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Two invariants under continuity and the incomparability
of fans

by
J. J. Charatonik (Wroctaw)

Introduction

Two invariants under continuous mappings are defined and in-
vestigated in this paper (see main theorems T 18, T 19). The first of
them, which I call the degree of mon-local conmectedness, is related to
the hereditary unicoherence of metric continua, and the second, which
T call wniform arowise conmnectedness, is related to the arcwise connected-
ness of curves.

As an application of these invariants a construction of arbitrarily
pumerous finite families of plane fans is given, none of which is a con-
tinuous image of another (incomparability under continuity).

Recall that a space H is said to be unicoherent provided thab it is
connected and, for every decomposition H = 4w B on closed and con-
nected sets, the intersection 4 ~ B is connected. A space H is said to
be hereditarily unicoherent provided it is unicoherent and every connected
set in it is unicoherent. For continua this definition is equivalent (see [6],
Theorem 1.1, p. 179) to the following:

D1. A continuum is hereditarily wnicoherent if every two points of
it can be joined by exactly one jrreducible continuum between them.

In the continuation of this paper hereditarily unicoherent continua
will be denoted by H, Hy, H,, etc., and irreducible continua between
points » and y by wxy. By virtue of D1 they are uniquely determined.

More generally, if X is an arbitrary set in a space %, I(X) will
denote @ continuum in ¥ irreducible with Tespect to conbtaining the
get X (an irreducible continuum about X), i.e. a continuum which
has no proper subcontinuum containing X.

First we prove five theorems on hereditarily unicoherent continua,
beginning with the proof of the uniqueness of 1(X) for hereditarily uni-
coherent spaces.

T1. If H is o hereditarily wnicoherent continuum, then for every subset
X of it there ewists in H exactly one irreducible continuum I(X) about X.

13%


GUEST


188 J. J. Charatonik
Indeed, let X C H. The existence of the continuum 7(X)C H follows
from the compactness of the family of subcontinua of H containing X
(see [4], § 38, V, Theorem 1, p. 27).

Suppose that there exists more than one continuum. Let X C I,(X) A
A I(X), whenee I{X) ~ I{X) = 0. Therefore the union I,(X) u I,(X) is
the subcontinuum of the hereditarily unicoherent continuum H. Con-
sequently I,(X)~ I(X) is a continuum, then I (X)=I,(X) ~ I(X)
= I(X) by the irreducibility of the continua I,(X) and I(X).

T2. The operation I 1is monotonic for hereditarily wnicoherent. con-
ttnua: if X; and X, are subsels of a hereditarily unicoherent continuum H,
then X, C X, implies I(X;) C I(X,).

This is a direct consequence of the hereditary unicoherence of the
space H and of the irreducibility of its subcontinua I(X,) and I(X,).

T3. If X; and X, are subsels of a hereditarily unicoherent continuum,
then I(X,) ~I(X,) # 0 dmplies I(X,) v I(X,) = I(X; v X,).

Indeed, it follows from T2 that I(X,) u I(X,) C I(X; u X,). Inversely,
the union of the two continuna I(X,) v I(X,) being a continuum, we have
I(X, v X)CI(X,) vI(X,) Dby the irreducibility of the continuum
I(X;, w X,).

Let N (X) be a set of points of X at which the space X is not locally
connected. Thus the equality N(X) = 0 is equivalent to the local con-
nectedness of X.

T4. The operation N is monotonic for hereditarily unicoherent continua:
if Hy and H, are hereditarily unicoherent continua, then H, C H, implies
N(H,) C N (Hy).

Proof. Suppose that

1) P e N(H)—N(H,).

Thus there exists a neighbourhood U,(p) of p such that for every
neighbourhood Vy(p)C U(p) the intersection Vi(p) ~ H, is not connected.
Therefore it follows from (1) that there exists a sequence of points
Pn € Uy(p) ~ H, such that p = limp, and that the points p, and p belong

N—+00

to different components of the set U,(p)~H,. Since pp,C H, for
n=1,2,.., we have
(2) PPoa—Uyp) # 0  for sufficiently great .

The continuum H, being, by (1), locally connected at the point p,
there exists in every neighbouwrhood Uyp) of p a neighbourhood Vap)
of this point such that

3 Valp) C Us(p)
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and that the intersection Vy(p) ~ H, is connected. Therefore Vy(p) ~ H,

is a subcontinuum of H,, whence it is also hereditarily unicoherent.
Let us take a neighbourhood U,(p) of the point p such that

Us(p) C Uy(p) .
The continuum V(p) ~ H, contains all the points p, beginning from
a sufficiently great n; therefore, by virtue of the hereditary unicoherence,
it contains also the continua pps, whenee by (3) and (4) we have ppn
C V,(p), contrary to (2).

Note that the hypothesis of theorem T4, that H, is hereditarily
unicoherent, is essential. Indeed, every non-hereditarily locally con-
nected continuum X, contains by the definition a non-locally connected
subeontinmum X;. Since N (X,) = 0 and N (X,) # 0, the condition X, C X,
does not imply the condition N (X;) C N (X,). Of course such a continuum
X, is not hereditarily unicoherent.

