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and R; depends on the k-th variable under fixed P;. Now let D, ..., D,
be numbers which satisfy the system of equations

(52). Doler|w) e i=1 e,

i=1
where e =1 and ¢ = 0 for j = m. This system has a solution by (48).
Since the Jacobian in (51) is of the form W(—?LR1 s ,—B—Rm
8901 Om
Wisa polynomia;Nl with rational coefficients, we are in position to apply
Lemma 3.3. Let 7, ..., % be the functions which satisty (31), (32) and
(33). By (31), (33) and (52) we have

‘where

o 2 o .
[B—a-; Rm] (po) =1 and [517] Rm’ (po) =0 for 4 =1,..,m—1.
Hence

(83) [a(ﬁu 71~31'n)/a(m17 oy Zm)] (Do) = [a(ﬁly --wﬁm—-l)/a(mlv ey @m-1)1(Do) »
and by (34), (51)

(54) [0(By, ey Bn)fe (@, ooy o)) (Do) =0,
and by (32)
(85)  [8(Ry, ..., Bnon)fo(ay, oo., Bmms)] ()

=[0 (R17 XS] Rm—l)/a(wly ey w"v.—l)](po) .

It is clear that (53), (54) and (55) contradict (50). Therefore (51)
cannot hold and we have an open set Vi C V3, such that

[O(By, -y Bm)[0 (@1, ..., 2m))(p) # 0
This completes the proof.

for every peVm.
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On level sets of a continuous nowhere monotone function
by
K. M. Garg (Lucknow)

Let f(xz) be a real function, defined and continuous in a real closed
interval I. Let 7(I) denote the interval of values taken by f(x) in I. For
any ¥ <f(I), let f(y) denote the set of points in I where f(x) takes the
value 7. The set 7 '(y) is known as the set of level y of f(), or, briefly, as
a level set of f(z). Evidently, f~'(y) is closed for every ¥.

K. Padmavally [6] proved in 1953 that:

(%) “If f(x) is continuous but monotonic in no interval, then )
has the power of the continuum for a set of values of y which is
of the second category.”

8. Marcus ([4], p. 102) improved this result in 1958 into the follow-
ing form:

(#%) ‘““Given a real function f(x), defined and continuous in I. A necessary
and sufficient condition so that j(x) may not be monotene in any
interval contained in I is that, for every interval J C I, the values ¥
for which the set {#; f(x) =y, #eJ} is unenumerable form a set

of the second category in (—oo, co) and residual in f(J).”

Let a funection f(z) be nowhere monotone in I if it is not monotone
in any subinterval of I. Let, further, a nowhere monotone function f()
be of the second species in I in case the function f(#)+ r@ remains nowhere
monotone in I for every real value of r ().

We prove in § 1 that for a continuous nowhere monotone function
f(z) in I, the level set 7 y) is non-void and perfect for a set of values
of & which is residual in f(I). In case of a continuous nowhere monotone
function of the second species in I, we investigate in § 2 the sets. that
are obtained by the intersection of the curve y = f(x) with different
straight lines y = ma+ec.

() A detailed study of the Dini derivatives of nowhere monotone funetions has
been made by the author; see Garg [13], [14]. These investigations are farther con-
tinned. It may be remarked here that non-differentiable functions constitute a par-
ticular case of nowhere monotone functions of the second species.
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W. Sierpitski ([8], p. 370) proved in 1926 that for a continuouns
function f(x) the set H of values y for which f~(y) is perfect iz a F,;.
We prove in § 3 that in case f(z) has no lines of invariability, the set H
resembles a set G in the sense that it is residual in each interval in which
it is everywhere dense.

1. Nowhere monotone functions. We shall prove the following

THEOREM 1 (). A funciion f(x), continuous in I, is nowhere monotone
in I if, and only if, the level set {~(y) s non-dense for every y, and is non-
void and perfect for a set of walues of y residual in f(I).

Let us first prove the following two lemmas:

Levma 1. If f(x) is continuous and nowhere monotone in I, there exists
a set H residual in f(I) such that f(x) is oscillating (*), on one side at least,
at every point x for which f(x)e H.

Levma 2. Let f(z) be continuous in I and be such that f~(y) is non-
dense for every y e f(I). Then, if the set H of values y for which [~ (y) s
perfect s everywhere dense in f(I), f{x) is nowhere monotone in 1.

