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A theorem on doubly transitive permutation groups
with application to universal algebras

by
G. Gritzer (Budapest)

There is a certain class of groups, namely the class of doubly transi-
tive minimal permutation groups (*), which are related to certain pro-
jective plains as well as to certain universal algebras. Under an additional
hypothesis a complete description of this class of groups was given in
the excellent book [2] of M. Hall, Jr. This theorem introduces two
operations, + and -, in the set K, on which ® acts as a doubly transitive
minimal group in such a way that ® is isomorphic with the linear group
over K, i.e. with the group of linear substitutions z—azm+b (m # 0),
and it is proved that (K; 4, ) is a near-field (*) in which z = zm -+
(m # 0, 1) always has a solution. The additional hypothesis is that given
a,beX, as#b there iy at most one element a of & which takes a into b
and which displaces every element of K. Whether or not this condition
is necessary for the validity of the theorem is not settled there and it is
not my aim to solve this problem here.

In this note I would like to give a ,,coordinatization theorem’ for
an arbitrary doubly transitive and minimal group &. This theorem is
(at least, apparently) more general than that of M. Hall. However, the
impetus for proving this result was given not by M. Hall’s theorem but.
by the work [6] of 8. Swierczkowski on algebras independently generated
by every n distinet elements. He gave a complete description of this
class of universal algebras for # s 2. Namely, he proved that an algebra
independently generated by every n distinct elements is the trivial algebra
with # elements if » > 3. For n = 3 there exists a unique non-trivial
algebra independently generated by every three distinct elements. For
7 = 2 the probler remained open, but he proved that if the algebra A
is independently generated by every two distinct elements then the
group ® of all automorphisms of A is doubly transitive and minimal.
Since a partial converse of this statement can be proved, we can apply

(1) For the notions, see § 1.
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the “coordinatization theorem” to give a description of this class of
universal algebras.

I have tried to make this paper self-complete; therefore every notion
and notation used is collected in § 1. In § 2 the coordinatization theorem
is proved (Theorems 1 and 2) and then the algebraic equivalent of
M. Hall’s problem is discussed in detail {Theorems 3 and 4). An almost
trivial result (Theorem 7) establishes a one-to-one correspondence between
doubly transitive minimal groups and a certain class of algebras in-
dependently generated by every two elements, which we call reduced
2-algebras. The main theorem of this paper is the representation theorem
for reduced 2-algebras (Theorems 6 and 8). Theorems 9-11 lead to the
determination of the cardinality of the set of non-isomorphic algebras
independently generated by every two elements and with a given avto-
morphism group. It turns out that even in the simplest case where the
automorphism group is the symmetric group on two letters there are
2% such algebras.

§ 1. Preliminaries. Groups. Let 4 Dbe a set and @ the collection
of certain one-to-one mappings of A onto 4, ie. let the elements of @
be permutations of 4. Small Greek letters will denote the elements of @,
while small Roman letters the elements of A. If a e G, a ¢ A, aa denotes
the ,,image” of a under ¢; sometimes we write a: a—b to denote b — aa.
The product af of two elements a, 8 of @ is defined by of: a—(aa)p;
obviously, «f is also a permutation of A. The identical permutation is
denoted by e, ie. as=a (sed). The inverse o of a is a~': au—sa,
A permutation group ® (or simply, a group) is a collection G of permu-
tations, G is not void and a«,fe@ implies af™ e @; thus always ¢ ¢ G.

® is called n-ply iransitive if, given 1y byy Gy by vey Gny by € A,
Qs # a4y, by # by if 7 # j, there is an a e ¢ with

(1) Ga=by, i=1,2,..,n.

We will mostly he interested in doubly itransitive groups (n = 2y Ifn=1
then @ is called tramsitive.

An n-ply transitive group is called mindmal if (1) is satisfied by
2 unique a € @.

Let ® be a group of permutations of 4. We define an equivalence
relation on A4, a~b (a,b ed)if an a e @ exists with ae = b. The equiv-
alence classes {0y; Ae A} will be called the transitive constituents of A.
Thus, if a e Ch, beOu, A2 p (A4, pe A) then ac = b holds for no e @.
The group © is tramsitive if there is only one class 0, = 4.

It 4,B are sets, AL B, A~ B, A\B denote the set-theoretical
union, intersection and differerice, respectively; {1, @y, ...} denotes the
set whose elements are a,, a,, ---5 hence if w e 4 then A\{x} denotes the
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sebt consisting of all elements of A distinet from x. The cardinality of
the set A is denoted by |4].

Universal algebras.

A universal algebra (?) (briefly: algebra) is a couple (4; F) .v:.rhere
4 is a set and F is a collection of finitary operations (3) on 4; a finitary
operation f = f(@y, ..., xx) assigns to every n-tuple (a,, ..., as) of elements
of A a unique element of 4 denoted by f(a, ..., aa).

If we do not require that f(a,, ..., a,) be defined for every n—t:uple,
then f is a parfial-operation and (A4; F) is called a quasi algebra (*). Some-
times, we write (A;f,, fa,..-; @1, @, ...) to denote an algebra, where f,, fz,.
are operations (partial operations), and a,, a,, ... are elements of 4 Whl'(’h
oceur in the definition of f,, f,, ... (}). Let (4; F), (B; F) be algebrz.ns with
the same set of operations and & a many-one mapping ¢ —xzh of A into B;
B is a homomorphism if f(ay, ..., ax) h = flah, ..., in 7.L) for every f.eF,
Oyyeny tp € A. If b is one-to-one and Ak = B, thep 1t.1s an isomorphism.
An automorphism is an isomorphism of (4; F) with itself; the set of .all
automorphisms is denoted by (S((A , F)) (briefly: G(4, F), or ®), which
is a permutation group on A.