Ts. If H,, H, and H, u H, are hereditarily wndicoherent continua,
then N (H, v H,) = N(H;) v N(H,).

Proof. By T4 we have N (H,) C N (H, v H,)and N (H,) C N(H, v H,);
thus N (H,) v N(H,)C N(H, v H,).

Inversely, we have
(3) N(H, v H,)C N(Hy)w N(H,) v (Hy—H,) v (H,—H,y)

(see [4], § 44, I, 3, p. 162 taking H, u H, as the space, aJnd. putting A, = H

and 4, = H,). It follows from the definition of the operatu.m N (see p. 188)
that N (H,— H,) C N(H,), since the set H,—H, is open in H,, and that
N(H,w Hy) ~n(H,—H,) = N{H, v H) » N (H,— H,), since the set H;—H,
is open in H, v H,. Thus we have N (H, v H;) » (H,—H,) CN(H, v Hy) n
~N(H)C N(H,). Similarly N(H,wv H,) ~ (H,—H,)C N(H,), whence
N(H, v H,) C N(H,) v N(H,) by ().

Now, define for a hereditarily unicoherent continuum H 3 0

D2. J(H) =I{N(H)),
and assume for ordinals a >0,

(4)

J(J*(H)) when a = p+1,
NJ(H)
f<a

Definitions D2 and D3 in particular immediately imply the following
three theorems:

T6. JUIH)) =J7H). .

7. min{I*TNH) = 0} = A-+min{g T (H) = 0}

) for A < min{J*H(H) = 0}.

D3. JYH)=H and JY(H) =

when a = limf.
p<a

T8. B < a implies J*(H)C J(H).
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) Note that by T8 and by theorem from [3], § 19, IT, 2, p. 146 there
is always an « beginning from which we have constantly J°"(H) = J%(#)

and such an a is always the highest countable. ’

T9. If
(6) E << <<,
(7) o =1imé&,,
N-+-00
then
(8) LimJ™(H) = JYH) .

Proof. By T8 and (6) we have Lim J*(H) = ﬁ J"(H) (see [3], § 25,
N—00 n=1

VI, 8, p. 245)." The sequence of the continua J™(H) being decreasing by

T8 and (6), we have (| J*(H) = () J*(H) by virtue of (7); then LimJ* ()

n=1 f<a

= aQ J?(H). This implies (8) by D3.

N—>20

) TlQ. The operation J° is monotonic for hereditarily unicoherent con-
tnua: if Hy and H, are hereditarily unicoherent continua, then H,C H,
implies J :
9 JUHy) C T (H,)
for every countable ordinal a.

Proof. Apply transfinite induction. If « = 0, then (9) is true by D3.
Assume (9) for every & < o. Firstly, let o« = g+1. Si 5
I T . . = . Sinee J*(H;) C J(H,)
implies i (Jﬁ(ﬁl))CN(Jﬁ(Hz)) by T4, putting in T2 N(J(H,) =X,
and N{J%H,)) = X, we have I(N(Jﬁ(Hl)))CI(N(Jﬁ(HZ))), ie. JYH,)
CJ%H,) by Ds3.

Secondly, let a = ,llimbh,,, where &, satisfy (6). Then J™(H,) C J™ (H,)

for every n =1, 2, ... Thereby LimJE”(Hl) C LimJ* (H,) (see [3], § 25,
Vi, 2, p. 245); thus J(H,) CJ(H,) by T9. o

The degree 7(H) of the non-local connectedness

Introduce the following notion:

) Dd. By the‘degree of the mon-local connectedness of a hereditarily
unicoherent continuum H we understand the value

e — | PR = 03,

co when such ordinals « do not exist.
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For instance, H being the Cantor fan (see [1], B2, p. 240), we have
7(H) = co.

Recall that a locally connected continuum is said to be a dendrite
provided that it contains no simple closed curve. It is easy to see that
this definition is equivalent to the following: a dendrite is a locally con-
nected and hereditarily unicoherent continuum. Thus from D4 follows
immediately

T11. =(H) = 0 if and only if H is a dendrife.

Further we have (by substitution) from T7, T6 and D4

T12. (H) = A+t (H)) for A< (H).

Now we prove

T13. The function ©(H) is monotonic for heredibarily unicoherent con-
tinua: if Hy and H, are hereditarily wunicoherent continua, then H,C H,
implies ©(Hy) < t(Hs,). ‘

Proof. Suppose that 7(H,) < v(H,). By T12 for H, = Handz(Hy,) =2

‘we have T(Hl) _ T(Hg) _i__U(Jz(H:) (Hl)) Thus 1(J'(H’) (Hl)) > 0, ie. J«(Hz)(Hl)

is not locally connected by T1l. Further, by taking in T12 H,=H and
2(H,) = A we obtain ("™ (H,)) = 0, whence by T1l it follows that
JUE(F) is a dendrite. However, we conclude from T10 in particular
for a = v(Hy) that J*F(H,) C J*¥2(H,), contrary to the hereditary local
connectedness of the dendrite JUED (.