Proof of Lemma 1. Let f(z) be continuous and nowhere monotone
in @ finite closed interval I = [a, b], and let B denote the set of points
in I where f(#) is neither 0, nor 0_. We have to prove that f(H) is of
the first category.

If ¢ ¢ B, there exists a maximum real number ; > 0 such that one
of the following four conditions is satisfied:

(el) fl@y=f(t) for t<o<ti+th,
and f(z)<f(t)  for t—I<z<i;
(e2) fley<f(t) for t<a<ti+th,
and f(z) >f(f) for t—hy <2 <ty
(e3) flm)=f()  for it—In<z<t4hy;
(c4) fle) <f@) for t—h <z <t+h.

For each of ¢ =1,2,3, 4, let E; consist of those points of F where (ci)
holds. Then

HB =D (B,
i=1

(*) Since a non-void perfect set has the power of the continuum, the theorem (x)
of Padmavally and the necessity part of theorem (**) of Marcus are hoth deducible
from the above theorem 1.

() A function f(») is oscillating on the right (left) of t, or is 0, (0_) at ¢, if every
right (left) nbd. of ¢ contains points where f(@) > f(t) as well as points where f(z) < f(t).
For the definitions see R. Vaidyanathaswamy [12], p. 71, and for the notations see
A. Csgszar [2], p. 14.
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and it suffices to prove that each of the sets f(E;) (¢ =1 to 4) is of the
first category.

Since the points of E; and E, are respectively points of maxima and
minima of f(x), each of the sets f(F,),f(E,) is enumeralele (4), and so is
of the first category. It shall therefore suffice to prove that f(E,) is of
the first category, for it will then follow that f(F,) is of the first category
just on considering the function —f(z).

Let By, (n=1,2,..) denote the set consisting of those points ¢
of B, for which #; > 1/n. Clearly,

By= Y Bu, [(B)=1(En),
n=1 n=1
and the lemma shall follow if we show that f(E:,) is non-dense for every .
Let J be an arbitrary subinterval of 7(I). We can determine an open
interval J’ = (u, ») CJ, which contains neither of the values f(a) and
f(b). The set

(1) T = {w; fl@) ed "}

is then open, and so consists of a finite or enumerable sequence of non-
overlapping open intervals

@) o=, b), (i =1,2,.)}-

Clearly, for each 4, f(a;) and f(b;) are each equal to w or v.
The function f(z), being continuous in I, is uniformly continuous
in I, and so there exists a real number 6 > 0 such that

lfz'y—f(@")| < v—u whenever |o'—a"|<d, @' el, a"cl.

Consider now an interval I; of the family {I;} for which

(3) Length of I; = b;— a; <min (6, 1/n).
‘We then have
[F(B)—Fla)| <v—u,
and so it is not possible that f(a;) = » and f(b;) = v, or vice versa. Hence
either

(1) fla)) =F(bs) = u,
or
(i) Tlag) =7 (bs) =v.

Let 1e¢1;. We then have
a;<t<b; uw<jf)<wv.

(%) See W. Sierpifski [7], p. 236.
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The point ¢ cannot belong to Ey,; for, in case (i),

flby) =u<jf(), whereas 0 <b—1t<b—a;<1/n,
and in ‘case (ii),

flas) =v>7(), whereas 0 <i—a<bi—a;<<lfn.
Hence,
(4) I By =0.

Thus no interval of {I;} which is in length < min(8,1/n) contains
any point of Ei,. Denoting by &, the union of such intervals we have

(8) Gy By =0.

The remaining intervals of {I;}, viz. those which are in length
>min(é,1/n), being non-overlapping, and since I is finite, are finite
in number. If any of them is in length > 1/n, let it be splitted into two
or more parts such that the length of each part is < 1/n. The number of
intervals, clearly, still remains finite. On adding with each interval thus
obtained its end-points, we get a finite number of closed intervals, say

Li=[aj,b] (i=1,2,..,%).

Clearly,
13
) = D Lca+ D,
% i=1

which gives with the help of (5),

13
e ’ ’1 ’
) BunC Y I By
i=1
Hence we have

k
(6) I f(Bun) C )T }(Ti- Baa) .

