension uSv of a space 8 has at least two invert
points.

Proof, We show that the cone points u and v are in I(uSv). Let U
be any open neighborhood of the coneﬁgo%%u. Then U containg an open
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set of the form g(8 X (%, 1]) where g is a homeomorphism on §x (i,, 1)
and ¢(8 x1) = u. Let 7 denote the reflection map which carries the point
(®,1), we8, —1 <it<1, onto the point (x, —t) and which interchanges
the cone points # and v. Let h be a homeomorphism of the interval
[—1, 1] onto itself which leaves the endpoints fixed and carries the point
—t, onto the point #,. Define the map %(z,1) = (m , h(t)). The composite
map kr is an inverting homeomorphism for the open set U. Since # () = v,
the point v is also in I(uSwv).

Note that a space may have exactly two invert points and not be
a suspension. Figure 1 pictures a plane Peano confinuum having this
property. If this continnum is denoted by €, then clearly I(() = P Uy

Fig. 1

TororEM 9. Let 8 be a near-homogeneous space (see [3]) and let wSv
be the suspension of 8. If wSv contains more than two invert points, then
w8v is invertible.

Proof. Suppose that (p,4,), ~1 < t, <1, is an invert point of u8v
other than % and v. Homeomorphisms such as k in the proof above will
carry the point (p, 1) onto any point (p, ¢) and homeomorphisms of the
form h(x,t) = (g(v),1), ge9(8), will carry the point (p,%) onto any
point (2, %) in a dense set in §x ¢,. Thus I{u8v) is dense in #Sv and
the Corollary to Theorem 4 applies.

Another direction in which we found interesting questions involves
Fhe quotient space @ = §/I(8) of o space § modulo ity invert.

.THEOREM 10. Let the space S have non-empty invert I(S). Then the
quotient space @ = §/I1(8) has non-empty invert.

Proof. Tet ¢ be the quotient map of § onto @ and let 2(L(8)) = w.
Then w is an invert point of Q. For if U is any open neighborhood of w
f;hen ¢~Y(U) is an open neighborhood of I (8) in the space §. Hence there;
is an element % e 9(8) carrying 8—¢~(T) into g~y U). Since I(8) is in-
variant under elements of 9(8), the composition ghg-? iy a one-to-one
transformation of 1Q outo itself. This composition is g homeomorphism
because both ghg™ and (ghg™)™ = gh7'q™ are closed. Moreover ghgt
carries @ —U into U. Hence we I (@) ’
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The example which gave rise of Theorem 10 is the n-cube I™, Clearly,
IMI(I") = 8". For another example (not connected), let O be the Cantor
set on the z-axis in 2 At the points (0, 0) and (1, 0) erect vertical line
segments (i.e. parallel to the y-axis) having length 1 and having the
points (0, 0) and (1, 0) as midpoints. At the points (1/3, 0) and (2/3, 0)
erect vertical line segments of length 1/2 having these points as midpoints.
In general, at the nth stage in the usual construction of €, 2" open
intervals are removed. At the endpoints of these intervals erect vertical
line segments of length 1/n bisected by these endpoints. The set X is
the union of ¢ and the line segments so constructed. It is easy to see
that I(X) = C.

If Theorem 10 is applied to the set X just described, then the quotient
space X/I(X) is homeomorphic to the plane Peano continuum having
exactly one invert point which we picture in Figure 2.

Fig. 2

The situation described above leads to an interesting question
which we have not been able to answer. Suppose that we let X/IY(X)
denote X/I(X) and define inductively, for n > 1, the space X/I™(X)
= [X/I" Y X)JI[X/I"(X)]. Does there always exist an integer N, de-
pending upon the space X, such that for n > N, the spaces X/I"(X) are
all homeomorphic? And in the opposite direction, is there a continuum X
for each integer N such that, for n < N, the spaces X/I™(X) are all
different? As an example in which ¥ = 3, consider the continuum X
gshown in Figure 3. It is quite obvious that I(X) = 8! and that X|I(X)
is a topological disk. It follows that X/I*X) = §* and that X/I}X) is
a single point. This example can also be modified to yield an example
for which N =4 but we have no example for N = 5.

In view of Theorems 8 and 10 the following result arose quite naturally.

THEOREM 11. Let X be the suspension of a continuum O and let Y
be the space obtained by identifying the cone points of X. If ¥ is near-homo-
genous, then O is o single point (and hence Y is a simple closed curve).

