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consequently with suitable ¢y, ..., ¢n We have a; = #i(Dyy vy bu)y§ =1, ..., 0.
Since the system (g, ..., gu) is evidently independent, it follows from the
independence of the systems (ap, ..., @) and (b, ..., &) that (g, .., ¢)
=7 which ends the proof.

(i) If A is @ v**-algebra with a finite basis in which every independent
set can be extended to a basis, then W is a v*-algebra.

Proof. Let U possess a basis of n elements. Then every independent
n-tuple forms a basis (because it can be extended to a basis and from
theorem I it follows that every basis has n elements) and it remains to
apply the foregoing statement.

(iii) If 4 is a v**-algebra with a finite dasis and W does not contain
o subalgebra different from W but with W isomorphie, then A is a v*-algebra.

This statement is an immediate congequence of (i), sinee it follows
from the assumption that every independent #n-tuple (wheve n is the
power of the Dasis) is a basis.

The last statement shows that if we introduce the notion of dimension
for v**-algebra with a finite basis as the cardinal number of the basis
{(which is well-defined in view of theorem I), then the dimension of a sub-
algebra can be equal to the dimension of the algebra and that this pe-
culiarity does not occur only for v*-algebras.

Statement (iii) is not true for algebras with an infinite basis, becawse
[, 0y ...]~ [@g, ...]. We do not know whether (ii) is false for algebras
with an infinite basis.

'
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Convergence functions and their related topologies ™
by
D. Kent (Albuquerque, N. Mex.)

Introduction

A cowvergence funelion is a correspondence between the filters on
a given set § and the subsets of § which specifies which filters converge
to which points of 8. This concept is defined to include types of con-
vergence which are more general than that defined by specifying a topology
on 8. Thus a convergence function may be regarded as a generalization
of a topology.

Various generalizations of the latter concept have been made in
the past with the help of convergence criteria; structures of this type
have been identified with such names as “limitierung”, “pseudo-topologie”,
and ‘“pretopologie”. These latter structures may be regarded as special
cases of convergence functions, more topology-like than the basic strue-
tures which we investigate.

The method used here to study the convergence function is to place
it in the ordered environment of a complete lattice C(8), whose elements
are all the convergence functions on an arbitrary set 8. Letting ¢ be an
arbitrary convergence function on 8, we associate with ¢ various topologies
which are related to ¢ in a more or less natural way. To associate topo-
logies with ¢ systematically, the concept of linkage function is introduced.
A linkage function may be regarded as a method for obtaining a topology
from a convergence function which is valid for any convergence function
in C(8).

We investigate and compare four fandamental linkage functions.
The first section introduces some relevant definitions, gives certain
structural properties of C(§), and defines what is perhaps the simples.t
and most natural of linkage functions. A different linkage function 1is
investigated in each of the remaining three sections.

* Research supported by the National Science Foundation, Grant N.SF-G-2>1219:
The work reported here was performed in partial fulfillment of the requirements for
the Ph. D. Degree at the University of New Mexico.
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I. The concepts convergence function and linkage function

We consider § to be an arbitrary set unless otherwise specified.
Two sets related to § are defined as follows:

(1) P(8) denotes the set of all subsets of 8, partially ordered (1)
by set inclusion.

(2) F(8) designates the set of all filters on 8, partially ordered by
set inelusion.

The symbol F will be used to denote a filter in ¥ (8). For all w e g,
%, represents the ultrafilter generated by the set {x}.

Most of the sets with which we deal, such as P(8), F'(S), and C(8),
will be partially ordered; the symbol < will always be used to describe
the order relation. In case the poset consists of filters or topologies,
2 < y may be read “y is finer than #”. If z ¢ § and 4 C 8, » < A means

o <y for all ¥ € 4. An order preserving function from one poset to another -

is said to be isotone. The symbols <, >, > will also be employed with
their usnal meanings.

DErFINITION 1. An igsotone function ¢ mapping F(S) into P(8) is
called a convergence function if and only if @ e ¢(§,) for all x e §.

If @ € ¢(F) for some arbitrary filter § ¢ ¥(S), ¥ ig said to ¢- converge to @.
We see immediately that convergence relative to any topology satisfies
the conditions of Definition 1, and thus defines a convergence function.

For any convergence function g, let B,(w) designate the intersection.
of the set of all ultrafilters which ¢-converge to a. By(w) is called the
g-neighborhood filter at m.

DEFINITION 2. A convergence function ¢ is pretopological if and only
if By(x) g-converges to x for all we S.