Invariability of =(H). It is known (see [2], (3), D 28) that
T14. If X is a compact space and f is a continuous mapping, then

N{H(X) CHI (X))
Let f be a continuous mapping of a hereditarily unicoherent con-
tinuum H onto a hereditarily unicoherent continuum H;.
T15. If XCH, X,CH; and
{10) X, CiX),

then 1(X,)C f(I(X)-

Tndeed, since X C I(X), wehave f(X)C HI(X)), and thus X; C FZ(X)
by (10). It remains to apply the irreducibility of the continuum I(Xy).

T16. J(f(J@)) C It ) -

In fact, by Tl4 for J(H)=X we have N(f(J"(H))) cf(N(J*’(H))).
The sets N (f(J°(H))) = X, C Hy and N(J%H)) = X C H satisfy the hypo-
theses of T15. Thus it suffices to refer to D2 and D3.

T17. Jf(H)) C fIHEH)) - '

Proof. Apply transfinite induction. If a = 0, then the theorem is
true by D3. Assume T17 for every & < a. Pirstly, let ¢ = f-+1. Thus
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TH(H)) CF(IH)), whence J°7(f(H)) CJ(f(7°(H)) by T10 and D3.
Therefore we have J°'(f(H)) C f(J**'(H)) by T16.
Secondly, let o =limé&,, where &, satisfy (6). Then

(11) JRH) CHI™HE) for every n=1,2, ...,
whence
(12) LimJ*(f (1)) = J°(j (2)

by T9. Since the sequence of the continua JH) is decreasing by T8
and (6), we have Lim f (J* (H)) = N HIH) = H{ N I (H)) = g JH)).

n=1

Therefore
(13) Lim (7™ (H)) = f (J(H))

by D3. It follows by (11) (see [3], § 25, VI, 2, p. 245) that LimJ™ (f(H))

N~>00

CLim;f(J;"(H)); thus it is sufficient to refer to (12) and (13).
n—00

T17 immediately implies by definition D4 of 7(H) the following

T18 (First main theorem). If H is a hereditarily unicoherent con-
tinuum and f is a continuous mapping of H onto a heredilarily unicoherent
continwum f(H), then t(f(H)) < v(H).

Remarks. A problem arises whether we can assign to an arbitrary
continuum K, or even only to an arbitrary curve, a number v(K) which
would characterise the non-local connectedness of the continuum K
and which would not increase under continuous mappings.

Another problem is whether we can find a number »(K) which has
the previous properties and, moreover, is such that »(K) = 7z(K) for
the hereditarily unicoherent XK. Hence this would be a generali-
zation of the function v(H) defined only for hereditarily unicoherent
continua.

It seems that one cannot use the notion of I(X) in the definition
of number »(K), because I (X) is a multivalued operation for non-he-
reditarily unicoherent continua. However, one cannot simply omit the
operation I(X) in the definition of the operation J (X) (thus—indirectly—
in the definition of the number ©(X)); neither can one change it by the
operation of the closure. It has been suggested to me, for instance, that
we should take

N(¥(X)) when a=pg+1,
N VX)) when a=1limg,

B<a f<a

M(X)=X, NyX) -
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or -
N(N§(X)) when a=g+1,

N N¥5X) when o=1Tlimg,
B<a

B<a

Ny(X) =X, NyX)=

and for i =1 or 2
min {N{t{(X) = 03,

2 (X) = .
0 ‘oo when such ordinals o« do not exist.

Unfortunately there exist continua X (even already in the domain
of hereditarily unicoherent continua) and their continuous images f(X)
such that »;(X) < vi(f(X)) for ¢ =1 and 2. Hence it fo]lo.ws that values
v(H) defined in this manner differ from +(H). There exists even a ]19:-
reditarily unicoherent continuum H' such that v(H') =2 and w(H')
= v(H ') = oo.

Uniform arcwise connectedness

Introduce the following notion:
D5. A point set X is said to be wuniformly arcwise connected if it is
arcwise connected and if for every number 5> 0 there is a number

such that every arcA C X contains points a,, ay,...., a such that
k~-1

(14) 4= iL=Jo AiQiy1y

(15) 6(a;@:41) <n for every $=0,1,..,k—1.

The following corollaries arise immediately from D5:

Cl. If an arcwise connected X contains a sequence of recl-t‘ificable aros
{4;} whose lengths {I(4;)} are not bounded in common, and if there exist
positive numbers e and 1 such that

(16) l(4)=e implies 8(Ad)>n for §=1,2,..,

then X is mot uniformly arcwise connecled.

Indeed, there exists by hypothesis, for an arbitrarily _great number &,
an index § such that 7(.4;) > ke. Thus, for every k-1 pomts Gg; oy oees a
of A; satisfying (14) with A = 4;, there exists an index ¢ such that
Wa;a:01) > &, whence the negation of (15) follows by (16). 3

C2. If all arcs of an arcwise connected cmt’i'nuufn? X are mcmfwalfle
and if they have the lengths bounded in common, then X is uniformly arcwise
connected.