Proof. Let ¢ be the quotient map of X onto ¥ and let w be the
image of the cone points. Any neighborhood of w contains a neighborhood
consisting of two open cones with common vertex w. Thus w is a local
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cutpoint of ¥. Since ¥ is near-homogencous, there exists ¢ ¢ J(Y) such
that g(w).e ¥ —w. The point ¢(w) is also a local cutpoint of I and hence
g-'g{w) is a local cutpoint of X. We select an open product neighborhood
k(0 % (a, b)) in X of the point g1g(w) = h(w, %), where %y e 0, a <ty <b,
and % is a homeomorphism. If the continnum ¢ is non-degenerate, then
the set

{w,t)| we Oy t E1} v {(®,1)] @ # ¥, &<t <b}
is connected and its fmage under % is %(U X (a, b)) —g~¢(w). This con-
tradicts the statement that ¢~lg(w) is a local cutpoint.

COROLLARY. Let X be the suspension of a continuum O and suppose
that I(X) = 8°. Then X[I(X) is invertible if and only if C is a single poini.

Fig. 3

We had remarked earlier [3] that invertibility is a very strong form
of near-homogeneity. Thus local invertibility led us to diseuss the much
weaker property contained in the following definition which, while quite
natural, seems to be new.

DEFINITION 3. A space 8 is near-homogeneous at a point p e if, for
each open neighborhood U of p and each point @ e 8, there exists J g(8)
such that (x) € U. The set of all points of § at which & is near-homogeneous
will be denoted by N (S).

We note that the space S is near-homogeneous if and only if § = N(8).
The following facts may also be noted. They are established just as were
the corresponding theorems above.

1. N(8) is carried onto itself by each h c«I(8).

2. N(8) is a closed subset of 8.

3. N(8) is a near-homogeneous subspace of 8.

4. If N(8) contains a non-empity open subset of 8, then 8 is near-
homogeneous.

5. If N(8) is non-empty, then N [8/N(8)] is also nom-empiy.

icm®
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Our chief interest here lies in the relation between the subsets N (S)
and I(8) of a space 8. The investigation of local near-homogeneity will
be carried out in some detail in another paper. ‘

THEOREM 12. If I(S) is not emply, then I(8)= N(8).

Proof. It is obvious that I(8) is a subset of N (8). 8o let p be a point;
of ¥ (8) and ¢ be a point of I(S). If U is any open nelghborhood of p,
then by the near-homogeneity of § at p, there exists & ¢ I(S) such that
1(g) € U. But h(g) is also a point in I(8). Hence p is a point of 1(S) and,
since I(8) is closed, p is & point of I(8). Thus N (8) is also a subset of I(§).

THEOREM 13. Let 8 and T be spaces. If p e N(8) and g € N (T), then
the point (p,q) e Sx T is in N(8xT).

Proof. Let (x,y) be any point in § x I' and let U xV be a product
neighborhood of (p, ¢). By the near-homogeneity of § at p and of T at g,
there exist homeomorphisms g, ¢ 9(8) and g, e I(T) such that g,() e U
and gyy) € V. Clearly the homeomorphism h(s, ) = (g.(s), gz(t)) carries
(%, y) into UXTV.

CoroLLARY 1. If I(8xT) is not emply, then I(8)X.I(T) is a subsel
of I(8x1T).

COROLLARY 2. The product of two invertible spaces is either invertible
or has empty invert.

This latter corollary provides some further information concerning
a problem which we have not solved and which can be stated as follows:
Oan the product of two finite dimensional continua be invertible? Another
result along this same line can be given to indicate the sort of conditions
one must have in order to give an affirmative answer to this question.

Remark. If (p, q) e I(8x 8), then (g, p) e I(§x 8).

THEOREM 14. Let S be a space with the following properties:

(1) I(8 x 8) is not emply,

(2) I(8)xI(8)#I(8x8), and

(3) 9(8) acts almost transitively on S—1I(8).

Then [8 x I(8)]w [I(8) % 8] s a subset of I(8 x8) and if these two
sets are not equal, then 8 x 8 is invertible.

Note. A group of homeomorphisms acts almost transitively on a seb
X if, for each point p in X and each relatively open set U in X, there is
2 homeomorphism in the group which carries p into U.