DEFINITION 3. A convergence function ¢ is topological if and only
if ¢ is pretopological, and for each # ¢ §, the filter B,(x) has a filter base
®y(2) C By(x) with the following property: y e G(x) e B (x) implies
G () € Gyly).

If g is a topological convergence function, then the members of
®,(2) form a base for the family of open neighborhoods at @ under some
topology; thus ¢ uniquely defines a topology on §. Conversely, given
a topology on 8, the open sets which contain x generate a filter B, ()
satisfying the requirements of Definition 3. Consequently, we shall use
the terms “topological convergence function” and ‘“‘topology” inter-

changeably. A pretopological convergence funetion will ugually be called
a ‘“pretopology”.

i ® A Parﬁa.l ort.iering is a reflexive, anti-symmetric, and transitive relation.
(Ve abbreviate “partially ordered set” by “poset’.)
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Structures similar to convergence functions have been studied by
Tischer [2] and Choquet [1]. The “convergence function” considered
‘here iy more general than the “limitierung” of Fischer and ‘“‘psendo-
topologie” of Choquet. For a convergence function ¢ to be a limitierung,
it is necessary and sufficient that the following condition be satisfied:

(a) @< q(F) and weq(F) implies veg(nF).

For ¢ to be a pseudo-topology, the following additional condition
js necessary and sufficient:

(b) @ eq(F) if zeq(F) for all ultrafilters §’ finer than §.

A pretopological convergence function is a “pseudo-topologie” in
the sense of Choquet. These struetures may be listed in order of increasing
generality as follows: topology, pretopology, pseudo-topology, limitierung,
convergence funetion.

Let C(8) be the set of all convergence fanctions on 8, partially ordered
as follows: ¢, < ¢ it @u(F) O G(F), for all § ¢ F(8). For any ¢ «C(8) we
define the following related convergence functions:

(1) E: © eE(%) if and only if there are filters F, &e, ..., Tn ¢-converg-

n
ing to @ such that § = ﬂ i

(2) ¢*: wegF) if and only if zeg(§') for each ultrafilter ¥ finer
than §.

(3) ¢: weq(® if and only if § = By(w). _

() A(g): @weA(g)(F) if and only if § = Uglw), where ylx) is the
filter generated by the sets Ue By(x) which have the property: y e U
implies U e By(y)- .

At least one member of By(x) hag this property, namely S. Equiv-
alently, Wg(w) may be defined as the filter generated by those sets
U e By(w) tor which y e U and y e ¢(F) implies U e

TrrorEM 1. (1) 'q is the finest limdtierung coarser than (.

(2) q* is the finest pseudo-topology coarser than q.

(3) q s the finest pretopology coarser than q.

(4) A(g) is the finest topology coarser than ¢.

(5) A(g) = ¢ < q* L4 o

Proof. Parts (1), (2), (3) and (5) of the Theorem are 1¥nmedlate
consequences of the velevant definitions. (4) is proved by.Flscher '[2]
in the case where ¢ i a limitierung; no alteration is necessary in extending
the proof to the present situation. L

The A(g)-open sets are those sets U C 8 such that y e U implies
U e By(y). )

Ifl('genersul there is no coarsest topology finer than ¢; this 1“esult a,}so
extends to the other three specializations of a convergence funetion which
we consider.
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The poset C(S) is a complete lattice, whose greatest and least elements
are the discrete and indiscrete topologies respectively. For any non-void
set QCC(8), the convergence functions sup¢) and inf@ always exist
and are given by

(sup @)(F) = inf{g(F): ¢eQ},
(inf Q) (F) = sup {¢(F): qe@?.

Let 3(S) designate the subset of C(8) consisting of all topological
convergence functions on §, ordered by inheritance. Equivalently, we
may consider J(8) to be the set of all topologies on § ordered by set
inclusion. 3(8) is a complete lattice, but not a sub-complete-lattice of
©(8), since the infimum of a set of topologies in C(8) need not be a topology.

THoRoREM 2. For each set T'C I(8) CC(8), supT' is a topology.

Proof. If ¢=supT, then, by Theorem 1, A(g)> 7T, implying
{q) = ¢. Since 1{q) < ¢, the result follows.

For any set TCJ(8), there are two distinet infima which we may
consider: we denote by inf,7' the infimum of 7'C J(8) with respect to
the lattice C(8), and by inf,Z' the infimum relative to 3(8). It is clear
that inf, 7' > inf, 7' in C(8), and inf, 7' = inf, T' iff inf, 7" ¢ 3(8).

DErINITION 4. A linkage function is a mapping of C(S) into I(S)
under which the members of J(S) ave fixed points. An isotone linkage
function is called a linkage homomorphism.