Let (4; F) be an algebra and B a subset of. A m}ch that feF,
byy ..y by € B implies f(by, ..., bu) e B. Then (B; F) is again an algebra;
it is called a subalgebra of (A; F). Given H ( A there iz a smaj]lest sub-
algebra (B; F) with B containing H. If 4 = B, H is a generating system
of (4; F). .

A™((4; F)) (ox, briefly, A™) will denote the class of all algeb?'a/bc
n-ary operations (°) in (4; F), i.e. the smallest class of n-ary operations
satisfying the conditions: o

O1. The n-ary operation (7) e defined by e (y, ..., @n) = @4 is tn A
for i =1,2,..,n.

02 If thy ey gm €A™ and f =f(i,, ..., @m) ¢ F then

Fg1y ey gm) = f(gl(“’l: vy Ba)y ooy @y ey mn)) ed™ .

We put A=AV L AP ... and F” =F~ 4™, thus F=F" 0 F® o -
A® ig the class of O-ary operations; their values are called algebraic
constants. o i

The algebra (4; F) is trivial if 4™ contains only trivial operations,
i.e. those listed in OL.

(2) Itis aTl;)‘;salled abstract algebra and universal algebraic system by many authors.

() Also called functions. ) .

(%) Partial abstract algebra and partial algebra are also adopted tel_‘mmologles.

() E.g. a ring is (B; +, -; 0). It is sometimes useful to indicate which element
is the zero.

(%) Also called derived operations.

(") These are the trivial operations.
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The function f(g1, ..., ym) defined in 02 shows that A™ = (4™; F)
is an algebra. One can easily prove that A™ is a free algebra with
generators, ef, ..., ¢y. This means that if p is an arbitrary mapping of
€'y ..., ey into A then there exists a unique homomorphism % mapping
A™ into (4; F) such that &'p =&'h, i =1,2, ..., n. .

With Marczewski [3] (°) we call the elements a;,...,as of (4;F)
tndependent if the homomorphism % induced by €'p =as, ¢ =1, ..., 1,
is one-to-ome. An equivalent definition is

(I) @y, ..., an are independent if f, g e 4™, F(ay, ..., as) = g(ay, ey )
implies f(by, ..., bn) = g(by; -.., bn) fOr every by, .., bned, i. e f=g.

A generating system @, ...,a, is called a dasis if a,,..,a, are
independent.

The algebraic operation j (e A™) depends on the variable »; if theve
exists elements a;, ..., an, ai of 4 such that f(ay, ..., a, ..., an) # flag, ...,
Ai—1y a}, Qit1y eeey an).

A™ denotes those operations in A™ which depend only on one
variable. Similarly, if f,gsA("'), we say that f=g depends on =, i
there exist a,...,an, a1e4 such that f(ay, ..., an) = g(ay, ..., ay) and
flaly @y ey an) = g1, 0y ..., az). A class of algebras in which independence
has many properties similar to the usual properties of independence in
vector spaces was defined by B Marczewski [5]:

An algebra (4;F) is called a v-algebra (*) when, for each pair of
algebraic operations f, g sA("), if f =g depends on z, then there exists
an algebraic operation % e 4™ Y such that @1y eees a) = g2y, oo, )
is equivalent to ©; = hi(,, ..., &y).

Now we define the notion of n-algebra: (4; F) is an n-algebra,
7 being an integer, if any # distinct elements of A form & basis of (4; F).
We will be interested in case n = 2. Let us repeat the definition:

The algebra (4; F) is a 2-algebra if any two distinet elements are
independent and any two distinet elements generate the whole (4; F).

A special kind of algebras, namely the near-fields, will be needed:
a near-field is an algebra (4; +, -; 0,1) in which all laws of a division
Ting excepting the right-distributivity hold (). More explicitly, (4; +; 0)

&) See’ also [4]. This notion was originally used by G. Birkhoff [1] to define free
algebras. It’s }15efu1ness to universal algebras was pointed out by E. Marczewski [3].
:A. tvh;rm;fhgomg rlesea,rch in this field was made by Marczewski and his colleagues
. Wrociaw, namely by A. Goetz, W. Narkiewicz, W. Nitka, C. Ryll- ki
8. Swierezkowski and K. Urbanik. i iRzt

) ];n [71, :-a.lgebras are also called Marczewski’s algebras. 1 prefer the original
name, v for vector spaces, since Urbanik proved that with a trivial exceptio; h
A® = 4% . algebras are indeed vector spaces. prion (when

(*°} In [2] the dual notion is used, namer the ri, istributi i

¢ ) y, the right distribution law is postulated.
For my purposes the definition adopted is more convenient. ?
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is an Abelian group; (4; -; 0) is a semigroup with 0 as a zero, (4> {0}; -; 1)
is & group with the unit element 1; and we have the rule a(b+¢) = ab - ac.

§ 2. The coordinatization theorem. We will consider algebras
(4; —, +3 0,1) defined as follows:

A0. — and - are binary operations on A; 0 and 1 are elements of A.

Al. (4; -;0) 18 a semigroup with 0 as the zero-element.

A2. (A\{0}; -3 1) is @ group with 1 as the unit element.

A3.a—0=a.

Ad. a(b—c) = ab—ac.

