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Infinite Boolean polynomials I*
by
H. Gaifman (Berkeley, Calif.)

Introduction. This work treats Boolean polynomials (on a fixed
sel of variables) in which the operations of join, \/, and meet, A, may
apply to sets of arbitrary high powers. Thus if X is any set of such poly-
nomials then VX and AX are Boolean polynomials as well. If the
variables of such a polynomial are given wvalues in a complete Boolean
algebra, then the polynomial has a value in this Boolean algebra, which
ig defined in a natural way, and two polynomials which always yield
the same values for the same values of the variables are identified. The
main result of part I is that the Boolean polynomials on s, variables
do not constitute a set.

In Sec. 0 we outline how these Boolean polynomials and the infinite

operations on them can be defined, using the usual tools of set theory,
and avoiding the axiom of choice. In Sec. 1 and Sec. 2 certain properties
of these Boolean polynomials are established, and in Sec. 3 and Sec. 4
a construction is carried out, which, using the results of Sec. 1 and Sec. 2,
implies that the Boolean polynomials on s, variables do not form a set.
From this it follows that there is no completely free Boolean algebra
on 8, variables. Such an algebra, if it existed, would be a complete Boolean
algebra, generated (in the general sense) by s, generators, and free for
all infinite Boolean operations (i.e., every mapping of the free generators
into any other complete Boolean algebra could be extended to a complete
homomorphism). The result gives a negative answer to a question posed
by Rieger [7]. Moreover, the same is shown to hold for Boolean poly-
nomials with 6 variables, where ¢ is an infinite regular cardinal, even
if we add the (8, co) distributive law (i.e., AserVierhs = Viemsn Aie b5
whenever I is of power <<d). These results were also obtained, independ-
ently and about the same time, using quite a different approach, by
A. Hales [5].
* Thig work constitutes a part of the author’s Doctoral Dissertation, done under
the supervision of Professor Tarski. During that period the author was a member of
a project supported by the National Science Foundation. He would like to thank
Professor Tarmski and Professor Scott for their kind help.
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230 H. Gaifman

Using the results we get also that the a-free Boolean algebra (by
which we mean the Boolean algebra which is free for joins and meetg
of less than o elements) on f generators, where a and f are infinite, is at
least of power a - B. An upper bound can be obtained by direct caleulation,
and, under the assumption of the general continuum hypothesis, the
power of this Boolean algebra turns out to be a if a > § and « is regular.

In the second part further results, based on those of the first part
and concerning Boolean polynomials, will be presented. In particular,
the construction used in the first part will be employed to prove a general
hierarchy theorem for Boolean polynomials. The Lebesgue theorem
coneerning the hierarchy of Borel sets turns out to be a special case of
this hierarchy theorem for Boolean polynomials.

Preliminaries. Boolean algebras will be denoted by B, 3B,, B,, ete.
“B. a.” stands for ‘“Boolean algebra.

B.a's are conceived here as algebras of the form <B, v, A, ™,
where A, Vv, and —, are the join, meet, and complement operations,
respectively. ““0” and ‘1’ will denote the minimal and maximal elements
of the B.a., respectively. The partial order of the B.a. is denoted by
Y de,a<<bifavb=band a<bif a<band as£b. “a—D>" stands
for “a A B”. If B =<(B, vV, A, ) then we put |B| = B.

If X C 8] and the least upper bound of the elements of X exists,
then it will be denoted by ““\/ X and referred to as the join of X. Similarly,
the greatest lower bound of X, if it exists, is denoted by “A X and is
referred to as the meet of X. Self-explanatory notations, such as \/ie 185,
Viei:, ete., will be nsed as well.

Ordinals will be denoted by “a”, ¢, ty”, «§7, «30 Gyn wyh with
or without subscripts. Cardinals are identified with their initial ordinals
and natural numbers with finite ordinals. The power of K is denoted by K.

“Iff” means if and only if.

By a-completeness of a B.a. we mean the existence of \/X and
AX whenever X < a. Thus a B.a. is complete iff it is a-complete for
all . An a-complete B.a. is referred to as an a-B.a. A B.a. is (a, B)-dis-
tributive, where « and § are infinite cardinals, if the equality A ;. 1Vies
= Vyemn/\ie1 01 holds whenever I < o, Jy < f for all iel, and all the
joins and meets on both sides exist. (IIJ; is the cartesian product of the
Ji's as tel.) A B.a. is (a, co)-distributive it it is (a, p) distributive for
all 8.

Similarly we use the other well-known a-concepts to mean that
the property in question holds for all joins and meets of less than « elements.
Thus an a-homomorphisin between two «-B.a.js is gz homomorphism
which preserves joins and meets of less than o elements. An a subaigebm
of an a-B.a. B is a subalgebra B’ such that for all X C |B], ¥ < a
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implies that VX, AX ¢ |®B’|, where \/X and AX are the join and meet
of X in B. An a-B.a. is a-generated by a set X of its elements if every
a-subalgebra containing all members of X coincides with it. The notion
of the a-free B.a. on a generators is defined accordingly. A complete
B.a. is co-generated by X if for some « it is a-generated by X.

We assume all the well-known properties of these concepts (see [1]
and [8]), as well as the existence and well-known properties of the normal
completion. (or completion by cuts) of a B.a. (see [1], p. 161). In particular,
we mention the fact that the normal completion of an (a, oo)-distributive
B.a. is also («, oo)-distributive. This, however, is not generally true
for (a, f)-distributive B.a.’s (see [6]).

§ 0. For our purposes it is econvenient to use a set theory which
has proper classes, ¢.g., Bernays set theory. There is no loss of generality
in thig, since with obvious modifications the whole work can be carried
out in Zermelo-Fraenkel set theory without affecting the results.

One can imagine a general theory of complete B.a.’s in which the
operations are \/, A, and~; \/ and A operate on arbitrary sets of terms,
yielding new terms, and ~ operates on single terms. In this way, starting
from a fixed set of variables g, ..., 3, ..., 4 < 8, we get a clags of Boolean
terms, BT, which has the following properties (these are all the properties
which we need):

(0.1) @, ¢ BT for all 4 < 4.

(0.2) If X C BT and X is a set, then \/ X, AX ¢BT, and if f ¢ BT
then feBT (X may be empty).

(0.3) BT is the smallest class satisfying (0.1) and (0.2).

(0.4) For every member f of BT exactly one of the following possi-
bilities holds: (i) For some unique A <6 f=z;; (i) For some unigue
set X, f = \/X; (iii) For some uniqueset X, f = A X; (iv) For some unique
term ¢, f=g.

A concrete definition of BT which will imply (0.1)-(0.4) can be easily
given. For instance, put z; = A+1, and define VX to be the ordered
pair (X, 05, AX to be <X,1) and § to be (f, 2>. Then define BT to be
the smallest class satistying (0.1) and (0.2). It is easily seen that all the
required properties hold.

DEFNICION 0.1. BTy = {@y, ...y @1, .. hics. BTa, where a> 0, is the
set of all Boolean terms which are of one of the forms: f,f, VX, AX,
where fe|Jp<a BTy and X C | p<aBTs.

Tt follows that every BT, is a set and BT = (J.BT., where o varies
over all ordinals. Roughly speaking, BT, is the set of all Boolean terms
in the construction of which no more than a iterations of the operations
are used.
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DerintrioN 0.2. Let B be complete B.a. and put b = (b, ..., b,, D,
where b, ¢ |B| for 1 < 4. Let \/, A and ™ be the Boolean operations in B.
Define f(b; B), for feBT, as follows:

(i) 2x(b; B) = b for 21 < 4.

(ii) VX (b; B) = V {{(b; B)If ¢ X}.

(i) AX(D; B) = A {f(b; B)If « X}.

(iv) §(b; B) = ¢(b; B).

This is & definition by induction on the smallest a such that f e BT,.
It is legitimate because of (0.4). For every feBT, f(b; B) € |B|. (Note
that if # = @ then VX(b; B) =0 and AX(d; B) =1.)

DerivrrioN 0.3. If f, g « BT then f = g if for every complete B.a. B
and every sequence b, of length 4, of members of B, f(b; B) = g(b; B).

Obviously = is an equivalence relation. It is also a congruence
relation in the following sense: if f = ¢ then f = g, and if X and Y are
subsets of BT such that for every f in X thereis a ¢ in ¥ for which f=g
and vice versa, then VX = VY and AX = AY.

