Conclusions. We summarize the results of the preceding section of this part by the following theorem:

Theorem 4.4. There is a countable collection \(D \) of mutually disjoint connected subset of \(\mathbb{R}^3 \) which has properties (II) and (III) but which does not have property (I).

This theorem provides a negative answer to problem 2. We point out that the particular collection constructed also is a suitable set for rejecting problem 1. Also, since \(D \) is a subcollection of \(C \), there is an effective method for constructing \(D \).

References

Duke University

Reçu par la Rédaction le 30.3.1953

Most knots are wild

by J. Milnor (Princeton)

Let \(\text{Emb}(X, \mathbb{R}^n) \) denote the topological space consisting of all embeddings of a compact space \(X \) into the \(n \)-dimensional euclidean space \(\mathbb{R}^n \). This is a Baire space (1). We will say that most embeddings of \(X \) in \(\mathbb{R}^n \) have some given property \(P \) if the set of all \(f \in \text{Emb}(X, \mathbb{R}^n) \) which satisfies this property \(P \) contains a dense \(G_\delta \).

Theorem 1. Most embeddings of the circle in euclidean 3-space are wildly knotted.

Theorem 2. For \(n \geq 4 \), most embeddings of the circle in \(\mathbb{R}^n \) are unknotted.

(Note however that knotted embeddings do exist for all \(n \geq 3 \). See Blankinship [2].)

Proof of Theorem 2. We will show that \(\text{Emb}(S^1, \mathbb{R}^n) \) contains a subset \(\text{Emb}(S^1, \mathbb{R}^{n-1}) \times \text{F}(S^1, \mathbb{R}^n) \) which is a dense \(G_\delta \), and consists entirely of unknotted embeddings.

Let \(\text{F}(S^1, \mathbb{R}^n) \) denote the Banach space consisting of all mappings from \(S^1 \) to \(\mathbb{R}^n \). We will identify \(\text{F}(S^1, \mathbb{R}^n) \) with the product \(\text{F}(S^1, \mathbb{R}^{n-1}) \times \times \text{F}(S^1, \mathbb{R}) \). Since \(n-1 \geq 3 \), the subset \(\text{Emb}(S^1, \mathbb{R}^{n-1}) \subseteq \text{F}(S^1, \mathbb{R}^{n-1}) \) is a dense \(G_\delta \). (Hurewicz-Wallman [6], p. 56.) Therefore \(\text{Emb}(S^1, \mathbb{R}^{n-1}) \times \times \text{F}(S^1, \mathbb{R}) \) is a dense \(G_\delta \) in \(\text{F}(S^1, \mathbb{R}^n) \), and hence a fortiori it is a dense \(G_\delta \) in \(\text{Emb}(S^1, \mathbb{R}^n) \).

But an argument due to Bing and Klee shows that every

\[
(f, g) \in \text{Emb}(S^1, \mathbb{R}^{n-1}) \times \text{F}(S^1, \mathbb{R}) \subset \text{Emb}(S^1, \mathbb{R}^n)
\]

can be transformed into the standard embedding by an isotopy of \(\mathbb{R}^n \).

First consider an isotopy of the form

\[
h_t(x, y) = (x, y + t \rho(x)),
\]

(1) See Lemma 2. \(E \) is a Baire space if every countable intersection of dense open subsets is dense. A subset \(S \subset E \) is called a \(G_\delta \) if \(S \) can be expressed as a countable intersection of open subsets.
where \(0 < t \leq 1 \), \(x \in R^{n-1} \), \(y \in R \). Such an isotopy can transform \((f, g)\) into \((f', g')\) where \(g' : S^1 \to B \) is any desired mapping: it is only necessary to choose \(p : R^{n-1} \to B \) as an extension of the mapping \(f(s) \to g'(s) - g(s) \) from \(f(S) \) to \(B \).

In particular \(g' \) can be chosen as a function having only one local maximum and one local minimum on \(S^1 \). But then, according to Milnor ([7], § 4.3), the embedding \((f, g')\) is unknotted. Therefore every \((f, g) \in Emb(S, R^n) \times F(S, B)\) is unknotted; which completes the proof of Theorem 2.

Remark. More generally, let \(X \) be a compact polyhedron of dimension \(d \geq 1 \). If \(n > 3d + 1 \), then most embeddings of \(X \) in \(R^n \) are unknotted (i.e., are ambient isotopic to a standard embedding).

This follows from Bing and Kister [13], together with the argument above which shows that most embeddings can be deformed into a hyperplane of dimension \(2d + 1 \).