Proof of Theorem 14. Since I(Sx 8) is not empty, it contains
the set I(S)x I(8). Let (p,q) ¢ I(8x8)—I(S)xI(8). Without loss of
generality we may assume that p ¢ I(8). Then by (3), the orbit 0, of
the point p is dense In 8. If ¢ I(S), then the fact that I(8) = N(8)
implies that § x I(8) lies in I(8x §). By the remark above, I(8)x &
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also lies in I(8 x 8). It q¢ I(8), then (p, q) ¢ [S—I(8)]Ix [§—I(8)] and
again by (3), we have the product O, x 0, of orbits as a dense subset
of §x 8. In this case, I(§x8) = 8x 8 and §x § is invertible.

For the case of an infinite product, the situation is quite different.
The following results are included here to give a comparison between
the two cases.

THEOREM 15. Let § = 8;,i=1,2,3, ..., be a space with the property

n n
that for some point p e S, the set Ty = p x X 8; lies in the invert I( X 8))
i=2 . de=l
-
for m = 2,3, ... Then the infinite product X 8; is invertible.
i=1

00
Proof. The images of the points in | 7% under space homeomor-
n=2
phisms are evidently dense in the infinite produet. It suffices to show
00 (o]
then that a point of | T is an invert point of X S;. But this is obvious
n=2 qe=1
becaunse T', les in T4, and is contained in the invert of the finite product
oo
X 8.
i=2
COROLLARY. The Hilbert cube is invertible.

As another interesting example, consider the subspace 1" of the Hilbert
cube consisting of all points (ay, @y, a5, ...) with only a finite number
of non-zero coordinates. This space I' has the following properties:

(1) Bvery simplex oan be imbedded in I,

2) I' is a dense subset of the Hilbert cube,
3) I' is a monotone union of closed. n-cells,
4) I' is connected,

B) I' is imwertible.

We verify property (5). First we observe that for each n, the point
(0, @y, ..., @s) is an invert point of I for any choice of the coordinates
@ In I'. Let U= (ByXxByX..XBaxI*) AT be an open get in I" con-
taining the point (0, a,, ..., as, 0, 0, ...). (We are congidering I" ag a sub-
space of the Hilbert cube, of course.) Since (0 y gy ooy Gg) 18 an invert
p_omt of I", there is a homeomorphism % of I'" onto itgelf which is pointwise
fixed outside (ByXB,X...xBn)~I" and which carries I'— U into U.
Therefore the point (0, a,, ..., s, 0, 0,...) 18 an invert point of the space I
We cg)nsider now the space homeomorphism g, which simply interchanges
the first and the (n+41)th coordinates of & point. Clearly the image
9n(81; Gy ...y @ny 0, 0, ...) of & point in I becomes an invert point (0, a,, ...,

@y 0y, 0, ...). Thus each point of I' is an invert point and I' ig in-
vertible.

(
(
{
(
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THEOREM 16. Hilbert space is invertible.

Proof. According to Klee [6], Hilbert space is homeomorphis to
the unit sphere 8” in Hilbert space. Since 8 is certainly near-homogeneous,
we need only show the existence of one invert point. Consider the
point p =(1,0,0,...) eS8 and let U be any open neighborhood of p.
There exists s> 0 such that every point ¢ = (a,, @, ...) of § satisfying
1—e<a, <1 lies in U. Represent each ponit  of § by = =z, +,,
where @, is a point of a one-dimensional linear subspace L, of Hilbert
space and where », is a point in the complementary linear subspace L.
orthogonal to I,. Consider the map % of I, onto itself given by

1
him) = —1-!—5:—6(901—}—1), -1y <<l—s,
=1—(1<a)e,

= @,

l—e<a <1,
|y > 1.

it is a matter of elementary calculation to show that the map

B 12
Hm+m=mw+ﬁ—%% o)
1—x

when restricted to S, is a homeomorphism of 8° onto itself carrying
the open set {w, +,] 1 —& < @, < 1} onto the open set {m +z,] 0 < 2, <1}
If R is the reflection of §° in L,, then the map H “RH provides a homeo-
morphism of §° onto itself such that HRH (8°—U) lies in U. Thus the
point p is an invert point of 8°.

The comparison between the Corollary to Theorem 15 above and
Theorem 16 is perhaps surprising. Another such result follows the next
lemma.