Let 2 designate the function which assigns to each convergence
function ¢ the first topology coarser than g¢.

THEOREM 3. 1 is a linkage honomorphism.

Proof. If ¢ is. a topology, then A(g) = ¢ is obvious. Leb ¢, = ¢. Then
4 = (> Ags). SBince 1A(g) is the finest topology coarser than s
A1) = A(ga)-

As a corollary to Theorem 1, we note that Ag) = l(_;[) = A{q*) = A(([),

11. The linkage function ¢

In the theory of partially ordeved sets, order convergence is defined
as follows: § order-converges to o if and only if @ = inf U(F) = supL(F)
where U(F) = {y: there is an ¥ ¢F such that y = F} and L(g) iy defir.u(l’
dual]y, It P is any poset, then order convergence defines a convergence
funeh.on on P, as is easily verified. The so-called “order 1iop()i()gy” on P
is derived from order convergence by a procedure described in R@feren'-
ces 3. and 4. We shall now generalize this procedure, thereby obtaining
the linkage funetion ¢ on C(9), ' .

Let ¢ be an arbitrary member of C(8).
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DrrNIrIoN L. The set function Ig: PB(8)—~P(S) is defined on all
subsets A C 8 by:

T(A) = {xeS: there is an ultrafilter § ¢-converging to » with 4 ¢} .

The set operation I, defines what Choquet [1] calls a “pre-adherence
structure’’ on S; this is a closure structure in the topological sense, except
in general Iy([(A)) # I'f(4); an example in which Ty{Ty(A)) 5= Ty(A)
is given by Rennie ([3], Example 5, p. 399) in the case where § is a poset
and q is order convergence.

DuriNizioN 2. The set function Ty: B(s)—+P(S) is defined for all
A C 8 by letting [y(4A) be the intersection of all sets in the range of
I, which contain 4.

The set funetion I, satisfies the topological closure axioms. We
denote by @(q) the topology consisting of those sets which are complements
of sets in the range of I,. If § iy a partially ordered set and ¢ is order
convergence, ¢(¢) is the “order topology” on 8.

It ¢ is a topology, then Iy assigns to each set A C 8 its usual topological
closure ]{; thus ¢(¢) = ¢. From this we conclude that ¢is a linkage function.
An example at the end of this section will show that ¢ is not a linkage
homomorphism.

The following lemma is an immediate consequence of Definition 1:

LeyvMA 1. If ¢y 3= gs, then Ig(d) CTp(A) for all ACS.

TrroREM 1. For all A C S, I'j(4) = I'(4).

Proof. Since ¢ =< ¢, I{4) C I'3(A4) follows from Lemma 1. Suppose
x e IG(4). Then an ultrafilter & g-converges to @ and contains 4. Tf all
ultrafilters which ¢-converge to  fail to contain A, then Cod e By(x),
contradieting the assumption § 3> By(x). Thus at least one ultrafilter
which g-converges to @ contains A, and xelg(4).

TamorEM 2. I (A) = A if and only if A ds closed relative to the
topology 4(q).

Proof. Assmme 4 s A(q)-closed. Then if zeCod and e g(F),
Cod ¢F. Thus there are no wirafilbers which ¢-converge to @ and contain
A; hence wé [,(A). Conversely, assume [y(4) = 4. Let zeCod. If an
ultrafilter § ¢-converges to w, A cannot be a member of &, otherwise
Iy A) s A, Thus for each ultrafilter § which ¢-converges to @, Cod %;
hence Cod is A(¢)-opel.

We denote the neighborhood filter at @ with respect to the topology
¢(q) by Wy(w). Bach p(g)-open set iy a union of sets of the form Coly(4);
thus sets of this form which contain o generate the filter IBy(w).

TrrornM 3, Colly(4) e Wy(w) #ff CoA e Bylw).

Proof. (1) weColl(4) implies that each ultrafilter which refines
V(@) containg CoAd, and hence Co A e By(m).
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(2) @é Coly(d) implies that some ultrafilter § 3> By(x) containg A,
From this it follows that Cod ¢ By(x).

CoROLLARY. A(g) < ¢ < ¢(q)-

TEEOREM 4. The following statements are equivalent:

1) Ag) = o(0),

(2) 7 is a topology,

(8) I'y =1y

Proof. (1) implies (2) by the Corollary to Theorem 3.

(2) implies (3), since Iy = Iy = I's = I,

(3) implies (1): Indeed, since I'Q(I’q(A)) == Iy(A), Ii(A) is A(q)-closed
by Theorem 2. Thus 2A(g) = ¢(g). (1) now follows from the above Cor-
ollary.