A5. a—(b—ec)=c if a =0,

a—(b—c¢) = (a—b)—(a—Db)(b—a) e if a5 b.

In A5, (b—a)”" denotes the multiplicative inverse of b—a s 0 which
exists by A2, A3 and A5. In axioms A4 and A5, ay is an abbreviated
form of z-y, which convention will be adopted in the sequel.

It is obvious that if (K; +, -;0,1) is a division ring or a near field
and — denotes substraction, then (H; —, -; 0, 1) satisfies A0-A5. In this
case in A5 the element (a—b)(b—a)™" is —1 and A5 merely says that
a—(b—c)=a—b+c.

Algebras with properties A0-A5 can be used to construet doubly
transitive minimal groups.

ToHEOREM 1. Let (4; —, -5 0,1) be an algebra satisfying A0-A5. Then
the linear substitutions z->b—ax (a # 0) are permutations on A. The set
RS(4) of all linear substitutions being regarded as permutations form
a group L& (A) which is doubly transitive and minimal.

To prove this theorem we need some consequences of axioms A0-A5.

(1) a—x =10 has a unique solution, = a—>b in 4 .

Indeed, # = a—b is a solution by AB5. Again by A3 if 2 is any
solution then a—b = a—(a—a) = »; hence the uniqueness
(2) a—a = 0.
By A5, z = a—a is a solution of a—a = a and so is 0 by A3. Thus (1)
implies a—a = 0.

Let —a denote the element 0—a; then
(8) @—>—=a is a permutation of A leaving 0 fized and —(—z) = .

Indeed, 0 —z ==a by {1) has a unique solution; therefore z-—»-—x
is & permutation on 4. By (2) we get —0 = 0; thus 0 is a fixed element
of this permutation. Finally, putting ¢ =% = 0 in A5 we get —(—¢) = ¢,
as stated. i .

(4) z(—y) = —ay .
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Put a =2, b =0, ¢ =1y in A4. Since, by Al, x0 = 0, we conclude that

2(—y)=0—ry=—uzy
(3) z—>b—ax is a permutation of A if a # 0.

If b—ax, = b—ax, then (1) implies ax, = ax, and, by A2, », = 2.
Hence it remains to prove that b—ax = ¢ (@ # 0) always has a solution.
Indeed, if o™ denotes the multiplicative inverse of a which exists by A2,
then @ = o™ (b —e) is a solution since b —aa™ ' (b—¢) = b—(b—¢) = ¢ by A5.
(6) Let a,f e RE(4), ie. va =b—a 2, 2 = by—asx (a1, ay # 0). Then

af e RS (A).

By definition, #(af)= (za)p = by— ay(b, —a,2) = (by Ad) = by — (a,b,—
— sy ). Now if b, = a,b,, then by A5 we get #(af) = ayayx = (by (3))
= 0—(—a,a;2) and —aya; # 0; thus af e QS (4).

If by = ayb, then by A5

z(af) = (by— aaby) — (by—an by) (an by — bz)_l“z ax

and since b, — a,b;, (4,5, —b,)~1, a, and a, are different from 0 then by A2
50 is their product, and thus af ¢ S (4).

() 28G(4) is a semigroup with unit element.

Indeed, (3) shows that —(—1)=1, thus —(—1)z=2 and so
£ r—2 = 0—(—1)z, the identical mapping, is a linear substitution;
thus &€ 26(4).

(8)  There exisis an a e 8S(A) with aq — 0, ba =1 (a #b).

Put za = (a—b)"a—(a—b)'w; then «e2S(4), and further aa
=(a—b)a—(a—b)'a=0 and ba= (a—b) " a—(a—b)"'bh = (by Ad)
=(a—b)"(a—b) =1.

(9)  There ewists a unique B« QG (A) with 0f=a, 1 =0 (a # b).

Put zf = a—(a—b)x; then B<8S(4) and 08 =a—(a—b)0 = a,
If=a—(a—b) = (by A5)=b. Conversely, if xf=e—jfzr, f+ 0, and
08=a, 18 =b, then ¢ = 08 = q, e—f =18 =0, thus f =e—b =a—bh,
and we conclude that zf = a—(a—b)x.

(10)  8&(4A) s doubly transitive.
Given a # b, ¢ % d we choose o and B RC(4) with ae =0, ba =1,

0f =¢, 18 = d. The linear substitutions « and B exist by (8) and (9).
Then a{af) = ¢, b(af) = d, af € 8S(4), whence the statement.

{11) 2&(4) is a group.
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Let « and 8 denote the same as in (8) and (9). Then z(af) = a—
—(a—b){(a—b)""a—(a—b)"'x) = (by Ad) = a—(a—=) = (by AB) = a;
thus af = & Similarly, (fa) = (a—0)"a—(a—b)(a—(a—b)z) = (by Ad)
= (a—b)"'a—((a—b)'a—a) = (by AB) = x; thus fu — s, which means
that a = . Now let y ¢ 8&(4), ¥y = a—cx and put b = a—e. Then
0y =a, 1y = b and thus y = 8 of (9) of which « is the inverse. Thus
every element ye 8&(4) has an inverse.

(12) L& (4) ts minimal.