DEFmNITION 0.4. If f € BT then [f] = V/ {g|g e BTy and ¢ = 1}, where
a(f) is the smallest o for which there is a g in BT, such that g=f

DErIsiTionN 0.5. ¢ is a Boolean polynomial if, for some f in BT,

o =[fl

Thus a Boolean polynomial is, by this definition, a special kind of
Boolean term. Obviously, if f, g « BT then f=g it [f1=1[g).

P, gl LD with or without subseripts, will denote Boolean
polynomials. “B.p.” will stand for “Boolean polynomial”,

DermvrTioN 0.6. BP = {p|p is a B.p.).

We pose the following problem: For « an infinite cardinat let BT® be
the set of all Boolean terms in which \/ and A operate only on sets of
power <a (i.e. BT is thg smallest subelass of BT satisfying: @, ¢ BT,
for 2 <4, if f e BT” then fe BT and if X C BT and ¥ < o then VX,
AX eBT"). Assume that f, e BT, foe BTy, and [f,] =[f,]. Does there
always exist an f, in BT® A BT, such that [f,] = [f,] = [fs]? If this is
not always so, then there exists a B.p. which cannot be represented by
a Boolean term which involves operations of power <a and not more
than f iterations, but which can be represented in two ways: one in-
volving operations of power <a but more than B iterations, and the
other involving not more than B iterations but operations of power >a.
Thus a negative answer means that the number of iterations can be
essentially reduced at the cost of increase in the powers of the sets to
which V and A apply.
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DrrrvirioN 0.7. If X is a set of B.p’s and f is a B.p. then:
(i) V*X =[Vvd],

(i) A*X =T[AX],

(ifi) f* = 7]

V*, V*, and ~*, will be referred to as the join, meet, and complement
operations for B.p.’s, respectively. Since from now on we deal mostly
with B.p.’s, we will omit “*” when treating B.p.’s, and instead of “\/*",
:4/\*77 and ¢ * we will use uv:s’ “A” and ¢, For the same reasons
“” will stand for “[z,]”. We define ¢ vy as Vip,v} and ¢ Ay as
Adp, v} All our conventions regarding the operations \/, A, ~, will
be adopted for V, A, ™. Thus p—y = AP, V,a0, = V {p|v < 1}, ete.
0 is the B.p. @, A %, and 1 the B.p. #, V %,. Since B.p.’s are Boolean terms,
o(b; B) is defined for every B.p. ¢ by Definition 0.2. The following prop-
erties follow:

(0.5) For all A < 6 x, ¢ BP.

(0.6) If X is a subset of BP and ¢ « BP then \V X, AX, and @ belong
to BP.

(0.7) BP is the smallest class which satisfies (0.5) and (0.6).

(0.8) If B is a complete B.a., b = by, ..., by, ...>01<s Where b; ¢ |B|
for 1 <4, then, for every B.p. ¢, p(b; B) ¢ |B| and we have:

(i) aa(b; B) = by for 1 < J;
(i) VX (b; B) =V {p(b; B)lpeX};

(it)) AX(b; B) = A {p(b; B)lge X}

(iv) @(b; B) = @(b; B),
where \/, A, and — are the operation in B.

(0.9) If @(b; B) = p(b; B) for all B and b then ¢ =y.

(0.5)-(0.9) are all the properties of B.p.’s which will be required.

Note that if X =@, then VX =0 and AX = 1.

The procedure of constructing B.p.’s, as outlined here, follows the
main ideas coneerning the notion of a polynomial for a clasgs of qlgebras
with some fixed similarity type. The usual procedure is to divide the
set of all terms by the congruence relation =. Here, however, all the
terms form a class and each equivalence class is a proper class; hence
if we use this way and wish to treat classes or sets of B.p.’s, we must
use 1 set theory in which there are classes of proper classes. A well-known
device is to define the polynomial [f], which is represented by the term f,
as the set of all terms of the least rank which are equivalent to f. In our
cage this would mean defining [f] as {g|g e BTuy and g ={} If we do
this and want to define the join of infinitely many B.p.’s, we are forced
to use the axiom of choice in order to choose for every B.p. a representa-
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tive term. The procedure used here uses the fact that in a B.a. V/ is an
idempotent operation and avoids the axiom of choice. Thus we can define
[f] as a term equivalent to f and such that f = ¢ iff [f] = [¢]; this can be
done whenever the algebras in question have an idempotent operation.

We conclude this section with some remarks and problems concerning
Boolean terms. If f ¢ BT® (i.e. f is a Boolean term involving operations
of powers < a), then f(b; B) can be defined as in Definition 0.2 not only
when 9B is complete, but also when B is «-complete. Hence, one can
idem?ify two terms f and g, from BT by making the apparently stronger
requirement that j(b; B) = g(b; B) for all a-complete B.a.’s; this, how-
ever, yields the same B.p.’s, since, if for some a-comp'lete B.a. B, f(b; B)
# ¢(b; B), then 7(b; B') = ¢(b; B') where B’ is the normal comple’tion
of B. This is so becauge the joins and meets of sets of elements from B
if t}ley exist in B, are the same as in the normal completion of B fron;
7vh1ch follows that f(b; B) = f(b; B’). The situation is, however, ch}mged
if we want to define (B, y)-distributive B.p.’s. If we restriet ourselves
fmly to BT® then one can either identify terms which yield the same values
in all complete (B, y)-distributive B.a.’s, or one can identify only thosé
terms which yield the same values in all a-complete (8, y)-distributi\}e
B.a.’s. Since the normal completion of a (8, y)-distributive B.a. need
not be (B, y)-distributive (see [6]), it is not clear whether two terms in
B‘T“ which yield the same values in all complete (f, y)-distributive B.a.’s
yield also the same values in all a-complete (B, y)-distributive E,a ’h
In case of (f, oco)-distributive B.p.’s there is no problem since the 1101'n.mi
completion of a (B, co)-distributive B.a. is (B, co)-distributive. A

) Sometimes f(b; B) has a meaning even when B is some arbitrary B.a.
Thl.s Ah-appens when all the joins and meets which are involved in b.hul
definition of f(b; B) exist. If this happens we will say that f(b; B) is
strongly defined. A precise definition of this notion will be: 9:,1(133 B) i‘s
strongly defined and ax(b; B) = b, if g(b; B) is strongly defined,. 50 1s
g(b; B) and ¢ (b, B) = g(b; B), and if g(b; V) is strongly defined for all
geX and the join (meet) of {g(b; B)|g « X} exists in B, then VX{(b; B)
(AX(b; B)) is strongly defined and is equal to V {g(b; B)lg ; x
(/\_{g(I{; B)|g « X}). Another way of making f(b; B) nleanil:lgful is to
define it tolbe f(b; B’) where B’ is the normal completion of B prov&ded
that f(b; SB ) € |B|. Thus we say that f(b; B) is weakly defined ’ifif(b' 23"
¢ |B]. Obviously if f (b; B) is strongly deti it is als o)
The. other et gly defined then it is also weakly defined.
pw:e cl)‘;hqj; ;Iaphgimlon dole;i ngtfhold in general. The problem which we
: H is wea. efined i v

s and Hos ) 15 stmugfy P s;id;s there always a term f such that

§ 1. DrrimitioNn 11. ¢ <y if for every complete B.a. B and

every sequence b of length & of its ;
o elements ¢(b; B) < p(b; B). p<v
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Obviously, o<y iff pVyp=yp and o=y iff o<y and p = ¢.

DEFINITION 1.2. A class @ of B.p.’s is closed if, for every ¢,y <G,
pVyeG o Apel, and ¢ < G.

Properties (0.5)-(0.9) imply that all equalities and inequalities in-
volving V, A, and -, which hold in all complete B.a.’s hold also for
B.p.’s where \/, A, and ~ are replaced by V, A, and ~. All these well-
known properties will be assumed in the sequel. It follows that a closed
get of B.p.’s together with the operations v, A, and = form a B.a.

DeFNToN 1.3. If G is a closed set of B.p.’s then B(@) is the B.a.
<G7 v 1 A H ~>'

Tt follows that if @ is a closed set of B.p.'s and ¢, v € G then ¢ is less
than or equal to yp, as members of B(G), iff ¢ <. Consequently, we get

LmvMA L1, If @ is a closed st {pi}icrC G and Vierpi e G (Aser pie (6]
then, the join (meet) of {pddicr in B(G) exists and s equal 10 Vier@s (Aier®i)-
Also the complement in B(G) of @, where ¢ € G, is Q.

An intersection of closed classes of B.p.’s is a closed class of B.p.’s.
Hence there exists a smallest closed class containing a given class of B.p.’s.