C3. If a continuum X is umiformly arcwise conneoted,. then every
arcwise conmected subcontinuum of X.1s also uniformly arowise conmnected
(the heredity of uniform arcwise connectedness for continua).
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D6. A space X is said to be one-arcwise connected it X is arcwise
connected and if for every two points # and y of X it containg exactly
one arc xy joining these points.

T19 (Second main theorem). If X is a wniformly arcwise connected
continuum and if f is a continuous mapping of X onfo a one-arcwise
connected continwum f(X), then f(X) is also uniformly arcwise con-
nected.

Proof. Take an arbitrary &> 0. The mapping f being nniformly
continuous, there exists for this ¢ a number > 0 such that

(17) for every two points », and x, of X the condition ol@y, 1) < g
implies the condition o(f (@), /(%)) < e.

.~

From the hypothesis that the continnum X is uniformly arcwise
connected and from D3 it follows that there is for this  a number % such
that every arc A C X contains points ay, ay, ..., @, which satisfy (14)
and (15).

Take an arbitrary arec BC f(X), and let b and b’ be end-points of
this are.

Further, let

(18) aef7'(b)  and ' efHD)
be points of X such that there is in the are aa’ no other point of the
inverse image of the set (b) u (b'), i.e. aa’ ~ FHb b)) = (@) v (a).

Put aa’ = A. Thus it follows from (18) that BC f(4). By virtue
of the one-arcwise connectedness of HX)

(19) f(4) is a dendrite,

whence we conclude that the set f(a;@;41) A" B is a continuum as an
intersection of two subcontinua contained in f(4), and therefore it is
an arc as a subcontinuum of the arc B.

Let %' <<k be the number of those arcs a;0;+; for which

(20) flaits) ~ B 0.
Take into consideration the set of the end-points of ares (20). Since
there are %’ such ares, the number of their end-points is finite. Let %k
be that number. We can, of course, set those end-points in a sequence
Doy byy ooy by, ..y by SO that

(1) by and b, are the end-points of that one of the ares (20) for which
the index 4 is the smallest,

(i) if b;_; and b; are the end-points of a certain arc (20) with 4 = 4,
’ghen b; and b4y are the end-points of an arc f(a;;a;+1) ~ B such that
4 <& <1, implies f(a;a::1) ~ B = 0.
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The continuum X being by hypothesis uniformly arcwise connected,

“we have by virtue of (i), (i) and (14)

B7-1

B=\ bbjss.
7=0

Further, from (15) and (17) we have 6(f(aiai+1)) < &; thus 6(b;bj41) < &
and, consequently, f(X) is uniformly arcwise connected.

Applications
Families of n incomparable plane fans for each n=2, 3, ...

Recall that a space is said to be connected between the sefs A and B
provided that it contains a set F=F such that the set I~nFUuFUF B
is connected.

A space is said to be irreducibly connected between A and B provided
that it is connected between 4 and B, and that no proper subset of it,
AU Fu B, where F = F, is connected between 4 and B (see [4], § 43,
VIII, p. 156). Consequently, if a set L is irreducibly connected between
the sets 4 and B, then, considered as a space, it is conneeted and
contains these sets which are non-empty and separated ([4], 1, p. 156).

DT7. Let L(4, B) be a set irreducibly connected between L(4, B) n
~4 and L(4,B)~ B. If 4 and B are empty or non-separated, pub
L(A,B)=0. . )

If X, AC X and BC X are continua, L(d, B) is an irreducible con-
tinuum about the set L{d,B)~ A UL(4,B)~ B (see [4], §43, IX,
2, p. 159): ’ ,
(21) L(4,B)=I(L(4,B)~nAvL(4,B)~B).

T20. If H, and H, are subcontinua of a hereditarily unicoherent con-
tinuum H, then there is in H only one continuum L(H,, H,).

The existence of L(H,, H,) follows from. [4], § 43, IX, 1, p. 158,
and its uniqueness is a direct consequence of T1 and (21).

T21. If X, and X, are subsets of a hereditarily unicoherent continuum,
then i

I(Xy) v L{I (Xy), I( X)) © I(Zp) = (X v Xo).

Indeed, if I(X;) ~ I(X,) # 0, this equality follows from T3. In the
other case we have L(I(Xy),I(Xy)nI(Xy)#0 # L{I(X), I(?z)) N
~I(X,) by (21); hence I(X;) v L{I(X;), (X)) w I(Xs) is a continuum
containing X; and X, by the definition of the opera,ti.ox'l I . Thus I(X;, v X,)
CI(X) v L(I(Xy), I(Xy) v I(X,) by the irreducibility of I(X,u X,).
Inversely, I(X;)w I(X.)CI(X;w X;) by T2, whence L(I(X), I(Xs)
CI(X, w X,) by T20. Thus I(X;) v L(I(Xy), [(X)) v I(Z) C I(X, u X,).
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. T22. Let H, and H, be subcontinua of a hereditarily unicoherent con-
tinuum H. Let a e Hy, b e Hy, and let X C H be an irreducible continuum
between a and b. Then L(H,, Hy) C K.