Suppose a # b, ¢ # d and ae=af =¢, ba=bB = d; we have to

prove « = f. Obviously, a(af™) = a, b(af™") = b; thus putting y = ap™
we find that y fixed « and b. Let 6 and ¢ satisfy ad = 0, b6 = 1, 0p = a,
lp = b; then ¢yé = A fixed 0 and 1. Let xA = e—fz; then
Ol=e—f0=e=0, 1l=e—fl=e—f=1, ie e=0,f=—1,
we conclude that 1= e Hence pyd =¢, y =@ 'e6™" = ¢ since 8 is the
inverse of ¢ (as noted in (11)). Thus «f~' =&, a — B, which was to be
proved. ' :

The statements in Theorem 1 are: (5), (11), (10) and (12); hence

the proof of Theorem 1 is completed.

The main result of § 1 says that every doubly transitive minimal
group is of the form 9 (A4). '

THEOREM 2 (THE COORDINATIZATION THEOREM). Let ® be a doubly transi-
tive and minimal group on A, and let 0 and 1 be fized but arbitrary elements
of A, 0 =1 only if |A|=1. Then two binary operations, — and -, can be
defined such that (4; —, -5 0, 1) satisfy conditions A0-A5 and © is idential
with S (4).

We may suppose that A4 has at least two elements; let 0 and 1
denote two distinet elements of 4. Given a = b there exists a unique
€ @ With aag = 0, bag = 1. We will denote agy by of. This o leaves O+
fixed and takes 1 into . Further. a, will designate aoa . This a, inter-
changes 0 and a. We define two operations on A:

(13) ax =za® if a0 and Oz =0
(14) o—r=2q, if a+#0and 0—z==xo.
We are going to verify that (4; —, -; 0, 1) has properties A0-A5. A0 needs.

no verification. To prove Al and A2 we exhibit an isomorphism between
(4\{0}, -) and G:

(158)  Let aeGyif O = 0. Then G, is a subgroup of ® and G, is transi-
tive on A\ {0}.

Both of the statements are trivial.

(16)  a—a*™ is an isomorphism between (A\{0}; -) and ®,.
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The elements of ®, are all of the form a2, and if a s b then 1o® = a,
1a = b, and thus a* # o®. Conversely, every o is an element of G, pro-
vided @ # 0. Thus a—>a® " is one-to-one from AN{0} onto ®,. It remaing
to prove @ '. @bt = @', Sinee 0(a* o) = 0 =0 and G is
minimal, it is enough to show that 1a®™ ¥~ = 1a@™ | Indeed,

1o ™ = a7 T = b et = (ab)?

thus 1o @b = 1a@ ™ is equivalent to b~ o™ = (ab)™* which is valid
in ©.
(17) a0 =0a = 0. )

Indeed, a0 = 0o® = 0, while 0z = 0 is contained in (13)
{18)  (4; -;0) is a semigroup with 0 as zero-element.

Leta, b,ced;it0e{a, b, ¢} then (ab)e = a(be) by (17);if 0 # {a, D, ¢}
then the associativity follows from (16). Hence (4; -) is a semigroup.

Further, 0 is zero, as was shown in (17).
(16) and (18) establish properties Al and A2.

{19) a—0=a.
Indeed, 6 —0 = 0, = a.
{20) a—x =b has a unique solution.

Let a 5 0. Then a, is a permutation of A; therefore there exists
a unique ¢ with ¢a, = b, i.e. with a—¢ = b and ¢ is unique. If a = 0,
0—a = z; therefore # = b is the unique solution.

(21) a—a=0.

Ifa=00-0=0 by definition. If ¢ = 0 then a—a = aag = 0.
{22) a—(a—b)="b.

Let a £ 0. Obviously, a—(a—2) = wa,a,. Since ag is the permuta-
tion interchanging & and 0, (a,)* leaves 0 and a fixed, which implies
by the minimality of G that (a,)? = & thus a—(a—2) = z(a,)? = xe = 2.
Now if a=0 then 0—(0—2) = 0— = by definition.

(23)  Let a5 b; then a—(b—¢) = (a—b)—(a—b)(b—a) ¢c.
Put wa=a—(b—z), 28 = (a—b)—(a—b)(b—a)? x. Then, o, B e@, since
a=aa and f = o®-9 g-ag, . Now compute

Oz =a—(b—0) = (by (19)) =a—b,

08 = (a—b)—(a—b)(b—a)™"0 = a—b,
(b—a)a=a—(b(b—a)) = (by (22)) = a—a = (by (21)) =0,
(b—a)p=(a—b)—(a—b)(b—a) ™ (b—a) = (a—b)—(a—b)= (by (21))=0.

~
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rhus we see that 0a = 08, (b—a)a = (b—a)p and a = b; thus from (20)
and (21) we get b—a 7 0. Using the fact that ¢ is minimal we infer
a = f, which was to be proved.

(24) a(b—c) = ab—ac.
If a =0 we get 0 =0—0, which is included in (14). If @ % 0 but
b= 0 we get a(—¢) = —ae, which is trivial, both sides being equal to ac.

Now let @ # 0, b # 0 and put
ta=a(b—a), xf=ab—ax.

We have a, fe @ since a = qpa% f = a®ay. 0o = a(b—0) = (by (19))
= aband 0f = ab—a0 = (by (13)) = ab—0 = (by (19)) = ab;ba = a(b—b)
= (by (21)) = a-0 = (by (13)) =0, b = ab—ab = (by (21)) = 0. Thus
Ou = 08, ba = bff, 0 5= b and again we infer a = B, and the proof of (24)
is finished. Since axioms A3, A4, A5 are the same ag (19), (24), (22)
and (23), the proof of the first statement of Theorem 2 is completed.