DEFINITION 1.4, Let G be any class of B.p.’s; then: CL(€) is the smallest
closed clags containing G. J(G)={VY| ¥ C ¢ and Y is a set}.

M(@) ={VY|YCGand Y is a set). Com(@)= {plp € G}.
S(@) =J (&) v M(J)w Com(G).

Obviously J(@), M(G) D G I Gis a set so are S(G) and Cl{&); for
S(G) this is obvious and for ClL(@) it follows from the following lemma:

LevMMA 1.2. CL(G) is the class of all B.pJs which are finite joins of
finite meets of members of G < Com (@).

Proof. By the distributivity laws and De Morgan’s laws, it follows
that the class of all finite joins of finite meets of members of G v Com (&)
is closed. On the other hand every member of this class must be in CL(&).

PrriNrTioN 1.5. If @ is a class of B.p.’s then S,(6) = G and 8.(6)
= 8(Up<aSa(@). BPy = {Tg, @15 ey Gy -Jas and BP, = 8,(BP,).

Obviously S.(G) 2 Sp(6) it a>p and BP = |, BP, where a ranges
over all ordinals. BP, is the set of all B.p.’s which can be represented.
by termy from BT, thatb is, involving at most « iterations of the Boolean
operations.

DrrNTooN 1.6. A class ¢ of B.p.’s is self-generated if there are sets
of B.ps Gy, Gyy eery Gy ooy defined for all ordinals «, such that Go
= @~ BP,, Gy C 8(Uacp@p) for all a> 0, and G = UG-

Roughly speaking @ is gelf-generated if starting from those funda-
mental B.p.’s @y, ..y By - which are in G one can construct all B.p.'s
of @ by successive use of V, A and.” using in the process only B.p.’s of 6.
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A self-generated class may be a set, in which case the @’s mentioneg
in the definition will be equal from a certain point on. Thus the BP s
which are sets are self-generated. BP is self-generated as well.

We mention here the following problem concerning self-generated
classes:

Is every self-generated class & of the form  J,&, where G, C 8({peq Gy}
for ¢> 0 and G, = G ~ BP, for a>0?

This amounts to asking whether every self-generated class can be
generated through the “natural hierarchy® of B.p.’s.

Lemma 1.3. If @G is self-generated and H C S(G) then G o H is selyf-
generated.

Proof. G = (J.6. where the G’s satisfy the conditions of Defi-
pition 1.6, Put H, =H ~ 8(Us<uGs) and G =G, H,. Then GuU H
== | J,@; and the required conditions hold for Gy ooy Gy ..

Levuma 1.4, If G is self-generaied so is Cl(G).

Proof. By Lemma 1.3 G U Com (@) is self-generated. Cl(@) is obtained
by taking all finite joins of ¢ w Com (@) and then all finite meets of such
joins. Consequently, applying Lemma 1.3 twice more we find that ClH&)
is self-generated.

It is clear that a union of self-generated classes is self-generated.

LevMmA 1.5. Let G be a self-generated class and & a subclass of & such
that the following hold: (i) &' C & ~ BP,, (ii) if X C G and VX ¢ @ then
VXe@, (iii) if XCG and AX ¢ G then ANXe@, (iv) if pe @ and
¢ e then § e @'. Under these assumptions G = @.

Proof. Put & =J.6, where & = G ~BP, and G C 8 (Up<aGh).
It follows by induction on « that every member of @, is in G'.

TeroREM 1.1. Let G be a closed self-generated set of B.p.’s and let
b= <byy oy bay .. Dics be defined as follows: by =  if me@ and by =0
if @;¢G. Let B be the normal completion of B(G). Then, for every ¢ e @,
9(b; B) = ¢.

Proof. g e BPy~ G then g =, 1 < 6, and b, = ;. Hence ¢(b; B)
= #)(b; B) = by = 3, = p. Now assume that ¢=VIX, XC & and (b; B)
=y for all e X. From Lemma 1.1 it follows that the join of X in B(@)
exists and is equal to VX, hence the same holds for the normal com-
pletion of B(6). Consequently ¢(B; b) = Vip(B;b)lye X} = VX = VX
A similar argument applies if ¢ = A X. Finally if ¢ = § and y(b; B) = v,
then, since the complement of v in B(@) is §, the same is true for B and
P(b; B) = . The theorem follows now from Lemma 1.5.

If B is a complete B.a. and b — Doy vory by,
seen that B is co-generated by {b,,
is of the form ¢ (b; B)

-i<s then it is easily
ceey Dy 1F every member of B
where ¢ ¢ BP. If 8 is the normal completion of B’
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then every member of B is a join (in B) of members of B’; hence if every
member of B’ is of the form ¢(b; B) the same is true for every member
of B. Therefore, Theorem 1.1 yields the following

CoROLLARY. If B is the normal completion of B(G), where & is a closed
self-generated set of B.p.’s, then B is co-generated by {by, ..., b;...}axs, where
br=ay if 221G and by =0 if z,¢ G. ‘

If BP is a proper class then the powers of BP, increase beyond any
bound as « increases; henee the normal completions of B(CL(BP,)) would be
complete B.a.’s of arbitrary high powers, co-generated by {z,, ..., £;...}r<s.
On the other hand if BP is a set then it can be easily established that
B(BP) is a complete B.a. oo-generated by {zy, ..., %...}scs, and this
would be the completely free B.a. on & generators. The power of any
other complete B.a. co-generated by § generators would be <BP.

§ 2. TumorEM 2.1. Let {Tikic;r be a set of closed self-generated sets
of B.p.’s directed under inclusion (i.e., for every 4,§ in I there is a k in I
such that Thx D Tyo Ty). Let R be a set of B.p.’s satisfying the following
conditions:

i RC Ui:I-Z'I(J(-Ti));

() If p,peR then ¢ AyeR;

(iii) 0¢ R;

(iv) For every ¢ in I there is @ B.p. ¢ in R depending on i, ¢ = p(i),
such that for every w in Ty and every o in R, vy A o =0 iff p A ¢(i) =0.

Under these assumptions AR # 0.

Remark. (ii) and (iii) imply that every finite meet of members of B
is %0, but this finite meet property is easily seen to be insufficient to
guarantee that AR # 0.

Proof. Put G = {JserTi. @ is self-generated. Since the Ts are
directed under inclusion and closed, & is also closed.

Put I = {p|y e @ and, for some o in R,y A o = 0}. If 9, 9, ¢ 3 then
¥ Aoy =0, y, Aoy, =0 for some 0,0, ¢R, o, A oye R and (y){Vy)z) A
A (op A gy) =0 hence w, V y, ¢J. Consequently I is an ideal in B(G).
Since 0¢ B, we have 1 A o # 0 for all ¢ R, hence 1¢J, and therefore
J is a proper ideal of B(G). .

Let B be the normal completion of B(G)/I. Put by = 2,/ if 23 ¢ ¢
and b; = 0 (the zero of B) otherwise. We claim that for all i eI the
following is true: "

*) If e Ty then w(b; B) = p|3J.
‘ i)t))viilzﬂy (%) holdgung 1/) =) wa.wa () holds for v then % (b; B) = (b; B)
=9 =7/3.

Assume that Az wi e Tt where {yiher C T and (x) holds for all y;.
Put p = Arer yi. Then p(b; B) = Aer %ilb; B) = Arer 9/3. Since yi =,
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for all I e L, we have y;/J = 9/J and Aezyi/3 = 9/JI. Since B is the normal
completion of B(G)/J, in order to prove equality it suffices to show that
for all o € B(@) if A1ezpy/I—9/I = o/I then o 3. Let o be such a B.p,;
then, for some j, oe Ty. Let %k be such that Ty D T:u 1. For every
leL, o/3—v/3 =0 hence o~y; e3I. Therefore for every leL there ig
a B.p. v in R such that (o=~yi) A7 = 0. Since g—y; e Ty for all 1L, it
follows from (iv) that (c—yi) A @(k) =0 for all leL. Consequently
o Aek) <y Ap(k) for all leL, hence o Ap(k) < Arezyi A p(k) =9 A
A (k). On the other hand, o/3Ap/I =0 hence cApeI and since
cApeTs, 0 ApA ¢(k) =0. Therefore c A (k) < o A p A g(k) =0, hence
celJ.

The case of Viery: follows from this by taking complements and
using De Morgan’s law.

Since every T'; is self-generated, (x) holds for every 7; by Lemma 1.5.