To conclude this section, we cite examples to show that ¢ is not
a linkage homomorphism.

Exampre. Let 8§ be an infinite set, partitioned into o family of
mutually disjoint sets, each of which consists of & pair {#, 2’} of elements
of 8. A pretopology ¢, is defined by specifying the neighborhood filter
By,(w) at @ €S8 to consist of the sets § and §—{x'}; similarly, By ()
congists of the sets § and §— {#}. This assignment of neighborhood filters
is extended to all pairs {#, @'} in the stated partition of 8. Since I'y({z'})
= S—{x}, the set {z} is p(g))-open; since this is true for all z ¢ 8, p(q,)
is the discrete topology. Ome easily sees that A(g) is the indiscrete
topology.

To see that ¢ is not a linkage homomorphism, we define g, to be
the topology whose open sets are complements of finite sets. Since
#(ge) = g2, we have g, > gy, but ¢(g.) < @(q).

III. The linkage funection o

If there were a coarsest topology finer than a given econvergence
function ¢, then it would be possible to define a linkage function dual
to 4 in an obvious way. The linkage function o ig perhaps as close as one
<can come to accomplishing this objective.

DEFINITION 1. For each ¢ € C(8), let M(q) = {p: p ¢ ¥ (8) and ¢ < p).
Let o(g) = inf, M (g). ’ ) == {p: p ¢ 5 (8) and ¢ < p)

THEOREM 1. ¢ is a linkage homomorphism. For all q e C(S),
a(g) = A(q).

Proot. (1) If ¢ is topological then q € M(q), and hence g = inf M (g).

(2) If ¢, < go then M(g,) C M (g,) and o(q) < o(g).

(3) My <g< M(g).

Convergence functions 131

From the definition of the linkage function ¢ it is. clear that ¢(g¢,)
= p(gy) whenever ¢; and ¢, agree on ulfrafilters; the same remark holds
for A. In contrast, we have the following resnlt for o.

THEOREM 2. If g, and ¢, are convergence functions which coincide on
Son-ultrafilters, then o(gy) = o(gy).

Proof. Let p be a topological convergence function with p > ¢;.
Then Bp(z) ¢y -converges to o If Byp(a) is a non-ultrafilber, then By(w)
(.-converges to @, since ¢ and g, agree on non-ultrafilters. If BVyp(w) = Fa,
then Bp(x) go-converges to @, since g, is a convergence function. Thus
p =g Thiy argument is veciprocal, therefore M (g) = M(gs).

TEMMA 1. Let ¢ € C(S) and let § q-converge to @, with V(@) < F < Fa.
Then there s p e M(q) sueh that Bylr) =F.

Proof. (1) To construct p, let & denote the class of all sets of the
form € w X, where O C 8~{r} and FeF or F = @. One easily verifies
that the class & is a topology, which we denote by p.

(2) p=q If y#w, then {y} ¢S and hence By(y) =Ty. I FeF,
then Fu @ e, xel, and hence F ¢ Bp(w). Thus BVy(x) >F. Thus for
all v e 8, Vy(y) ¢-converges to y.

(8) V(@) ==F. It UeS and we U, then U= CuF, FeF Thus
Ue§.

Let g ==inf M (q).

THROREM 3. If ¢ 48 a Wmitierung, then ¢ =q.

Proof. g ¢ is clear. Suppose z e ¢(F). Then F~F, ¢-converges
to @, and by Lemma 1 there is p e M(g) such that Bp(x) = F ~ Fe. Nince
By(®) §-converges to », v eg(F) and §< ¢

The set of all topologies which ave lower bounds of 1 (g) coincides
with tle set of all topologies which are lower bounds of g. From this
we deduce the following corollary:

CoroLLARY. If ¢ is a mitierung, then A{g) = A(@) = o(q)

TUBOREM 4. There is @ coorsest limitierung (respectively pseudo-
topology, pretopology, topology) finer thaw q if and only if 7 18 a limitierung
(respectively pseudo-topology, pretopology, topology).

Proof. (1) Let ¢ Do the coarsest limitierung finer than g¢. Then
M(q')C M (q) and inf, M (¢') = ¢ > §. On the other hand, it I(q) denotes
the set of all Nmitierungs finer than ¢, then T(¢') = L(g) D M(g); hence
gz inf, L(g") == ¢ ‘

(2) Conversely, assume g is o limitierung. If p is a limitierung finer
than ¢, then M (p) C M(g) = M (7). Hence 7 < inf M (p) = p-

(3) The proof requives no alteration if “limitierung’ is replaced by
“pseudo-topologie”, “pretopology”, or “topology”.