To complete the proof we will show that & and 26 (4) (as defined
in Theorem 1) are identical. Indeed, if aeQS(d), za = b—ax, a #0
then a = a*ay, whence a e ®. Conversely, choose an ae® and put ¢ = 0Oq,
d = la. Then ¢ = al®~Dg, and since a~9, q, e 25(A4) we conclude that
aeRS(4).

Now I want to make a few comments on Theorems 1 and 2. To my
opinion the natural base for studying doubly transitive minimal groups
is not the algebra (4; —, -; 0,1) with properties A0-A5 but the follow-
ing one:

Let 4 Dbe a quasi algebra (4; —, -;0,1) in which - is a binary
operation, but ¢ —b is defined only for @ s 0. The following axioms are
required: .

A0, a—1b is defined whenever a - 0; - is a binary operation; 0 and 1
are elements of A. _

A%, (A5 -3 0) is a semigroup with 0 as the zero element.

AT2. (AN{0}; -5 1) is a group with 1 as the unit element.

A™3. a—0=a if a 0.

A%, a(b—e) = ab—ac if a0, b 0 (1),

A5, a—(b—e)=c if a =b 50,

a—(b—0)=(a—b)—(a—b)(b—a)"c if a % b, a %0, b 0.

It is easy to see that Theorems 1 and 2 remain valid if by linear
substitution we mean z—saz, a # 0, and x—=b—ax, b#0, a0, The
proof is a bit more involved, e.g. verifying (6) we have to distingnish
four cases; the details will be omitted.

(11)1 The right side of the equation is well defined since o # 0, b# 0 implies by
A*2 that abs 0.

Fundamenta Mathematicae, T. LIII 3
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Suppose we start with a division ring D = (D; 4?, -5 0,1) and fg1"m
88 (D) then (D; —, -5 0,1). D will not be recovered in -’I‘ygorem 2 since
we define 0 —z = # which is not true in ©. But the definition of ab and
a—b, a #0, coincides with the multiplication and substraction of D.
Now we seen what is the advantage of considering systems with axioms
AS0-A%5.

To formulate this observation in a precise way let 4 be a set, G
a doubly transitive and minimal group on A and U = (45—, -;0,1),
€ = (4; O, 0; 0,1) be two systems satisfying A¥0-A%5, further let

LW =S W) =6

COROLLARY To THEOREM 2. Under the conditions listed above W, and
U, are identical, i.e. a—b=0a@b if 6720 and a-b=aQb for all a,bec A.

Indeed, if A¥0-A™5 hold true #—a 2 and z—aQx, both must be
permutations leaving 0 fixed and taking 1 into a, whence ¢-2 = aQOu
= wa®. Similarly, 2—+~a—2x (@ # 0) must be a permutation interchanging
0 and a, whence a—a = a©Qw = ®a, if a # 0.

If we are given & system satisfying axioms A¥0-A™5, there might
be several ways of defining 0 —& = —a so as to get a system satisfying
A0-A5. Let us discuss this problem. We put ¢(z) = 0—2 = —a. If the
resulting system satisfies axioms A0-AB5, then

(28)  z-—>@(x) is a permutation leaving 0 fized and (p(zp(a(/‘)) =x.

Indeed, (25) is the same as (3), which is a consequence of A0-A5,
whence (25) must be true. In the same way (4) implies

(26) ap(w) = @(ax) .
Let ¢(1) = «. Then by (26) we get

(27) o(a) = au .
Rewriting (25) we get

(28) au® = a ;
thus «® = 1.

Now we use A5 with b= 0, ¢=1:

a—(0—1)=a—al0—a)™";
it follows that
(1) =ap(@)™, ie. w=aula
since 4™ = u, it follows that ua = au.
THEOREM 3. A system (A; —, -;0,1) salisfying axioms A 0-A<5 can
be extended to a system satisfying amioms A0-Ab by defining 0 —z = p(x)
if and only if (z) = xu, where u is an element of order two in the centre

of (44035 ).
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The necessity of the conditions has already been proved, while the
sufficiency follows by easy computation, which is left to the reader.

It follows from Theorem 2 that at least one extension always exists;
indeed, «# = 1 is of order two and is in the centre of (AN{0}; -). Of course,
this is what we chose in (14). Without an additional hypothesis I do
not see how one can prove that the centre of (A\{0}; -) contains an
element of order two different from 1.

Thus, an algebraic way to prove the necessity of an additional
hypothesis in M. Hall’s theorem would be to consider a free system
(45 —, -3 0, 1) with properties A0-A5 and to prove that u — (a—b)(b—a)™*
(a # b) does depend on a and b.

In this context I can prove

THmoREM 4. Let (45 —, -5 0,1) satisfy axioms A¥0-A*5 and suppose
that w = (a—b)(b—a)™" (a b) does not depend on o and b, w is of order
two and w is in the centre of (AN\{0}; -). We define addition by

(29) a+b=a—bu

and —a by

(30) 0—a=au.

Then (and only then) (4; +, -;0,1) is o near-field. s

By Theorem 3 the definition 0 —a = au defines a system satisfying
axioms A0-A5. To verify that (4; +, -; 0,1) is a near-field it remaings
to prove that (4; +4; 0) is an Abelian group.

Let us substitute ¢ = bu in (29); we get
(31) a+b=a—c
since #? = 1.

Further, 0 —(b—a) = —b—(—=b)b 'a = —b—ua = by—au = (b—a)u,
thus ‘
(32) a—b=(b—a)u.