We claim also that for all ¢ €I the following holds:

(#%) If {wihier CTi and AeryiAT =0 for some 7 e R then
(Aezyr) (b5 B) = 0.

By (%) Aueryi(d; B) = Areryif/I. Let o€ @ be such that AzerpyS
= of3J. Then vi/I > oI for alll € L, hence o—y; ¢ J for alll e L. For some j,
oeT;. Let k be such that Tx D Ty w Ty then o—y; e Ty for all 1 ¢ L, hence
(o—y1) A (k) = 0. Therefore oA @(k) < Atczypi A (k) and o Ae(k) AT
< Ateryi A p(k) A7 = 0. Since ¢(k) A 7 € R, this implies that ¢ e J, which
proves (*x).

Now let ¢ be any member of R. By (i) there is a 7% such that
o ¢ M(J(Ts). Therefore & ed (M(T4), ie., 5 = V;esp; where ;e M(T;)
for all jeJ. ;A G =0 for all jeJ therefore, by (sx), ps(b; B) = 0 for
all j e J, hence T(b; B) = Ajcsys(b; B) = 0. Consequently o(b; B) = 1 for
all o € B, which implies A {o(b; B)|o ¢ R} =1 # 0. Hence AR 0, q.e.d.

DerivrrioN 2.1. If T'is a class of B.p.’s then ¢ is essential in v with
respect to T, or, simply, T-essential in v, if either p =0 or y 0 and,
for some oin T, ¢ > 9 A o and ¢ A o # 0. @ is inessential in y with respect
to T, or, simply, T-inessential in y, if it is not 7'-essential in y.

Levma 2.1. If T ds closed under finite meets, o e T, and o A w0
then every B.p. which is T'-essential in o Ay is T-essential in P,

Proof. If ¢ is T-essential in oAy then @ o AcA p %0 for
some ¢’ e T. o’ Aoel hence ¢ is T-essential in yp.

Lesmma 2.2, Let T' be o closed class of B.p.s. If ¢ is T-essential in ¥,
¢’ T'-inessential in v and ¢’ € M(T), then e=—g¢' is T-essential in .

Proof. If p 5 0 then, for some o e 7, ¢ > PAoF0.Put ¢ = Aserpn
where {pi}ic;CT. Sinee ¢’ is T-inessential in v, ¢’ non > ¢ A . Hence,
for some ¢el, g; mon >oAy which means that (o—=@g) Ay 0.
o—g; e T, because T is closed, and we have P’ = (0=@i) Ap 5 0.
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THRoREM 2.2, Let T be a closed self-generated set of B.p.'s. Let ¢ be
a non-zero B.p. of M(J(T)) and let 8 be a subset of M(T) all of whose
members are T'-imessential in . Then p—\/8 0.

Proof. Assume that y e I' and 9 A ¢ = 0, then by Lemma 1.1 every
member of 8 is 7'-inessential in yAg. 1ApAp=9pA@£0 and 1T
hence y A @ is T'-essential in itself. By Lemma 2.2, y A p—gq, is T'-essential
iny A @ whenever ¢; € §; again by the same Lemma, if g, € S, (p A pe—gy)—
—@, is T'-essential in p A ¢ and so on. Hence y A p—\/ 8’ % 0 whenever
S’ is a finite subset of §.

Now let R be the set of all B.p.’s of the form ¢—\/ 8 where & ig
a finite subset of 8. Obviously RC M (J(T)) and by putting 8’ = & we
got ¢ =9—V8 eR. Also if pyeT and pAg = 0 then pA o 0 for all
ce¢R. By Theorem 2.1, putting {Ti}er = {I}, we get AR #0, but
AR =p=V8, q.e.d.

Remark. If we change the assumption of Theorem 1.1 by assuming
S CJ(M(T)) instead of § C M(T) we still get p=V8§ % 0. This is so
since in that case every member of 8 is a join of B.p.’s from M (T) which
must be T'-inessential in ¢. Subtracting VS is the same as subtracting
all these B.p.’s of M(T).

THEOREM 2.3. Let T, Ty, ..., Tuy ., p <o, be a sequence of closed
self-generated sets of B.p.s, where a is some limit ordinal. Assume that
L,CT,C..CT, CTrC... Lot gy ey Gy ey <@, be a sequence of

B.p.’s such that for all p < a:
(i) o, M(J(T,) and o, #0;

(il) out1 = 0,—V R, where R, C M(T,) and every member of R, is
T-inessential in oy;

(fii) oy = Ay<n0y f @ is a limit ordinel >0.

Under these assumptions if ye Ty, B<a, and yA oy #0 then pA
A Ap<a0n # 0. In partioular, Aucao, # 0 (since 1A oy = 05 % 0).

Proof. Put o, = Au<a0,. We have to show that if peT; and
YA o %0 then pA g, % 0. Since o, > o whenever y < f, this amounts
to showing that if w A op # 0, where ye Ty, then also pA sy, #0
whenever g iy such that §--u < a. This i3 done by transfinite induction
on .

FIt is true for u == 0. Agsume it to be true for u and let pA o5 # 0
where y ¢ Ty. By our assumption A 0pep# 0. YA Gprprs =P A Gpiu—
—VRpy,. Every member of Rpy, is Zpy,-inessential in op4,. Hence
by Lemma 2.1 (since ¢ e T C Tsiu) every member of Ry, is Lpy,-in-
essential in ¢ A opy,. Therefore by Theorem 2.2 yA opium# 0.

Agsume it to be true for all » < g where g = Ju > 0. Let p A g5 50
where y ¢ T’ and let -+ < a. Congider {Tp+,}ocq, and the seb { A opts<u
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of B.p.’s. yA gape M (J (T,3+,,)) and, by our induction hypothesis, ¢ A o5y,
0 for » < u. Moreover if ¢’ € Tpiw, v < u and 9" AP A op4 %0 then,
since v’ A p € Tpyp, our induction hypothesis implies that ¢ Ay A o5y, 7 0
for all » < p. By Theorem 2.1 (putting {Ti}er = {Tptslo, and
R={p A Opruhcs) We 286 YA 051y =P A ApcuOpn # 0.

Note that the requirement R, C M(T,) can be replaced by R,
C J(M(T,) (see remark to Theorem 2.1).

We remark here that in a certain sense the converse of Theorem 2.3
is also true. Consider the sequence BP,, BPy,..., BP,, ... (see Defini-
tion 1.5) and let o be any non-zero B.p. of BP,, a > 0. Then there are
B.D.’S Ggy erey Ouy -ony 6 << 0y SUCh that o = o, and sets of B.p.’s By, Ry, ..
R,, .., u < a, such that the following hold:

(i) for all u<a o, e M(U<,BP,), R, C M(J),-,BP,) and every
member of R, i8 (U,<,BP,)-inessential in o,;

(il) ou41 = 0,~VR, and if yg=1Jp < a then o, = A,<,0,.

Moreover, it follows by Theorem 2.3 that the B.p.’s o, are uniquely
determined and depend only on ¢, and not on the particular a (provided
only that ¢ e BP,;). The R,’s can be given by: R, = {y|y ¢ M({,«,BP,)
and ypAo=0}, and the o,’s are defined by: o,= A{®lype U< B}
This will be discussed in detail in Part IT.

‘)

§ 8. Let 6 be a fixed infinite cardinal. Let {N,.}i.cs be a family
of sets of ordinals defined for all 1, u < § such that:
(3.1) N, C 6 and N, = &;
(3.2) I <A, u) # <X, @'y then Ny, ~ Nyp = 0.
It is easy to establish the existence of such a family.
Define by recursion B.p.’s p(a, 1), where 1 < § and « is any ordinal,
as follows:
DErINITION 3.1. ¢(0, 1) = x; for all 1 < 4.
platl, 2) = p(a, DA Ao Viex,, #(a, 7).
Play 1) = Ap<ap(B; 4) if a=a>0.
Roughly speaking ¢({a+1,1) is the meet of g(a, 1) with the B.p.
“obtained by “applying” AV to the § x § matrix whose u-th row consists
of the B.p.’s ¢(a,») as » ranges over N,
Obviously ¢(0,4) > ¢(1,4) > ... > p(a, A) >g(a+1, 1) > ... It is our
aim to show that, for all A<4, @(0,4)>p(l,4)>..> p(a, 4)
>g@(a+1, 1) > ..., and that if § is regular the same continues to hold
even if we add the (4, co)-distributive rule.
We have to show that ¢(a, A)—g(a+1, 1) 0. To do this we will
construet a sequence of closed self-generated sets of B.p.’s which will have

certain properties with respect to the B.p.’s 9(z, 1) and we will apply
our previously established theorems.
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In order to facilitate the notation we put:

(3.3) ¢la; 2, 4) = View, pla, »).
With this we get
(3.4) @la+1, 4) = pla, 1) A Aucspla, 4, u)
and by transfinite induction it is easily seen that:
(3.5) pla, 2) = @(0, 4) A Ap<aAu<s®(B, 2y 1),
(3.5" Play 1) =30, 2) V VpaViuco (B, 4, 1) .
DepNiTioN 3.2. Let T, be the closure of the set of all B.p.’s which
fall under one of the following:
(i) Meets of power <6 of B.p.’s of the form ¢(8, 1) where 28 < a;
(ii) Joins of power <& of B.p.’s of the form %(8, A) where 28 < a;

(iii) Joins of power <4 of B.p.’s of the form ¢(B, 1, u) where 28 < a.
Obviously Ty C T, C ... C T, C Tuyq and we have:

(3.6) @a; 2), @lay 4) € Tosy  @lay 4y 1), @y 4, ) € Toaga -
From (3.5) and (3.3) we get:
(3.7) pla; 1) € M(Up<aaTs) 5, @lay 4, ) € (Tho) -
It in easily ween that:
(3.8) Ty = CL{Aweze(0, HIT < 8Y)
(3.9) Tours = CYToa v {Vserla; AL < 8} v {Vawensla, 4, w)| I <8)
(3.10) Too = Ol Up<z Tp v {Aser(a, )T < 8)) .

LemmaA 3.1. T, is closed and self-generated, for all a.

Proof. Since @, ¢ T, for all A< § and T, is the closure of a set of meets
of @', it follows (by Lemma 1.4) that T, is self-generated. Furthermore,
Tyaq 18 obtained from Ty, by adding to it joins of ¢(a, 1)’s and ¢(a, 4, u)’s
and taking the closure. Since ¢(a, 1) € Ty, and ¢(a, 1, u) e J(Ts,), it follows
(by Lemma 1.3 and 1.4) that if T, is self-generated, so is Th.,. Finally,
if Ty is self-generated for all f < 2a, then o it | p<s Ts and a similar
argument, using (3.7) and (3.10), shows that T, is self-generated.

Lemma 3.2. Bvery B.p. from 1. is a join of B.p.s (also from T,)
of the form  Aex®(B 2) A Ngner@ (B, ) A Aguyear® (By 4, p), where
K, L, M are sets of power <6 satisfying the following: 28 < « if {fi) ¢ K,
28 <a or B=0 if B> e, and 28 < o if {BAud> e M.

Proof. Every B.p. of T, is a finite join of finite meets in which
every B.p. is of one of the forms (i), (ii), (iii) (in Definition 3.2), or a com-
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plement of a B.p. of such a form (see Lemma 1.2). Given such a finite
meet use first De Morgan’s laws and replace every complement of
Acen (8, 2) by Vnen® (B, 4), every complement of Vsen(B, 1)
by /\(ﬁi.)sNa(lgy A), and every complement of V(ﬂlwéN‘P(ﬂ: Ay u) by
Acorpen® (B 4y p). This will yield a finite meet o; A ... A ox in which
every o; is of one of the following forms:

(1) Agnen@(B, ), N <6 and 26 <aif (1> <N,

(1) Veenen® (s 4)y N < 6 and 28 < a if B2 e N,

(2) Vepeng(B, A, N<band 28 <aif {fi>el,

@) Agnen®(B, 1), N <6 and 28 < a if (g1) e N,

(3) Vepnen®(By 4y 1)y N <8 and 28 < a if {fAud> <N,

(3") Acoryen® (B, 4, 1), N <8 and 28 < a if {BAud < N.

A finite meet of B.p.’s of form (1) is again of this form and the same
is true for (2') and (3'). Since P(B,4) =& (0,4) v Vy<sVucs? (¥5 4, 1),
we get that every B.p. of form (1') is of the form Vmen(#(0, 1) V Vy<p
Vu<s®(y, 4, u)) where 28 < o if {BA) e N, that s, of the form Viaer@(0,2) v
\% V(wmeMa(V: A, p) where 2y <a if {yAu> e M. Also, since ¢(B, 4, u)
= View,9(B,7), every B.p. of form (2) is of the form Veu(f,?)
where 28 < a if {fy) ¢ M. If we distribute now over the finite meet we
get a join of B.p.’s satisfying the statement of the lemma, q.e.d.

From Definition 3.1 it follows that Ayserp(ai, 4) = ¢(a, 1) where
& = |Jieras. Consider Acwnexp(@,4), if for every 4 for which there is
an a such that <al) ¢ K we put a; = |_{a|<ad) e X}, then it follows that
Acaner®(@; 1) = Acaex'®(a, 1), where K’ is the set of all pairs (les).
In particular we get that every B.p. of the form Awnexp(a, 1) is also
of the form Acmerp(a, 1), where L is of power <K and satisfies the
following property:

(3.11) If (B 2> eL then there is a maximal x for which <{ul) e L.

Hence in Lemma 3.2 we can also add that K satisfies (3.11).

DEFINITION 3.3. % is the set of all sets K of pairs of ordinals such
that K < 8, for all (82> in K 2 < a and 1< 6, and K satisfies (3.11).

F2 is the set of all sets K of pairs of ordinals such that K < ¢ and,
for all (1) in K, 28 < Max(e,1) and A <.

F5 is the set of all.sets K of triples of ordinals such that & < 6 and,
for all {fip> in K,28 <« and 1, u < 4.

F.=FixF:xF:.
As a result we get:
Leyyma 3.3. Bvery B.p. of T, is a join of B.p.’s of the form

A=@(B, A) ANLB(B, ) A Au@(B, A, 8) where (KELM> cF,,

icm
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(“Are(B, 1) stands for “Aner®(By 2 and similar conventtons are
assumed for “Arp(B, 1) and “AyG(B, 1, w)”).

The reason why the T.’s are defined so that ¢(a, 1) e T, and not
p(a, 4) e Ty, is that we want to obtain an increasing sequence of self-
generated sets, in which the members of every set are finite combinations
of joins and meets of members of the preceding sets. ¢ (a1, 1) is obtained
by applying AV to @(e, #)’s, which amounts to a double step. This
causes the appearance of the factor 2 in the caleulations. On the other
hand the definition could be simplified by replacing “joins of power < 6"
and “meets of power < 4" by “finite joins” and “finite meets”. The proof
that (e, 1) > @(a+1, 1) would carry through. The definition in its
present form is, however, necessary for proving that the inequality holds
also if we add the (4, oo)-distributive law.

Lemma 3.4. If Arp(B, ) A Ar@(Bs ) A AuB(B, 4, u) #0 then K,
L, M satisfy the following 3 conditions:

(8.12) If <{BA> € K and <Bp'A> e L then §'> B.

(3.13) If <BAY e K, {f'vu> ¢ M and %< N,, then § > p.

(3.14) If <BAy e K and {B'iuy < M then B = p.

Proof. Since for 8 < f ¢(f', 1) > ¢(8, 1) we got p(8, ) A F(F, 2) = 0
if f* < B, hence (3.12). For the same reason (8, 1) A 3(8, v, p) = ¢ (B, A
A /\Mqu";(ﬂ’A) =0 in case Ae¢N, and p' < B, hence (3.13). Finally,
P(B +1,4) = @(f, ) A Aucsp(B', 2, 1), hence @(B'y A, u) = 9(B'+1, 2) for
all p < 4. Therefore, if g’ < g, f'+1<p, and consequently ¢(8,2)A
APy A, u) =0. Hence (3.14).

It is our aim to show that for every « it (KLM> ¢ F, the converse
of the last lemma holds. That is, if (3.12)-(3.14) are satisfied then
AxQ(B, A) AALP(B, ) A An®(B, 2, u) 0. This will imply our main
result, namely: putting K = {<fA>}, L = {<B-+1, 2>} and M = @ we will
get p(B, ) Ap(B+1,4) %0, ie, @(f,2)>¢(f+1,7). This is done in
the next section.

§ 4. DuriNtioN 4.1, ¢(K, L, M) means that (3.12), (3.13), and (3.14)
hold for K, L, M.
pr(a) means that for every (KLM) in F, if ¢(K,L, M) then

Ax@(By 2) AN AL ) A Aup(B, 2, u) # 0.

Since F, C Fy for a < B, pr(f) implies pr(a) if a << p.