In fact, the continuum K is connected between H, and H, (see [4],
§41, IV, 7, p. 91). Thus there exists in K a continuum ¢ irreducibly
f:(?nnected between Cn H; and €~ H, (see [4], §43, IX, 1, p. 158).
Since the continuum K C H is hereditarily unicoherent, it follows that
¢ = L(H,, H,) by T20.

T23. If {4dn} and {B.} are decreasing sequences of subcontinua of
a hereditarily unicoherent continuum and if

(22) A=Lm4, and B=LmB,,
n—>00 N—>00 :

thet

(23)

L(4, B) = LimL(Aqn, By) .
n—>0

Proof. The continuum L(4, B) is irreducible between every pair
of points a e L(4,B)n A, beL(4,B)~ B as a continuum irreducibly
connected between these sets (see [4], § 43, IX, 2, p. 159). Similarly,
the continuum ZL{4,, B,) is irreducible between every pair of point;

(24) n € L(An, Bs) ~ dn, bneL(An, Bu) ~ Bs.
Let
(28) ¢ =1lma, and b=1limb,.
Since by (22) . e
(26) A= An -N
n@l 4 and B n(;]l B,

(seg (31, § 25, VI, 8, p. 245), the sets 4, = H,, B, = H,and L(A,B) =K
satisfy the hypotheses of T22 for n — 1,2, ... Thus

(27) L(dn, Bn) CL(4,B) for n=1,2,..

By the irreducibility of L(4, B) between a and b and of L(Ayn, By)
between a, and &, equality (23) follows from (25) and 27).

Now recaE]l the definitions and some properties of dendroids (see [1],
p. 239 and [5], p. 301) and fans.

_DS' A dendroid is an arcwise connected and hereditarily unicoherent
continuum.

This definition is equivalent by D1 to the following

) D9. A de@droid is an arewise connected continuum every two distinet

points of which can be joined by exactly one irreducible continuum
between them.

The following two propositions are contained i
nd e ned in paper [1], p. 239

icm°®
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T24. Hvery dendroid is a curve (i.e. a continuum of dimension 1).
7925, Every subcontinuum of a dendroid is a dendroid.

Adopt the following definition:

D10. A continuum X is said to be hereditarily arewise connected
provided that every subcontinuum of X (thus also the whole X) is
arcwise connected.

T26. In order thalt a continuuwm be a dendroid i 8 necessary and
sufficient that it be one-arcwise connected and hereditarily arcwise connected.

Proof. If a continuum K is a dendroid, then it is one-arcwise con-
nected by virtue of D9, and it is hereditarily arcwise connected by virtue
of D8 and T25.

Inversely, suppose that a hereditarily arcwise connected continuum K
is not a dendroid. Thus it contains by D9 two different irreducible continua
N, and N, between the same points & and b. In consequence of the he-
reditary arcwise connectedness of K these continua are arcwise connected;
therefore by virtue of their irreducibility they are arcs. Thus points a
and b can be joined in K by two different arcs N; and ¥,. Hence XK is
not one-arcwise connected.

From T26 and T19 follows the invariability of uniform arcwise
connectedness under continuous mappings of dendroids onto dend-
roids:

Cd. If § is a conlinuous mapping of a wniformly arcwise connected
dendroid A onto a dendroid f(A), then f(4) is-also uniformly arcwise con-
nected. )

T97. If A, and 4, are subcontinua of a dendroid A, then L(dy, 4)
is an arc.

Indeed, the continuum L(dy, 4;) is irreducible between every pair
of points @ e L(4,, 4,) ~ Ay, b e L(4y, 45) ~ 4, (see loco cit. [4], §43, IX, 2,
p-159). There is in 4 only one irreducible continuum between a and b,
namely the arc ab by D8. Thus L(4,, 4,) = ab.

T28. If 4, and A, are subcontinua of a dendroid 4, then

vmplies
(29) Ty dg) = T(dr) w DT (4y), T*(49) © T(4a)

for -every countable ordinal a.

Proof. Note that 4; u 4, is a continuum by (28), whence it is a den-
droid by T25. Thus, by D8, J%(d; v 4,) exists (see D3).

Apply transfinite induection. If o =0, then J%(4;) = 4, JN(dy) = 4y
and J(4, u 4y) = 4, w 4, by D3, whence L{J"(4y),J*(4:)) =0 by (28)
and DT7; thus (29) is true.
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Assume (29) for every £ < a. Firstly, let « = g+1. Since N(L (Jﬁ(Al),
J"(Aﬁ))) =0 by T27, we bave N (J%(4, U 4y)) = N (7°(4,)) © N (J%(4,)) by T5.
Thus I[N (I°(4; v 4y))) = I(F(7%4)) © L(I(N(J”(Al))}, I(N(Jﬁ(dz)))) U
U I(N(Jﬁ(zlg))) by T21. Therefore J7*(4yw 4y) = J*™(4,) 0 LT ¥Y4,),
JPA,)) w P 4,) by D2 and D3.