Hence

a+b=a—bu = (bu—a)u=b—au=">+a,
and the addition is commutative. If a-b = a+¢, i.e. a—bu = a—ocu,
then a—(a—bu) = a—(a—ou); thus, by A5, bu = ey and multiplying by
we conclude that b = ¢. Finally, a+2 = b always has a solution, namely
z = (a—>b)u, since by AB and (31) a+(e—b)u = a—(a—>b) = b. The
theorem is completely proved.

CoroLLARY. Let & be a doubly tramsitive and minimal group acting
on A. The condition that there is at most one element displacing all Tetters
and toking o into b (a,be A, a #Db) is equivalent to the statement
that in the system (d;—, -5 0,1) constructed n Theorem 2 the element
%= (a—b)(b—a)™" (a # b) does not depend on a and b, u* =u and % is
in the centre of (A\{0}, -).

3%
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§ 3. 2-algebras. First we establish the connection between
2-algebras and doubly transitive minimal groups.

TEEOREM 5. Let A = (4, F) be an algebra generated by any two
distinet elements and let ® be the automorphism group of A. If W is a
2-algebra then G is doubly transitive. Conversely, if ® i doubly tmnsit?v? and
|4] > 2, then A is a 2-algebra. If A is a 2-algebra & is also minimal.

Remark. The first part of Theorem 5 was proved by Swiercz-
kowski [6]. For completeness’ sake we repeat his argument.

First, we suppose that % is a 2-algebra. Let a,b,¢,decd, a #0,
¢+ d. Then {a, b} generates A and, since a, b are independent, every
mapping p of @ and b into A can be extended to a homomorphism of %
into itself. Put ap = ¢, bp = d; then the homomorphism % uniquely induced
by p maps U onto A. Since ep~t = a, dp™ = b can also be extended uniquely
to a homomorphism of W onto A, we infer tlrat & is one-to-one, i.e. 7 ¢ ®.
Thus ® is doubly transitive and minimal, the latter being equivalent
to the unicity of a homomorphism induced by a mapping.

Secondly, we suppose & to be doubly transitive and let a,d ¢ 4,
a#b, f,geU?, fla,b)=g(a,b). To prove the independence of a,d
by (I) of § 1 we have to verify f =g.

Let ¢, d e A; we will prove f(c, d) = g(c, d). If ¢ = d this is obvious
for ¢ =7f(¢,c) = g(e, ¢) since ¢ # f(c, ¢), for example, leads to a con-
tradiction as follows: let e # f(¢,¢), e £ ¢ and let ae G with ca = ¢,
fle, ¢)a = e; such an « exists since @ is doubly transitive and such an e
exists because |A|>2 but a is an automorphism, and thus ¢ = f(c, ¢)a
= f(ca, ca) = f(¢, ¢), which conflicts with e # f(¢, ¢).

Thus we may suppose that ¢ s d and then we may choose an a ¢ ®
with aa = ¢, ba = d. Obviously,

fle, @) = f(aa, ba) = f(a, b)a = g(a, b)a = ¢{ac, ba) = ¢g(c, d),

which completes the proof of f=g¢. ,

CorOLLARY. Let A and G as in Theorem 5, ®, a subgroup of & which
is doubly tramsitive on A. Then U is a 2-algebra and ©, = ®.

It follows from Theorem 5 that % is a 2-algebra since if ®, is doubly
transitive then so is ®. Again by Theorem 5, G is also minimal, which
implies & = &,.

The following problem arises naturally from Theorem 5:

Prove (or disprove) the existence of an algebra W (| 4] > 2) the auto-
morphisms group of which is doubly transitive and minimal, and WA is not
a 2-algebra.

Of course, if such an %A exists, then by Theorem 5 there are two
distinct elements in 9 not generating .

° © _ ‘
Im Theorem on doubly transitive permutation groups 37

An example of 2-algebras, which was found by A. M. Macbeath
(see Swierczkowski [6]; these algebras occur already in Urbanik [7]) is
the following:

Let & be a field, let A be the set of all elements of & and let F be
the class of all operations f(z,, a,) = B 2A+ay(1—2), e A. Then (4; F)
is a 2-algebra.

Since it is obvious that & (4; F) = 2&(K), which is doubly transitive,
further any two distinct elements of (4; F) form a generating system,
the statement follows from Theorem 5.

Now we use Theorem 1 to generalize this example:

THEOREM 6. Let (4; —, -5 0,1) satisfy azioms A0-A5. Let F be the
class of operations f(a,, @) = @, — (2, — @) A, A € A. Then (4; F) is a 2-algebra.

First we observe that any two distinet elements of A generate A.
Indeed, if a,b,0e4, a #Db, then put 1 = (a—b) (a—c); then f(a,b)
=a—(a—0)A=a—(a—b)(a—b) a—¢) = a—(a—c) = (by AB) = c.

Next we prove that «e«2S(4) is an automorphism of (4; F).
Obviously, f(0,1) = (by (3)) = 1. For every f < 85(4) we have f(08,18)
= f(0,1)A. To verify this let 08 = a, 18 = b; we have to prove Af = a—
—(a—>)A. But in the proot of (9) (combined with (12)) we have seen
that 0f =a, 18 =0 implies wf =a—(a—b)m, thus A =a—(a—b)A
Now let f(a,b) =a—(a—0)2 and define pcRG(4) by 08 =a, 18 = b.
Then, as we have proved, f(08a, 18a) = Afa; now we substitute 08 = a,
18 =10, Af = f(a, b) and we get f(aa, ba) = f(a, b)a, which means that
every aefG(4) is an automorphism of (4; F). Applying Theorem 1
and Corollary to Theorem 5 we infer that (4, F) is a 2-algebra.