=1

Consider now the interval I3. In case J’ ¢ f(Ii), since J’ is an open
interval, where as f(I]) is a closed interval, there exists an open interval
J, CJ'—f(I1). We then clearly have

(7 J1CJ',  Jyf(I-B) =0.
In cage J' C f(I3), since J’ is open, the set
{z; f(@) e, zeli}
contains a non-degenerate interval IY. Thus

(8) ncr, facJ.
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Sinee f(x) is nowhere monotone in I, it cannot be non-decreasing in I,
and so there exist points ¢, d e IV, ¢ < d, such that

fHe)y>7f(d).
Let J, denote the open interval (f(d),f(c)). Then, by (8),

(9) J,CHIY)C T,
and
(6, ) C I C I =[as, bi],
so that
(10) g <e<d<<b.
Let ¢ be a point of I; such that f(t) eJ;. We have

a<t<h, [d<f@)<flo),
so that, in case @] <t < d,
f{d) < f(t) although
and in case d <<t <b,
f(e)>f(ty although
and so in either case ¢ cannot be a point of F,. Hence,
(11) Jy f(Ii-B) =0.
The relations (9) and (11) prove that in case J’ C f(I1), there still exists
an open interval J; CJ’ for which the relations (7) hold.
Thus we can always determine an open interval J; CJ’ such that
the relations (7) are satisfied.

In a similar manner we can determine an open interval J, C J; such
that

0<d—t<bi—a; <lfn,

0<t—e<<hi—a <l/n,

Ty (I3 Byp) =0 .

Continuing in this manner we get non-degenerate open intervals
Jay 4y oory Jy such that

(12) JOJ' DI Dd, D ... 0dp #0,
and
(13) © o JefIiBw) =0 for i=1,2,..,%
These relations imply that

Jr f(li-Byw) =0 for 4=1,2,..,k,
which with the help of (6) give
(14) I f(Bwm) = 0.
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We have thus proved that every interval J C f(I) contains a sub-
interval J; which contains no point of f(#,). Hence f(Fy,) is non-dense
in f(I).

This completes the proof of Lemma 1.

Proof of Lemma 2. Let f(x) be a continuous function defined
in I for which every level set f'(y) is non-dense, and the set H of values y
for which f~(y) is perfect is everywhere dense in f(I).

First, f(z) cannot be constant in any subinterval of I; for, if f(x)
takes a constant value, say ¢, in I' C I, the level set /™ *(¢) contains the
interval I’, and so is not non-dense.

Further, if f(z) is strictly monotone in any subinterval I’ of I, f(I')
is a non-degenerate interval. For any y lying in the interior of f(I'), the
level set {™*(y) contains one and only one point in the interior of I’, and
50 is not perfect. Hence f(x) cannot be strictly monotone in any sub-
interval of I.

This proves that f(x) is not monotone in any subinterval of I, and
$0 is nowhere monotone. Hence the Lemma 2.

Proof of Theorem 1. The sufficiency part of the theorem clearly
follows from Lemma 2.

To prove the necessity part, let f(z) be a function continuous and
nowhere monotone in I. According to Lemma 1 there exists a set H re-
sidl;al(in f(I) such that, for every y ¢ H, f(x) is 04, or 0_, at every point
zef (y). .

If f(2) is 04 at @, every right-nbd. of # confains points @, x, such
that

fle) >f(@), fl@m)<f@).

As the f1:}nction (), being continuous, possesses the property of Darboux,
there exists a point 2" in (,, 3,), or (4, 2,), such that

H@) =f(2).

Thus, if f(z) is 0, at %, every right-nbd. of x contains a point 2’ such
that f(a') = f(¢). Hence « is a limit point of the level set f~{f(x)}.

Similarly, in case f(x) is 0_ at x, every left-nbd. of # contains a point
a:;sueh that f(2') = f(z), and so » is again a limit point of the level set
o) '

Hence, if y « H, every point @ ¢f (y) is a limit point of #~%(y). This
proves that f '(y) is dense-in-itself.