Fundamenta Mathematicae, T, LIV 9
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IV. The linkage function ¢

DrrrnrrioN 1. A convergence function ¢ is guasi-topological it and
only if there is a topology p such that p and ¢ coineide on non-ultrafilters.
Tor each geC(8), let K (g) be the set of all quasi-topological convergence
functions which are coarser than ¢. For each ¢ ¢ K{g), let p, he the topo-
logy which coineides with » on non-ultrafilters. Let K'(q) = {p,: » ¢ K(g)}.

DeriNITION 2. For each g« CQ(S), let o(g) = supK'(g).

ToeoREM 1, (1) o is a lnkage homomorphism.

() g = o(9) < a(q)-

Proof. (1) If ¢ is topological, then ¢eXK'(q) and ¢ == sup I'(¢). It
P = ¢, then K'(p)2 K'(g) and thus o(p) = K'(g), implying o(p) = o(q).

(2) If 7 € K'(g) and p e M (q), then since B,(x) ¢-converges to a for
all z e 8, it follows that Bp(x) = B{x) and p = ». Thus g(g) = supK'(q)
<inf, M (g) = o(g). Furthermore, since 1(g) € K'(q), it is clear that A(q) < o(q).

THEOREM 2. o(q) = q if and only if q 1s quasi-topological.

Proof. If ¢ is quasi-topological, then p,=>g¢. Since p,e K'(q),
Py = 0(q) = ¢- Conversely, if ¢ is not quasi-topological, then each member
of I'(g) is strictly finer than ¢ on non-ultrafilters, whence o(¢) non> ¢.
Furthermore, o(g) # ¢, since ¢ is all the more non-topological.

The next three statements are all immediate consequences of previous
results.

(1) If ¢, and ¢, agree on non-ultrafilters, then o(q) = o(¢.).

(2) If ¢ is quasi-topological, then o(g) = o(q) > q-

(3) It ¢ is a limitierung, then p(q) = o(g) = A(g) < ¢.

To prove that ¢ and ¢ ave distinet convergence functions, it suffices
to prove the two conditions “o(g) > ¢’ and ‘“‘g¢ not quasi-topological”
may coexist.

Exavprs. Let § be the three element set {a, b, ¢}. Let ¢ be defined
as follows: ¢(Fa) = {a, b}; ¢(F)= 0}; @(Fe) = 0, ¢}; ¢(Fue) = {b}, where
Ta: denotes the filter generated by {a, e}; ¢(F) = @ for all other filters §
on {a, b, ¢}. g is not a quasi-topological convergence funetion, however,
a(qg) is the diserete topology.

Concluding remarks

For a given convergence function ¢, the four topologies A(g), ¢(q),
o{g), and o(q) do not exhaust the list of topologies which are related to g.
.In the following two paragraphs, we show how additional topologies,
in general distinet from the four which we have considered, may be

associated with a convergence function ¢, using techniques which are
available to us.
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Suppose ¢(q) > A(q) f(ir a given convergence function ¢. We can
introduce the set function I defined by I(4) = Ty(Iy(4)) for all A < B(8).
In the same way that ¢(¢) is constructed from Iy, we construct @:(q)
from T2. It can be shown that A(g) <@.(q) < ¢(g). If A(g) < gu(g), the
process may be repeated, yielding ps(q), with A(q) < 9s(g) < po(q). It
oilg) #AQ); §=1,2,..,m—1, we obtain the sequence of topologies
) < eal) < Pu—a(@) < oo < @al@) < 9(q). If palg) > A(g) for all integers n,
one can extend the family to include an infinite chain of topologies
between. A(g) and ¢(¢). The chain terminates when, for some ordinal
number «, go(q) = A(g).

A second family of topologies related to ¢ may be generated by
exactly the same procedure if ¢(§)  o(q), where § = inf, M (g). In this
case, we define $(g) == ¢(q); we can then define g.(q), ps(q), ete., the process
terminating only when, for some ordinal number a, @ig) = o(g).

Since A(g) = o(g) == g(g) when ¢ is a limitierung, a justification for
considering the more abstract eoncept of convergence function seems
appropriate. One argnment is that order convergence in a partially ordered
set (defined in Section IT) defines a convergence function but not a limit-
ierung in general. As an example, let § be the complete lattice composed
of the set union of two veplicas of the open interval (0, 1) of the real line,
with the addition of a greatest and a least element. One easily verifies
that the order comvergence function in this poset is not a limitierung.

I wish to express my sincere gratitude to Professor J. Mayer-
Kalkschmidt for his agsistance and encouragement.
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