Secondly, let a =limé&,, where & satisfy (6). Then J*™ (4, u )

n—>00
= J%(4,) w LI (4,), T (4,)) w I*(d,) for every m =1,9,..., whence
Limd* (4, © dy) = LimJ*® (d,) w LimL(J* (4,), 7% (4,)) w LimJ* (4,), Thus,

the sequences {J™(4,)} and {J*(4,)} being decreasing by T8, (29)
follows from T9 and T23.

T29. If 4, and 4, are subcontinua of a dendroid 4 and if A, ~ A, 0,
then
(30) T4y wdy) = max {z(4,), 7(4y)} -

Proof. Note that we can prove in the same way as at the beginning
of the proof of T28 that J(4; u 4,) exists, whence v(d4, u 4,) is deter-
mined.

It 7(4,) = co or 7(4;) = oo, then (30) holds by T13.

It 7(d,) # oo #7(dy), let
(31) z(dh) < 7(dy) .

By D4 we have J(dy) = 0 for a> 7(dy); thus J%4, u 4,) = J4,)
by T28 and D7. Henee it follows by D4 that v(4; u 4,) = ©(4,) and (30)
holds by (31).

Further, recall the definitions of an end-point and a ramification
point in the classical sence in arcwise connected continua (see [1], p. 230
and [5], p. 301).

A point p of an arcwise connected continuum X is called an end-
poini of X in the classical sense if p is an end-point of every arc contained
in X and containing p. The set of all end-points of X in this sense will
be denoted by E(X).

A point p of an arcwise connectet continuum X is called a rami-
fication point of X in the classical sense if P is a common end-point of at
least three ares disjoint from one another beyond p and contained
in X.

Henceforward the words “in the classical sense” will be omitted.

D11. A fan signifies a dendroid which has only one ramification
point. Call this point top.

For some examples of fans, in particular the harmonic fan and the
Cantor fan, see [1], p. 240.

e ©
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Bach of the » incomparable plane fans D; which we shall construct
will be a union of two fans Fgy, and Fpy, with 2 common top and disjoint
from one another except at that top.

Call, for shortness, a sequence of points k-harmonic if it arises from
a (k—1)-harmonic sequence by the inscription of the whole harmonic
sequence suitably diminished and tending to the second of every two
consecutive points of it (meaning here by harmonic sequence, and also
by 1-harmonic sequence the sequence {27 "},-.a..). It is clear how one
ought to understand, aeccording to this, such names as a %-harmonie
sequence of segments and others. Of course, the greatest order of the
non-empty derivative of a k-harmonic sequence is equal to %.

Now Fpi, will consist of a k,-harmonic sequence of straight segments
with length 1, and it will have a finite degree of the non-local connectedness
©(Fm) = k1, 1.e. a degree equal to the greatest order of non-empty
derivative of the set of the end-points of Fuy,. Since in the fan Fgy, de-
fined in this way all the arcs have the length at most 2, this fan will be
uniformly arcwise connected by virtue of C2.

Fpy, will consist of the fan Fp;, and of polygonal lines whose lengths
are finite but infinitely increasing and which have only one end-point
in common with Fgz,. These polygonal lines will be subjoined to all those
end-points of the fan Fyu, in which it is locally connected, and only to
those end-points. Thus by C1 the fan Fpp, will not be uniformly arcwise
connected.

Construction. Generally let ab denote a straight segment with
end-points a and b. i

Suppose we are given in the Euclidean plane E” a system of polar
coordinates p, ¢ with the pole at the point O.

For every k=1, 2,... arrange in a sequence all systems (i.e. the
arbitrarily ordered sets) consisting of % natural numbers. Let
(32) kys=1mg,My .,
be an s-th term of this sequence for any fixed %. Put

! 2—(m+m)+ _L_2—(n1+m+..,nx)
eont

(33) Pris =27+

(34)

?

Prss = (1, Press) -
Let the set 4, consist of only cne point, (1, 0), i.e.
(35) 4,={(1,0)},
and let for § =1,2,...,% the set 4; consist of 4;; and of all points
of the sequence p;,, where s =1,2,.. Denote by B; the set of those
points, i.e.

(36) Bj = {pj»: $=1,2,...}.
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Thus by (33) and (34)

(37) B: = G G " Cj {(1’(]7) @ = 2—n1+2—(n1+ﬂ2)+“_+2—(n1+nx+...+nj)}
! n1=1 np=1 ny=1
and

(38) A;=A4;1 0 B;.
It is easy to see that 4;; n B; = 0; therefore
Bj=A4;—A;-,.
Hence the k-1 sets 4; form a finite sequence
A, CA,CA,C...C A4

such that the derivative of the set 4; (in the sense of the theory of sets)
iy exactly the set 4;, for j =1,2, ..., k:

(40) A=A, i=1,2,..,k.

(39)

for

Thus the last non-empty derivative of the set A, has the ovder k
and is equal to the set A4,:

(41) AP = 4,.

A, consisting of only one point by (35) and B; being countable by (36)
it is quite obvious that
(42) Ay is eountable for every mnatural k.