LEMMA. Let J denote the open unit interval (0,1) and-let U = Uy x
® Uy X ... X Uy be an open set in the product J" such that for some 4, 1 <1 < n,
the open set U; is of the form (0,t). Then there ewists o homeomorphism h
of J" onto itself such that h(J"— U) lies in U.

The proof of this lemma iz trivial.

THEOREM 17. The countably infinite product J° of open intervals is
invertible.

Proof. Let U = U, xUyX... xUnxJ x.. be an open set in the
Tychonoff basis for J°. Restricting attention to the first n +1 coordinates,
and thus to a product J"“'“, the lemma above provides & homeomorphism
hoof J** onto itself such that h(J"™ — U, x...x Uy xJ) lies in Uy X ... X
X Un xJ. Extending h to be the identity map on each coordinate i,
k> n+1, we obtain a homeomorphism % of J° onto itself which carries
J?—TU into the open set U.
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We conclude this report with a brief outline of a theory analogous
to that above. The purpose here is to localize the concept of continuoug
invertibility (see [4]) and this led us to the definition of continuous near-
homogeneity given below.

The symbol (8) will denote the group of all homeomorphisms of
the space § onto itself which are isotopic to the identity map on §. That
is, for each element % e%¢(S), there is a continuous map f: 8 xI1->8
with the properties (1) f(z, 0) = &, (2) f(z, 1) = h(z) for all z ¢S and (3),
for each ¢ eI, f|§ x ¥ is a homeomorphism.

In the light of the foregoing development, the following definitions
are quite natural.

DEFINITION 4. A space § is continuously tnvertible at a point p « § if,
for each open neighborhood U of p, there exists % e )W (8) such that
h(8—TU)lies in U. The set of all points at which § is eontinuonsly invertible
will be denoted by CI(S).

DEFINITION 5. A space S is continuously near-homogeneous ot o point
p €8 if, for each open neighborhood U of p and each point  « 8, there
exists & e U(S) such that h(z) e U. The set of all points at which & is
continuously near-homogeneous will be denote by UN(S). The space S
is continuously mear-homogeneous if § = ON (8).

The first six theorems below are proved in exactly the same way
as were their counterparts above. We use the convention of square
brackets to enable us to write two theorems ag one.

TeEOREM 18. The set OI(S) [ON(8)] is carried onto itself by each
ke X (8). .

TEEOREM 19. The set CI(S) [ON(8)] ts closed in Q.

THEOREM 20. If OI(8)[ON (8)] contains a non-empty open subset of 8,
then 8 is continuously invertible [continuously near-homogeneous].

TEEOREM 21. The set (I(S) [ON (8)] is a continuously invertible
Leontinuously near-homogeneous] subspace of S,

TemoREM 22. If OI(8) [ON(S)] 4s non-emply then OI(S/CI(8))
[oN(8/0N (8)] is also non-empry.

THEOREM 23. If CI(8) is not empty, then OI(8) = ON(S).

f)ur final two regults are simple congequences of the fact that the
continuous orbit P, = {y| y = h(m), b e A(8)} is connected.

THrOREM 24. If OI(S) [ON (8)] is non-empty, then 8 is conneoted.

Proof. This need only be proved for the case where ON(8). Let
Ppe QN (8). Then each open neighborhood of P containg a point in every
continuous orbit P,. Therefore P € P, for each point . Since P, is con-

nected, so is P,. Hence § is & union of connected subsets, each containing
the point p.

Zocal invertibility 25

Combining Theorems 21 and 24, we have the final result.
TurorEM 25. CI(8) [CN(8)] is a connected subset of S.

References

[1] Morton Brown, Locally flat embeddines of topological manifolds, pp. 83-91.
Topology of 3-Manifolds, Prentice Hall, Englewood Cliffs, N. J. 1962.

[2]1 P. H. Doyle and J. G. Hoeking, A characterization of euclidean n-space,
Michigan Math. Journal 7 (1960), pp. 199-200.

[8] — Invertible spaces, American Math. Monthly 68. 10 (Dec., 1961), pp. 959-965.

[4] — Continuous Invertibility, Pacific Journal Math. (to appear).

[5] — Dimensional Invertibility, Pacific Journal Math. (to appear).

[6] V. L. Klee, Some topological properties of convex sels, Trans. American Math.
Soe. 78 (1955), pp. 30-45.

MICHIGAN STATE UNIVERSITY

Regu par la Rédaction le 16. 8. 1962


GUEST