COROLLARY 1. Let (4;F) be as in Theorem 6. Then G(A;F), the
automorphism group of (A; F), is identical with 2GS (4).

This follows immediately from Corollary to Theorem 5.

COROLLARY 2. Given a doubly tramsitive and minimal group G ome
can find & 2-algebra U the automorphism group of which is isomorphic to ®.

Theorem 6 is more general even in the finite case than the example
of A. M. Macbeath; this is obvious since we can construct (43—, -3 0,1)
from a near-field, and the existence of finite near-fields which are not
fields was proved by Zassenhaus [8].

Now we prove

THEOREM 7. An algebra (A4; F) is a 2-algebra if and only if (A; A?)
is a 2-algebra.

Indeed, (4; F) is a 2-algebra if given a,b,c e 4, a 5 b there exists
an fedA® with ¢=f(a,b), and further, g,hed®, g(a,b) = h(a,b)
implies g = %. Since both conditions are imposed upon 4, the statement
of Theorem 7 is obvious. '
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We call the 2-algebra A = (4; F) reduced it F = A®. Since (4; 4®)
is a reduced 2-algebra we infer

CorOLLARY 1. To every 2-algebra U, = (A;F;) there corresponds
a unique reduced 2-algebra W, = (A; F,) such that G (U;) = G (U,).

Indeed, owing to Theorem 7 we have only to verify the uniqueness
of 9,. Bven more is true than that, namely:

COROLLARY 2. Given a set A and a doudly transitive minimal group
® acting on A, there exists o unique reduced 2-algebra W with G (A) = G

This follows from the fact that the class of binary operations of
a reduced 2-algebra is identical with the class of all possible binary
operations admissible by & (in the sense of Theorem 9), whence it
depends only on G. .

Let 4,, 4, be sets and z—«’ a one-to-one mapping of 4, onto 4,.
If B, is a permutation group on 4, then let G, denote the corresponding
permutation group on 4,, i.e. to every ae@, we define an a’ ¢ G, by
the rule #'a’ = (za)’. Then a—a’ is an isomorphism between &, and G,;
we say that this is induced by z-—2'. Now we can formulate

COROLLARY 3. Let U, = (4,; Fy), W, = (4,; F,) be reduced 2 - algebras
with the automorphism groups G, ®,, respectively. The algebras %, and A,
are isomorphic if and only if there ewists a one-to-one mapping x—>x' of
A, onto A, which induces an isomorphism of &, and ,.

To sum up, every reduced 2-algebra U is determined up to an
isomorphism by its automorphism, group ® and by the set upon which
it acts (Corollary 3 to Theorem 7); further, by Theorem 5, ® is doubly
transitive and minimal; finally, by Corollary 2 of Theorem 7, given
& doubly transitive minimal group @ acting on 4, the algebra (4 ; F)
constructed in Theorem 6 is the unique reduced 2-algebra defined on A
with @ as an automorphism group. Thus we have proved the main result
of this paper:

THEOREM 8 (REPRESENTATION THEOREM FOR REDUCED 2- ALGEBRAS).
Given o reduced 2-algebra A = (4 ; F), one can define operations — and - on
A such that (A; —, -) satisfies amioms AO-A5 and F consists of operations
of the form f(2y, x,) = o, — (@, —,) 2.

Finally, we take up the problem how one can construct all possible
2-algebras. Since we know that every 2- algebra is associated with a doubly
transitive and minimal group, we can formulate our problem in the
following way:

Given a set A and a doubly transitive minimal group ® on A, describe
every 2-algebra defined on A with & as an automorphism group.

A rather trivial answer is given by
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THEOREM 9. Let ® be doubly transitive and minimal on the set A,
and let F denote the class of operations defined in Theorem 6. The algebra
A= (4; H) is a 2-algebra with G = G(A) if and only if

B1. F is algebraic with respect to H;

B2. H is admissible by .

Condition Bl means that FC A® (), i.e. we can construct the
operations in F from those in H. Condition B2 means that given
h=h{@, ..., %) e H, and an « € G we have h(zy, ..., @n)a = h{@, ¢, ..., Tpa).

One more remark before we prove the theorem: in constructing F
we firgt have to fix 0,1 ¢4, then we form (4;—, -;0,1) satisfying
A0-A5, finally we define F. However, it follows from Corollary 2 to
Theorem 7 that F is independent of the choice of 0 and 1; this justifies
the fact that, given 4 and &, we speak of F without fixing 0 and 1.

By Theorem 7, % = (4; H) is a 2-algebra if and only if (4; 4® ()
is one. Since the automorphism groups of U and of (4, 4 () are iden-
tical, we infer from Corollary 2 to Theorem 7 that 4® (%) = F, whence
B1 is verified. It easily follows from B1 that () is a subgroup of &
and B2 guarantees & = @ (%), completing the proof of the theorem.

The question arises how one can construct an operation admissible
by ®. Let A™ denote the set of all n-tuples of elements of 4. We define
G on A™ if ae @, (ay, .., an) € A" then (a;, ..., t)a = (a,a, ..., aza). Let
this permutation group of A™ be denoted by .

Let Oy, e A (= A,) denote the transitive constituents of 4™ Let
us select a representative ¢, = (¢, ..., ¢f) of C;. Let O, be the class of
(@15 ooy Gn) With @ = @y = ... = a,.