It is our aim to prove that for all a pr(e). The outline of the proof
is as follows. First in Lemma 4.1 pr(1) is proved by direct verification.
Next we assume that pr(f) for all B<a where a>1. For < a let
B =24, if B is even and p = 2, +1 if f is odd. Given (KLM) in F, pub
Ep = {GD|<ya> e K and y < fo} © {BoyA> e K for some y > fo),
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I, = (il vay e I and 2y < Max(g, 1)}, My = {Md| <y €
and 2y < f}. Obviously <KLM) = (K LM, Put o3 = Agep(y, 1) A
ANALPWy A A Asg®(yy 4y p). IE ¢(K, L, M) then it is easily seen that
¢(Ky, Ly, My) for f < e, henee o # 0 for all f<a It 0 <p=1JB then
65 = Ay<s0y. Moreover, it is shown that for all 1 < 8 < a the B.p. g5y, is
obtained by subtracting from o (which is & member of M (U,<sT,)) B.p.%,
which are in M(|J,<sT,) and which are inessential in o with respect
to Uy<s Ty. This is done in Lemma 4.2 for § even and in Lemma 4.3 for §
odd. It follows then that if a = (a~1)-+1 then o, % 0 by Theorem 2.2
and if @ = Je then o, # 0 by Theorem 2.3. Hence for all « pr(a) by in-
duction on a.
Lemma 4.1. pr(l).

Proof. If <KLM) ¢ F, then K and L are sets of pairs of the form
<0A> and M is a set of triples of the form <(0iu)>. Hence

Axe(B, A ALP(B, ) A Au®(B, 4, 1)
= A{®| 02 e K} A A @[ 04> e LY A A{@:|2 e N,, and <Ovud ¢ M).

If ¢(K,L,M) then no x, appears in this meet together with its
complement. This is so because if <0A) ¢ K then by (3.12) <0i)¢ L,
and by (3.13) if 1eXN,, then (Ovu)¢ M. Consequently the meet is
not zero.

LeEMMA 4.2. Let a = 200> 0. Let (KLM) ¢ F, and let A, be such that
Laghey ¢ K. Then if ¢(K,L, M) and if we assume pr(a) ¢ follows that
olag, 4) is inessential in Axp(B, ) A Arg(B, ) A Au@(B, A, u) with
respect 10 Up<a Ty

Proof. Put o = Axe(f, 1) A ALF(B, 2) A Au®(8, 4, p). Since pr(a),
o #0. I a B.p. y is essential in ¢ with respect to | J,<. 7, then v =9’ A
A ¢> 0 where y' € U,<, T,. Since by Lemma 3.3 every member of 7T} is
@ join of B.p.’s of the form Axme(y, ) A Ar®(y, ) A Auwg(y, 2, 1)
where (K'L'M') ¢ Fp, it follows that o> (Arr@(yy A) A Ay, 4) A
A Aar®(y, A, ) A 6> 0 for some (K'L'M'S in Fy, where f < a.

Therefore, in order to prove the lemma it suffices to show that if
o'Ao #0, where o = Axg(y, ) A Ardy, A) A Awdly, 4, ) and
(E'L'M'5 «Fy, f<a, then ¢(g, %) non > o’ Ao. Put ¢’ = o’ A @, then
o= Aiglyy WA Av@(y, DA Aard(y, 4, ) where K = K'u K,
I =L v L, and M" = Mo M. Since (3.11) holds for K and K, it is
easily seen to hold for K. Also K", L", M" < ¢. Since § < q, it iy easily
seen that (K", L", M'") e F,. I {y2> ¢ K’ then 2y < f < a hence y < a,.
Therefore <{ay4y) ¢ K’ and consequently (o4, ¢ K’’. Thus all we need to
prove is the following: if o = Axvg(y, 1) A AzvB(y, ) A Aprrd(yy 4y 1)
>0 where (K"L"M") e F, and <a,4) ¢ K then g(ay, 4,) non > o, i.e.,
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o' A @(ap; %) # 0. Let y, be the greatest y such that {yhoy e K" (if for
no y {yky e K" put y, =0), then y, < g. Consider {i|for some 7
{ydy e K"}, since K < & this set is of power < 0, therefore there is a W
such that no member of this set belongs to Ny, (see (3.1) and (3.2)).
Let pp be such a u. ‘We claim that o' A H(y,, 4o, mo) % 0. This is so
since o A @(yo; do; o) = Axr@(y, ) A Arr@(p, A) A Ay, 4, u) where
M= Mo {{pohopio}- Obviously <K"L"M"'> ¢ F,. Since ¢(K",L", M),
(3.12)-(3.14) hold as far as members of K", I, and M" are concerned.
Since A¢ Ny, whenever {(yi> ¢ X', (3.13) holds for K’ and M, and
since y < yo whenever (y4,> e K, (3.14) holds as well. Hence ¢(K"/, L', M)
and consequently o A §(yo, g, to) # 0. F(ag, o) = F(¥, A, #) Whenever
y < a (by (3.5%), hence o' A @(ay, 4) = o'’ A @(Yos 20, to) > 0, q.e.d.

Lemma 4.3. Let o =2a+1 and let (KLM)<F,. If Loghyy € K,
{aghopio? ¢ M and ¢(K, L, M), then, by assuming pr(a), it follows that
#(agy hoy ) s inessential in Axp(B, A ALP(B, ) A AuB(B, 4, u) with
respect 10 Tyy.

Proof. Again as in the proof of Lemma 4.2 it suffices to prove that
it KEL'M)elyy, K'=KOK, I'=Loul, M'=Mo M, and
o= A9, ) ANLP(B,2) A A (B, 4, p) then G (ay, 4y, o) D00 > 0. That
is, oA@(ag, Ay o) # 0. Ny =6 and L, M < 8, therefore there is an
ordinal v, in Ny, such that, for all 8,<{B»> ¢ L”’ and, for all § and u,
(Pouy ¢ M. Pub K" = K" U {Copv,)}. Since o 5 0, (3.12)-(3.14) hold as
far as members of K", I"”, and M’ are concerned (Lemma 3.4). Since,
for all B, {Bry ¢ L" (3.12) holds for K’ and L", and since, for all # and g,
{Bropy ¢ M, (3.14) holds for K’ and M"'. {ayiy> ¢ K, since ¢(K", L", M""),
it follows (by (3.14)) that, for all < a, and all u, (Biouy ¢ M". (K'L'M'>
eFo_y hence {aylop> ¢ M’y and, since {aydou,> ¢ M, it follows that, for
all B, (Bhope> ¢ M. Now if v, e Ny, then Aud = Qoped (Napn Nyw =0
if {Au) # (A'w'>) therefore there is no (Au) such that », e N;, and {fiu)
e M. This shows that (3.13) holds for K’ and M". Thus we have
o(K'', L, M) and assuming pr(a) we get (since (K"'L"M">eF,)
AP (dg; ) = Axw (B, ) AAD (B, ) A Au® (8, 2, 4) # 0. Since
®(agy Aoy o) = @(ag, %), this proves the lemma.

Lemma 4.4. For all « pr(a).

Proof. As indicated at the beginning of this section, the proof is
by induction on a. From Lemma 4.1 we have pr(l). Assume pr(f) for
all f < a, where o> 1. Let (KLM) ¢ F,. For all B such that 1 <f <«
put g =28, if B is even and f = 28, +1 if B is odd, and define {KzL,;Mp>
as follows: '
Ky = {KyAd|<ydy e K and 2y < B} v {{Bpdy} for some y > fy, (yA> ¢ K},
Ly = {<yM[<yd> e L and 2y < f},

Mp = {<yap>|<yduy € M and 2y < B}.
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Put o5 = Arp@(7s ) AAL@(Y) A Ng@ (7, 4, p). 1t is easily seen
that <(KzLzMp> ¢ Fp and (K,L.M.y = (KLM}. Moreover, if ¢(K,L, M)
then also e(Xp, Ly, M) for all 1 < B < a. Hence we get o 5= 0 for all
B < a. Note that from (3.7) it follows that o5 e M (|, <, T)) foralll < g < a.