Join the origin O with every point p € 4, by a straight segment and put

(43) Fuy= | Op.
pedy
Hence Fg; is a fan with the point O as its top and with
(44) B (Fgy) = Ay.

Consequently, the straight segment Opj_1;s without the point 0,
i.e. the segment whose end-point pj_q.s, a8 belonging to 4;_1—A4; . by
(39) and (36), is by (40) a limit point of the set 4;, consist of points of
the non-local connectedness of the fan Fy;.

It follows that (Fgj—Fay_1) v (0) is exactly the set of points of the
local connectedness of the fan Fy;, and by virtue of D2 that

(45) J(Fay) = Fgj, j=1,2,..,%,

where Fpg, denotes, according &o '(35), the straight segment O(1, 0).
Hence J'(Fpi) = Fmy, 5 and, in particular, for § = k we have T Fz)
= Fpge = 0(1, 0); thus J*(Fg,) = 0. Tt follows by D4 that

(46) T(FHk) =,

for
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Since every straight segment 5}5 in (43) has length equal to 1, all
the ares contained in Fay, have length at most 2; therefore by virtue of (2

(47) F
Now we define Fpy. Take the points of the set A,— Az, which is,
by (39) and (40), a set of isolate points of the set Ax. Assign to every

point pg;s of this set a system of nz+1 points pry; of the circumference
o =1 with arguments i

is uniformly arcwise connected.

b o 2

Phiss = Prig— — * 9 (M+11s+...+nk+~)’
N

where ¢ = 0,1, ..., 5 and ny is the last term of system (32). These points
will be sueccessive odd vertices of a polygonal line beginning from the
point Pree = Pr;e a8 its fivst vertex. Let the points gues= (27 Prss)s
where ¢ = 1,2, ..., nx, be the successive even vertices of this polygonal
line. In this mahner to every point p;s € Ay — 4x—; is assigned a polygonal
line /
(48)

ng np
Py = U Prisi-1Qr;s: VY lepk;s,i Qrzsi
=1 i=

starting from that point and consisting of 2, straight segments with
total length greater than ng.
Put

(49) Fpp = Fpg v UlPk;s-
o ,

Fep, defined in this way is a fan with the top 0. E(Fp) consist' of
the points Prsm, by (48) and (49), and of the end-points of Frp—, i.e.
of points of the set 4;_; by (45) and (44). Thus

.E’(Fpk) = Ek e Ak—-l 3
where

(50) By = Hpk;s,nw

and n; is given by (32). Obviously the set B (Fp)
According to (46)

(81)

is countable.

T(Fp) =k

Since the length of every polygonal line Pr; is greater than ny ‘and
fx—>co together with s—co, it follows by C1, for ¢ =1,5 and 5= 0,5,
that

(82) Fpp, is not uniformly arcwise connected.

Denote by F%; a fan symmetric to Fp, with respect to point O and
put for an arbitrary natural number # > 1 and for every i =0,1,..,2—1
(63) D; =Fgnriw Fhpi.

JFundamenta Mathematicae, T. LIII 14
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Hence by T29
(54) (D) =n+1.

Two mapping properties. In order to show the incomparability
of the fans D;, consider firstly the Cantor discontinuum € on the arc
0<@<1 of the circamference ¢ =1, i.e. the set of points p = (1, 9)

o0
where @ = Y 2¢/3" and ¢, = 0 or 1. The union
o

Fo=\J Op

peC

is a fan homeomorphic with the Cantor fan. By C2
(55) Fe is uniformly arewise connected.

Since the set 4, defined by (35) and (38) has dimension 0 by virtue
of (42), it ecan be homeomorphically imbedded in € (see [3], § 21, IV,
Theorem VI, p. 173). Consequently, the fan Fg; consisting by (36), (38)
and (43) of straight segments Opjs where j=10,1,..,k it is easy to
see that there exists a homeomorphism

(56) h: FHI.:“* Fc,

e.g. in such a manner that h(4;) C C.

Further, let FC F¢ be an arbitrary subcontinuum of the fan Fg¢
containing the top 0. Hence F u F%; is a fan.

Now the continnous mappings of dendroids onto the fans Fp, have
the following two properties:

P1. If f 48 a continuous mapping of a dendroid X containing F onto
Fpr, then for every subset 8 of By, C E(Fpr) satisfying the imequality

(57) FafYy)#£0 for every ye8,
there exists a nwmber m such that ny < m for every y e S.

Proof. Recall that the points y ¢ S C B; are by (50) of the form
Y = Pr;sm and that nz, defined by (32), is by (48) a half of the number
of straight segments forming the polygonal line Pyr;s of Fpy.

Suppose that there exists a set S C B, satisfying (57) but containing
a sequence of points {y,} for which n4(r) > m no matter how great m is.
Thus the irreducible continuum I(S) contains a sequence of polygonal
lines {Ppgs}r=1... With lengths infinitely increasing. As for the whole
Fpr by (52), we hence state that

(38) I(8) is not uniformly arcwise connected.