THEOREM 10. The operations f(xy, ..., xn), n > 1, which are admissi-
ble (*) by G, are in a one-to-one correspondence with the mappings p of
the set {cz; L e A} into A satisfying op = ¢ (= ¢ = ... = ).

Indeed, given an f admissible by & and a ¢ = (d3, ..., ¢}), we define
2 mapping of the set {¢;; A e A} into 4 by e1p = F(c, ..., ¢}).

Conversely, let p be a mapping of {¢;; ¢ A} into 4; then we define

f(Gﬁ, ey GF) = Cip -
Given (ay, .., an) e A™, there exists a unique ¢, and an ae® with
ao=d. We put
flay, ooy an) = (a1p) e

We have to prove that f is uniquely defined. Indeed, if a; 5= a; for some
75§, then ¢f 5 cﬁ, and since ® is minimal, « is uniquely determined by
the condition ¢f = a;, ¢} = a;. Thus f(ay, ..., as) is unique. If g, = ... = a,
then ¢ =...= ¢}, whence i=1 and by hypothesis ¢p = ¢, whence
f(ay, ..., an) = a,, which is independent of the choice of a.

(**) It should not he forgotten that ® is a doubly transitive and minimal group.
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Now we are going to determine the cardinality of A = 4,. If ¢ = ¢
then the rest can be arbitrarily chosen since (61,6, ..., i) a = (¢, &, @, ..., @")
implies 6 =d', ¢ =3, ..,n. (This follows from the minimality of .)
Therefore the cardinality of ¢, with ¢ # ¢ is [A["™ Obviously, the
cardinality of ¢ with ¢} = ¢} equals that of A,_;; thus we get

| Aa] = | Aucs A",
Since |4,] = 2, we infer

[—Aﬂn——l__l
|[A]-1 7
[A] if |A| is infinite.

14 if || is finite, |4|> 1,

| 4n] =

Since by Theorem 10 the cardinality of all different operations of n - variable
which are admissible by 6 is 4], we get

THEOREM 11. Let H, denote the set of all operations of n-variable
(n>1) admissible by &. Then

ln— -1
|H,| = ]AIM‘!‘”—1 if |A| is finite, |A] > 1,
| 4] if |A| is infinite.

Hence if H=H, w Hy U ... then
[ S0, if |A| is finite, |A| > 1,
VA4 4f |4] is infinite.

OQR(?LLARY. Let A be o set with |A|>1 and ® a doubly transitive
and minimal group on A. The cardinality of the set of all non-isomorphic

2-algebras which are defined on A and whose automorphism groups coincide
with ® is

|H| =

2*‘{m if | 4] ds finite,
b if |A] is infinite.

E.g. if [A] =2 then we have 2% non-isomorphic 2-algebras which
are defined on the set of two elements. One of them was found by
M. Marczewski, see Swierczkowski [6].

We now turn our attention to the problem when a 2-algebra is
a w.-ailgebra,. Since f(x, y) = # always has an “inverse” g = ¢(y, 2) which
satisties f(z,y) =z if and only if & = 9(y, ), one would éxpect that
a reduced 2-algebra is always a v-algebra. This is not the case ag is
shown by

THEOREM 12. Let (4; F) be a reduced 2-algebra. ““ Coordinatize” (A ; F)
by A.= (A-; —; +3 0,1) as in Theorem 8. Then (A, F) is a v-algebra if :md
only if a division ring A, = (4; +, -3 0,1) can be defined by a+b = a—bu
where u is a fived element of A. ’
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If a division ring W, = (4; 4+, -;0,1) can be defined by a+b
= a— bu, then the operations in F are of the form (@, %) = (1 —2) + 2,45
thus (4; F) is a v-algebra (see also [7]), since the algebraic operations
are of the form f(my,..., o) = Said, DA=1, and if g(x, ..., T}
= D aiui, then [y, ..., %n) = ¢{&, ..., zz) depends on z; it L # u, and
in this case f(@y,y .-y @n) = §(®1, ..., ») if and only if

wi—Ai o M
Ay and Z =

Conversely, suppose that (4 ; F) is a reduced v-algebra. Then A is
void, A% 3 A% whence 4® % 4®". Using the results of Urbanik [7],
we conclude that there exists a division ring K such that 4 is a linear
space over K. Further, there exists a linear subspace 4, of 4 such that
F is the class of functions f{z, 2) =2 (1—2A)+ai+a, AeK, aedy-
Since f(x, ) = x for every f ¢ F, we conclude that 4, = {0} and f(=,, %,)
= a,(1 — 1)+ oA Fix an arbitrary element of A different from 0 and
callit 1. Weidentify 1 ¢ K with 1. 1. Since (4 ; F) isa 2-algebra, f(0,1) = «
holds with a suitable feF; thus a =0(1—2)+1-A=1-2, i.e. every
@ e A is of the form 1- 2. Since 4 is a vector-space 1-A+1-pu=1(1+pu)
and (1-2)- g = 1(A- u), A—1-11is a homomorphism of K onto 4; obviously,
it is also an isomorphism. Hence (4; +, -; 0, 1) is a division ring. Since
the choice of 0 and 1 was arbitrary (see [7]), we have construeted a system
(45—, -5 0,1) which satisfies A¥0-A™5. Since such a system is unique
by the Corollary to Theorem 2, we conclude that any (4;—, -50,1)
satisfying AS0-A™5 can be extended to a division ring, which completes
the proof of our theorem.

i—Mh

;= h(®y, ..., Xn) = sz
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