If f=2f,>0, then Kpiy = Kp, Lpy =Ly {{ByAD|{ByA)> ¢ L} and
Mpsr =M © {<Bodp| Poduy ¢ M}. Hence op1 = o5 A A (Boy 1)] <ok
€LIA A Bos 4y )] <Botpy € M} = 03—V (19 (Bo, )] <Bod> € L} {p(Bo, A
Ae Ny, and {Byvud € M}). If {(B,2> ¢ L then, because ¢(K, L, M), we have
(by (3.12)) <{ByA> ¢ K, hence {fya>¢ Kg. If 2 ¢ N,, and {Byvud> € M then
(by (3.13)) <B,4>¢ K, hence {(f,A>¢ K;. Consequently by Lemma 4.2
the B.p.’s subtracted from o to get g4y are inessential in it with respect
to Uy<sT,. Note also that ¢(8y, 4) € M (Uy<pT,)-

If f=2f+1 then Kpyy = (Kp—{<ByA>| for some y > fo+1, <yid
e K}) v {<Bo+1, 1] for some y > fo+1, <pA>e K}, Lz = Ly and My,
= M;. Since ¢(By+1, 1) < ¢(Bo, 4), we get /\Kﬂ+1¢(7’7 i) = /\Kﬁ‘P(V) AA
AN{p(f+1, 2)| for some y > By+1, <{yi)e K} If, for some p > f,+1,
{y > ¢ K then <B,1) e K;, therefore, since @(fy-+1, 1) = ¢(f, A A
A Au<o@(Boy 4, 1), We get a1y = a5 A A{p(Bo, A, w) for some y > By-1,
yAy e K} = a3=V {@(fy, 4, w)} for some y > B,+1, (yA) ¢ K}. If, for some
¥ > fo+1, {yA> e K then, by (3.14), (BoAu)> ¢ M hence {,iud ¢ My; as we
noted also, we have in this case ¢f,1> ¢ K;. Consequently, by Lemma 4.3,
g+ I8 obtained by subtracting from o B.p.’s which are in M (Ts-1) and
are Tp_;-inessential in op.

Finally it is easy to verify that for all § such that 0 < § = UB < q,
98 = Ay<poy. Therefore, if a = (a—1)+1, o, # 0 by Theorem 2.2 and,
it a=Ja, 0, # 0 by Theorem 2.3. This proves pr(a), g.e.d.

Putting K = {{aD}, L =1{<a+1,1>} and M =& we get @(a, A)A
Ag(ad1,2) % 0. Thus we get:

THEOREM. The B.p.’s defined in Definition 3.1 satisfy the property

that, for all 2 <8 and all ordinals a, p(a, 1) > @(a+1, A). Consequently
there is mo set consisting of all B.p.’s on & variables.

LeyMA 4.5. Let a be any ordinal and let ) < 6. If el pc2a Ty and
v 70 then @(a, 1) non > . (Hence @y 4) ¢ Upcza Tp.)

Proof. In view of Lemma 3.3 we may agsume that y = Age(y, »)A
ANLB(y, ) A Auly, v, p) where (KLM>S eFy and B < 20. We have
¢(K,L, M) (because p # 0), and, for all o, if <a’Ade¢ K then o <a
(because 20’ < f < 2q). Consequently it I' = I o {<a4>} then ¢(X, L', M),
and, by Lemma 4.4, (a, Ay = Axe(y,») A ALG, ) AAME(y, v, p)
#0, q.e.d.

Thus the first B for which 9{a, 1) € Ty is 2a. It can also be shown
that the first 8 such that ¢(a, Ay p) € Ty is 2a+1. In Part II we will show
that this implies also that @(a, 4) ¢ Cl(BP;) whenever § < 2a, and that

icm®

Infinite Boolean polynomials I 247
¢(a, 4, u) ¢ CL(BPy) whenever § < 2a+1. It will be shown that this is
a generalization of Lebesgue’s hierarchy theorem concerning Borel sets.
Lebesgue’s theorem follows from this by putting 6 = w, and considering
the B.p.’s ¢(a, 1) where 1 <6 and a < w;. It leads also to a Very easy
construction of Borel sets at any given place of the hierarchy.

§ 5. DEFINITION 5.1. @f(a, co) = y/(a, co0) if for every complete
(a, co)-distributive B.a. B and every sequence of length 4 of its elements,
b, o(b; B) =2 p(b; B). ¢/(a, 00) =yf(a, o) if ¢f(a, c0) >p/(a, o) and
pl(a, 00) = ¢(a, o). @[(a; 00) > y[(a, 00) if p/(a, o) > y/(a, c0) and
plla, 00) # y(a, oo).

It is our aim to show that if d is regular our results of § 4 continue
to hold if we add the (4, co) distributive law. This means that for every
a if yeT, and p # 0 then also y/(d, co) # 0/(6, co). In particular, this
implies that (p(a, 2) A F(a+1, 1)/(8, co) # 0/(3, co), which means that
g(a, Hf(3, 00) > p(a-+1, )/(8, oo) (obviously p(a, 1)/(8, 00) > pla+1, 2)]
(6, o0)). In order to show that y/(d, co) = 0/(8, co) we have to establish
the existence of a complete (8, co)-distributive B.a. B and a sequence b
of its elements for which (b; B) # 0. The B.a.’s which we use for our
purposes are the normal completions of the B.a.’s B(T,). If B is the
normal completion of B(Z,) and y e T, then (since 7T, is self-generated
and @ e T, for all 4 < 4) it follows from Theorem 1.1 that v(b; B) = P,
where b = <@, ..., %1...35<s. Hence to prove that y/(8, co) # 0/(8, co) it
suffices to show that the normal completion of B(T,) is (8, oo)-distributive.

Lemma 5.1, A sufficient condition for the (8, co)-distributivity of
a complele B.a. B is the existence of a set B of elements of B having the
following properties:

(i) B is dense in B (i.e., for every be|B| if b> 0 then, for some
VeB, b=b > 0).

(ii) If B C B, B’ <4, and every finite meet of elements of B’ is non
zero then A\ B’ % 0.

_ Proof. It is well known that B is (d, co)-distributive if, whenever
J<é, AierVierbs > 0 implies the existence of an f in IIje,I; such that
Nijerbyy > 0. _

Agsume J <8 and AjesVier, bi> 0. We may assume that J =a
where a is some ordinal <. Sinee Ai<sVierbs > 0, there is a b, in B
such that AicaVier,be > by > 0. Since ez b > by, there is an 4, in I,
such that b, A by > 0. Let b, be a member of B for which b;, A by > b, > 0.
Sinee \/ier,b; > by, there is an 4, in I, such that b; A b, > 0. Let b, be
a member of B for which b, A b, = b,> 0; and so on.

In general if b, and b;, are defined for all 1 < 8, where 0 < f < qa,
8o that by 2 b, = ... 2 b3 2 bija.ey by > 0 forall 2 < 8, and by, A by = bita,
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then from the properties of B we get Ai<zb; > 0. Consequently A 2<pbs,
> 0. Vierbi 2 Nicpbi > 0, therefore we can choose from B & b; and
from Ip an ip so that /\;_<ﬁb;_ A b’.ﬂ = bﬂ > 0.

Carrying the construction through we finally get Aicsbs, > Ajscpbr
>0, qg.e.d.

Levua 5.2. If 6 is regular then for every a the normal completion of
B(T,) is (8, oo)- distributive.

Proof. Let a be given. Let R be the set of all B.p.’s which ave of
the form Ax@(B8, )AALg(B, HA Au®(8, A, p), where (KLM> is a mem-
ber of I, such that whenever {f2) ¢« K and 2(8-+1) < a then (-1, > e L.
Obviously R C T,,. We claim that:

(2) If p e T, and v > 0 then =y’ > 0 for some 9 ¢ R.
(b) I R CR, R <6 and PAY %0 for all y, »' ¢ B’ then AR’ #0.

Proot of (a). By Lemma 3.3 every B.p. of 7, is a join of B.p.’s
of the form Axg(B, WA ALF(B, ) AAP(B, A, u) where (KLM> eF,,
hence it suffices to prove (a) assuming that y = Axe(8, 1) A ALG(8, AA
AAG(B, A, u), where (KLM> ¢ F,. Since p .0 we have (by Lemma 3.4)
<(K, L, M). For every 4 such that (f1) ¢ K, for some g, there is a maximal
y such that {yi>e K. Put K' = {{(yA>[{yAy ¢ K and, for all y' >y,
y'A> € K} Since ¢(B, 2) =¢(y, 1) if f<y, it follows that Axe(f, )
= NAg'o(B, 4).

Put L' =L o {(f+1,[<pAye K’ and 2(8+1)<a}, and ¢ =
AxoB, DAAr®B, WA AuB(B, 4, u). Obviously ¢ eR and p >y
Since K’ C K and (3.13), (3.14) hold for K and M, they hold also for
K’ and M. If {BA) K’ and B > p then B4y ¢ K', therefore (3.12)
holds for K’ and I'. Thus ¢(K', L', M). By our main result of § 4
(Lemma 4.4), ¢(K'L'M) implies ¢’ # 0. This proves (a).