However, the dendroid ¥ C Fy is uniformly arcwise connected by
(55) and C3. Thus the dendroid f(F)C Fp is also uniformly arcwise
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connected by C4, and thereby likewise I(8) by C3, since I(8) is a dendroid
and I(S)C{(¥). But this contradicts (58).

P2. If { is a continuous mapping of F © Fey, onto Fpr,, then ky < k.
Proof. Let B’ be the set of all points y e E, CFpp, for which
F iy 0, and let B = E,—E'. Thus
(59) FHEY)C Py, -

By virtue of property P1 recently proved the set E' contains no
point set § with boundless 7. Therefore all such sets are contained in E'’.
Thus the continuum I(E’) contains all Hmit points of these sets. Con-
sequently N (Fpy,) C I(E''). Hence by D4 and (51)

(60) T{I(E")) =v(Fpr) = k.

Further, it follows from (59) that E"'C 1 (FPr,). Then, by the ir-
reducibility of I(E'") and by the arcwise connectedness of Fer,
(61) I(B") C|(Fhw) -

The continua I(E”) and f(Fi,) are hereditarily unicoherent by (61)
and by the continuity of / as subcontinua of the dendroid Fpr,. Thus

re bl
(I(B")) < (f{(Fhs)) by T13 and (61), whence 7(I(B")) < (Fpr,) by T18.
Since t(Fhr,) = v(Frr,) = k, by the symmetry with respect to the point O
and by (51), it follows by (60) that k, < ky.

Incomparability of the fans D;. Let » be an arbitrary natural
number, D; the fans defined by (83) for i =10,1, ..., n—1, and f a con-
tinuous mapping of D; into D; where i # j. It ought to be proved thab

(62) f(D) # D; -

Assume first that i < j, i.e. that
(63) n+i<n+j.
We have, according to (84), v(D;) = w1 and z(D;) = n-j; con-

sequently (62) follows by (63) and T18.
Assume next that j < ¢, i.e. that
{64) n—i < N—]j .
Consider the retraction
. ._{p when p € Fon—is
) = {0 when P eFmpti-
Then, if we suppose that (62) does not hold, the continuous mapping
= rf maps D; onto Fp, s

(65) 9(Ds) = Fn-i .
14*
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Let h be a homeomorphism which maps F,ys into Fe aceording
to (56), and let F' = h(Fayss). Pubting b =n—1i; i.e. Fiy, = Fb,_;, and
Iy =m—7j, i.e. Fpyg, = Fpy—j, we have identically
(66) F o Fpp, = M Fan+i) v Fhoy .
Further, let h; be a homeomorphism of FHM,; v F%,—; defined as
follows: :
Inp) = [h(p) when peFmyys,
RS P eFby ;.
Therefore we have by (66) F w Fy = hiy(Fanii w I
9, 1 (Fan+i © Fpn—i), whence
F O Fpy, = by(Dy). Thus D; = b {(F w Fy,) and, by (65), ghi (F u Fi)

= Fpr,. In consequence of P2 we then have k, <k, i.e. n—F < n—i
contrary to (64). ,

when
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On the axiom of determinateness *

by
Jan Mycielski (Wroclaw)

1. Introduction. It is the purpose of this paper to study the
consequences of a mathematical proposition introduced by H. Steinhaus
and the author in [17]. This proposition, called axiom of determinateness
and denoted by (A), is inconsistent with the axiom of choice but has
many interesting implications. Several of them are opposite to the ‘sad facts’
following from the axiom of choice such as, e.g., paradoxical decompo-
sitions of the sphere. The actual state of knowledge permits to conjecture
that replacing in the Zermelo-Fraenkel-Skolem set theory (ZFS) the
axiom of choice by (A) we obtain a consistent theory.

The failure of the axiom of choice in this new theory is considered
as a ‘sad fact’ by the author. He believes that the natural models of ZF3
(see e.g. [14]) are real enough to prove the consistency of ZFS. The new
theory does not present any such evidence of consistency. We can only
hope that some submodels of the natural models of ZFS are models
of the new theory (*). In that case (A) may be considered as a limitation
of the notion of a set excluding some ‘patological’ ZFS-sets (3). From
such a point of view (A) seems to be very successful.

Most of the results of this paper have a clear game-theoretical
meaning. They are claiming that such and such constructions permit
constructions of such and such not-determined infinite games with per-
fect information (3). Of course their validity does not depend on the
consistency of (A). ‘

* This paper was partially written when the author was working on. a research
project on foundations of mathematies at the University of California in Berkeley
supported by the U.S. National Science Foundation (Grant G-14006) in 1961/62.

@) Le. a subclass of the class of all sets with the same membership relation.
It would be still more pleasant if such a submodel contains all the real numbers of
the natural model.

(%) Some other general remarks on (A) are given in [17]. Very few alternations
to the axiom of choice were considered in literature. Some propositions of that kind
are given by Church [3] and Specker [30]. Tarski has considered the proposition
“the set of real numbers is a denumerable union of denumerable sets’ (by the results
given below this is inconsistent with (A)). But none of them seem to have so many
interesting consequences as (A).

(*) The definition and theory of such games is exposed in [15]
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