The proof of Theorem 1 will be based on the following. Consider an embedded solid torus \(T \subset R^3 \) with interior \(T \); and an embedding \(k : S^1 \to T \) which has winding number \(\pm 1 \). (Compare Schubert [9].) In other words we assume that the induced homomorphism \(k_* : H_1(S) \to H_1(T) \) is an isomorphism. The simple closed curve \(k(S^1) \subset T \) will be denoted by \(K \).

Lemma 1. The complement \(R^n - T \) is a retract of \(R^n - K \).

(I am indebted to J. Kister for suggesting this formulation.)

Proof. It clearly suffices to show that the boundary torus \(T \) is a retract of \(T - K \). In other words we must show that the identity map of \(T \) extends to a mapping \(T - K \to T \). This is an extension problem of the type which is studied in obstruction theory. (See, for example, Hilton and Wylie [4], § 7.) The only obstruction to the existence of an isomorphism class in the relative cohomology group \(H^n(T - K, T; \pi_1(T)) \). We will prove that all of the cohomology groups of \((T - K, T) \) are zero, so that there is no obstruction.

First note that the inclusion \(K \to T \) is a homotopy equivalence. Therefore the relative Čech cohomology groups \(H^*(T, K) \) are zero. But a duality theorem of the form

\[
H^*(T, K) \cong H_{n-*}(T - K, T)
\]

is not difficult to establish. (Compare [8], Lemma 2. If \(N \subset T \) is a compact polyhedral neighborhood of \(K \), one can establish the isomorphism \(H^*(T, N) \cong H_{n-*}(T - N, T) \), and then pass to the direct limit as \(N \) shrinks down to \(K \).) Therefore the pair \((T - K, T)\) has trivial homology, and hence has trivial cohomology. This completes the proof.

An important consequence of Lemma 1 is the following. Define the rank of \(K \) (or of \(T \)) by the minimal number of generators for the fundamental group \(\pi_1(R^n - K) \) (or for \(\pi_1(R^n - T) \)). Then it follows that

\[
\text{rank } K \geq \text{rank } T.
\]

To prove Theorem 1 we will also need to know that the space \(\text{Emb}(S, R^n) \) is a Baire space. This is clear since \(\text{Emb}(S, R^n) \) is a dense \(G_0 \) in the Banach space \(F(S, B^n) \) which is a complete metric space.

Lemma 2. If \(X \) is compact and \(Y \) is complete metric, then \(\text{Emb}(X, Y) \) is a Baire space.

Proof. This follows since \(\text{Emb}(X, Y) \) is a \(G_0 \) in \(F(X, Y) \) (see [6], p. 57 (1)), and hence is a dense \(G_0 \) in its closure in \(F(X, Y) \) which is a complete metric space.

Proof of Theorem 1. Let \(U \subset \text{Emb}(S, R^n) \) be the open set consisting of all embeddings \(k \) such that \(k(S^1) \subset T \) with winding number \(\pm 1 \) for the interior \(T \) of some differentiably embedded solid torus, with \(\text{rank } (T) \geq r \).

This set \(U \) is dense: Any embedding \(k \) can be approximated by a differentiable embedding \(k' \), and one can tie a number of small trefoil knots onto \(k' \) so as to guarantee that its rank is \(\geq r \). (Compare Fox [5].)

Let \(W \subset \text{Emb}(S, R^n) \) be the intersection of the dense open sets \(U_r \). For any \(k \in W \) we have \(k \in U_r \) and hence \(\text{rank } (k(S^1)) \geq r \) for all integers \(r \). This implies that \(\text{rank } (k(S)) = \infty \) so that \(k \) must be wildly knotted.

Concluding remarks. These two theorems raise a number of questions. Is it true that most embeddings of the unit interval \([0, 1]\) in \(R^n \) are wildly knotted? Theorem 1 suggests that this is true without suggesting a proof. What can be said about 2-spheres in 3-space; or more generally about \(k \)-spheres in \(n \)-space?

A different type of question arises if we ask whether an embedding is knotted “with probability 1". (Such a question is quite different from our Baire space arguments: even in the Baire space \(R^n \) a dense \(G_0 \) set may have measure zero.) One way to make sense out of this question is to put the probability measure on \(F([0, 1], R^n) \) which is associated with Brownian motion. In dimension 3 such a Brownian motion has self-intersections with probability 1. (See [3].) In dimension 4 however, it is an embedding with probability one, hence for \(n \geq 5 \) it follows that a Brownian motion is unknotted with probability 1. (Compare the proof of Theorem 2.) There remains the question as to whether a Brownian motion in 4-space is knotted.
References

PRINCETON UNIVERSITY
PRINCETON, NEW JERSEY

Reçu par la Rédaction le 6. 6. 1964