Proof of (b). Put R’ = {pifi eI} where T <0, pi= Amop(f, )A
ANLPB, DAAMP(B, 4, p) and Ky, L;, and M; satisfy the conditions
defining the members of R. Assume that YAy £~ 0 for all ¢,§ ¢ 1.

Aieryi = Agp(B, ) A ALB(B, ) A Au@(B, 2, #) where I = User K,
L = Userlsy, M = Jser My, Tt is easily seen that if one of the conditions
(3.12), (3.13), and (3.14) holds for all K; u K;, Liv L;, My o My, where
4§ el, then this same condition holds also for the unions Urer Ka,
UterDi, UserMs. Since wi A y; =0 for all i,j eI, we have ¢(K; u Kj,
Liw Li, My o M}) for all ¢ eI, hence o(K,L, M).

The vegularity of 6 and the fact that fi,fi, Mi<6 for all iel
imply that K, L, M < 6. (This is the only place that the regularity of
¢ is used). Thus in order to show that {KLM} ¢ F, it remains to prove
that for any g if (fA) e K then, for some maximal ¥y {yA> € K (the rest
of the conditions defining member of F, are easily seen to hold)
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If ¢(f1> ¢ K and there is no maximal y for which (1) ¢ K then there
are f' and g7 such that § <’ <" and <f'2, (8”4> ¢ K. Hence there
are ¢ and j such that (1> ¢ Ky, ("' ¢ K, and " = f+ 2. Since 26" < aq,
we have 2(8+1) < a and therefore {f+1, 2> ¢ L;. This yields:
PrAYP; < /\Kﬁ(% N AALG(y, 4) <o, ) AP+, 2) =0.

Therefore <KLM) ¢ F,, and using Lemma 4.4 we infer that Nierp: # 0.
This proves (b).

Consider R as a set of members of B(T,). It is dense in B(T,), hence
it is dense in the normal completion of B(T,). By Lemma 5.1 the normal
completion of B(Tj) is (4, oo)-distributive, q.e.d.

This proves the following

THEOREM. If & is regular and y is a non-sero B.p. of some Ty then
p[(8, 00) # 0/(8, o0). In particular ¢(a, A)/(8, o) > ¢(a-+1, 1)/(8, co) for
all 2 <6 and all a.

§ 6. The power of the a-free Boolean algebra. As is well
known, if a and § are infinite cardinals then the B.a. of all a-B.p.’s on
4 variables, is the a-free B.a. on § generators. By an a-B.p. we mean
a B.p. that can be represented by a Boolean term in which the joins
and the meets are only over sets of power < a. The set BP* of all a-B.p.’s
is defined by

DErFINITION 6.1. BP® is the smallest set of B.p.’s satisfying:

(i) x2 ¢ BP® for all 1 < 4.

(ii) If p e BP* then § « BP* and if R C BP® and E < a then VR
«BP® and AR ¢ BP".

(It can be easily established that ¢ e BP® iff ¢ = [f] for some f in
BT", where BT" is the set of all a-terms defined in § 0).

BP*® is used by Rieger to establish the existence of the a-free B.a., [7].
This, however, is a special case of the general method to prove the ex-
istence of free algebras (see Birkhoff [2]).

Note that in ¢(B, A) the joins and meets are applied only to sets
whose power is at most Max (B, 6). Consequently if a is a cardinal and
8 < a the B.p.’s ¢(0,0), p(1,0), ..., @(8,0); .., B <0, are all a-B.p.’s.
Since by our rvesults they are all different, we get BP® > a. This proves
the following

THEOREM. If a and 8 are infinite cardinals then the power of the a-free
B.a. on 8 generators is ot least Max(a, ).

An upper bound for the power of the a-free B.a. on § generators
can be obtained by the following calculation.

Put BP§ = {&y, ..., %;...}ics and define by induction BPj to be the
set of all B.p.’s which are of one of the forms 7, V R, AR, where ¢ € | J,<s BP;
and R is a subset of | J,<;BP; of power <a. Assume that a is regular,


GUEST


250 H, Gaifman

then it is clear that BP* = ( Js<,BPj. (The case of a singular a need no
discussion since in that case the a-free B.a. is also the a*-free B.a. where
«t is the next cardinal after o.) If 8 > 0 then the power of BPj§ is at most
that of the family of all subsets of | J, ., BP, which are of power <. This,
in case (J,<sBPs > a, is 1<a(lUy<s BPS), where the summation is over
all cardinals <a (cardinal summation and exponentiation), and in case
a> U,<sPB: it is 2<%, We distinguish two cases:

(i) 6> a. Then BP; = 6, (Yp<ad’) = 3pcud’ whenever § < a, hence
Dp<al Xpad’) = Dpcad’. Consequently BPE < Ypeod® for all f < a and
therefore BP* < }s<.0”. If we agsume the general continuum hypothesis
this sum would be either § or 6*. (It will be 8 if & is not of the form
Us<yBi where y < a and f, < 8 for all 1< y.)

(ii) «> 6. Here if we assume the general continuum hypothesis it
is easily seen that BP;<Ca for all § < a hence BP® < a. Without the
general continuum hypothesis the estimate is more complicated: Let
f(3,8) be detined by f(3,0) =8, f(8,#+1) = 2®n and J(s, §)
= Dy<sf(8,7) if =1 > 0. I, for no B < a, (8, B) > a, then BP* <a
Otherwise, if f, is the first f<a for which £(6, ) >« then BP*
< Zyeal (8, BoY"-

We get the following

THEOREM. If a and & are infinite cardinals and o is regular, then the
a-free B.a. on & generators is ot least of power Max (a, 6). Assuming the

general continuwum hypothesis it is of power if @ > 8 and either of power
d or & if a<<é.
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Ein eindimensionales Kompaktum im Z°, das sich nicht

lagetreu in die Mengersche Universalkurve
einbetten lift

yon

H. G. Bothe (Berlin)

1. Vorbemerkungen. F° gei der dreidimensionale euklidische
Raum, den wir auf ein festes kartesisches Koordinatensystem bezogen
denken. Der Einheitswiirfel W, ist die Menge aller Punkte p = (&, &, &),
fiir die 0 < & <1 gilt (4 =1, 2,3). Um die Mengersche Universalkurve
U zu definieren, bezeichnen wir mit D; die Vereinigung aller offenen
Intervalle (%/3¢, (k+1)/3%), wo k alle ganzen Zahlen zwischen 1 und 3¢
durchliuft, die bei Division durch 3 den Rest 1 lassen und mit B; die
Menge aller Punkte aus We, von deren Koordinaten wenigstens zwei
zu D; gehdren. Es ist dann U = We\|JR;. Jeder eindimensionale me-

i=1
rische Raum 148t sich homdomorph in U einbetten ([2], Kap. XII).
Es soll hier ein in E? enthaltenes eindimensionalen Kompaktum X
konstruiert werden, zu dem es keinen Homoomorphismus % von E° auf
gich mit der Bigenschaft hA(X)C U gibt.

2. Eine Eigenschaft von U. Ist U eine zahme einfach geschlossene
Kurve in B* und &> 0, so gibt es einen Homdomorphismus b von B® auf
sich, der jeden Punkt von C wm weniger als e verriickt mit der Bigenschaft
h(O) AU = 0.

Beweis. Es sei 6 eine beliebige positive Zahl. Da ¢ zahm ist, gibt
es einen Homoomorphismus b, von E* auf sich, der jeden Punkt von O
um weniger als o verriickt und fiir den ¢, = hy(C) ein einf_ach geschlossenes
Polygon ist (Approximation von Homéomorphismen in dgn E? dqrch
semilineare Abbildungen; siehe [3]). Man findet leicht einen zwel‘ten
Homéomorphismus k, von E* auf sich, der jeden Punkt von C, um weniger
als & verriickt und filv den Cp = hy(C,) ein Polygon ist, dessen san{tllc]}e
Strecken zu Koordinatenachsen parallel sind. Mit R} wol]en‘ wir d}e
Menge aller der Punkte bezeichnen, deren simtliche Koordinaten in

D; w (ENJ[0,1]) liegen. Die Vereinigung R* = L_Jl R} ist dann eine offene

v . . 0 .
dichte Teilmenge von K. Der Homoéomorphismus 7y sei schlieBlich eine
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