But, since f(2) is continuous, its every level set is closed. Hence
there exists a residual set H in f(I) such that for every y ¢« H, f™\(y) is
perfect. ‘

Further, since H C f(I), and f(») takes each value y «f(I) at least
once in I, the level set /'(y) is non-void for every y ¢ H.
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AMoreover, since f(z) is nowhere monotone, it has no lines of invaria-
bility, and so, for any y €f(I), 7 Yy) contains no non-degenerate interval.
As we have already observed that 7~ '(y) is closed, this proves that F )
is non-dense for every y f(I). .

This completes the proof of Theorem 1.

As a consequence of Theorem 1 we have

COROLLARY 1 (%). Given a real function f(x) defined and continuous in I.
If the values y for which 7 Hy) is not perfect form a set of the second category,
then there exists a subinterval of I in which f(x) is monotone.

If the values y for which ) is perfect in no subinterval of I form
a set which is of the second category in every subinterval of f(I), then there
exists in I an everywhere dense family of intervals in each of which f(x)
is monotone.

2. Nowhere monotone functions of the second species.
Let now f(z) be a continuous nowhere monotone function of the second
species in I. Let m be a given real number. Since the function

g(@) = f(x)—ma

is continuous and nowhere monotone in I, it follows from Theorem 1
that there exists a set Hy residual in g(I) such that for every ¢ e Hm,

the roots of the equation
fley—me = ¢

form a non-dense and perfect set. That is, for every ¢e¢ Hu, the line
y = mx+ ¢ intersects the curve y =f(z) in a non-dense perfect set of
points. For a ¢ € g(I), the line y =mz+e¢ is evidently disjoint with the
curve y = f(«). Denoting by R the set of all real numbers, the set

Hy = Hp+ {B—g(I)}

is evidently residual in R. Hence we have

THEOREM 2. If f(x) be a continuous nowhere monotone function of
the second species in I, given a real mumber m, there exists a residual set
Hy of real numbers such that for every ¢ e Hp the line y = mi—+¢ intersects
the curve y = f{x) in a non-dense perfect set (possibly void).

(%) The following result of 8. Mareus ([4], p. 103) constitutes a particular case
of the above corollary:

“@Given a real function j(x) defined and continuous in I. If the values y for ‘which
7(y) is at most enumerable form a set of the second category, then there exists a sub-
interval of I in which f(x) is monotone.

If the values y for which f™(y) is at most enumerable form a set residual in f(I),
then there exists in I an everywhere dense family of intervals in each of which f(x)
is monotone.”

Fundamenta Mathematicae, T. LII 5
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Giving to m, in the above theorem, an enumerable set of real values,
e.g. all positive and negative rational numbers, since the intersection
of an enumerable sequence of residual sets is in itself a residual set, we get

THEOREM 2'. If f(®) be a continuous nowhere monotone function of
the second species in I, there ewists a residual set H of real numbers such
that for every ¢ ¢ H, and for every rational number m, the line y = mzx-+¢
intersects the curve y = f(x) i a non-dense perfect set (possibly void).

3. Continuous functions with no lines of invariability.
From Lemma 2 and Theorem 1 we deduce

THEOREM 3. If a continuous function f(z) defined in I has no lines
of invariability, then the set Yp(f) of values y e f(I) for which f(y) is
perfect () is either non-dense, or is of the second calegory, residual in each
subinterval of f(I) in which it is everywhere dense.

Proof. Let J be an open subinterval of f(I) in which ¥,(f) is every-
where dense. The set

J7) = {5 f(@) e )

consists of a finite or enumerable set of mutnally disjoint open (7) intervals
in I, say {I.}.

Let us consider one of these intervals, say I,. For any y e Yy(f),
the subset of f'(y) contained in I, is either void or perfect. But, since
f(#) has no lines of invariability, f(I,) is & non-degenerate interval, and
since f(I,) CJ, the set ¥,(f) is everywhere-dense in f(Iy).

Hence, there exists in f(I,) an everywhere dense set of values of l;/
for which the set

{=; f(@) =Y, wely} Ef_l(?/)'ln

is perfect. Further, since f(x) is a continuous function without any line
of invariability, its every level set f *(y) is closed and non-denge.

It, therefore, follows from Lemma 2 that f(») is nowhere monotone
in I,, and then in turn from Theorem 1 that there exists a residual set
H, 1111‘ f(In) such that for every y e Hy, f " (y): I, is perfect.

et

Then Ey is residunal in J, and for each y e B,, FHy) In is either void
or perfect. ’ '

o (') For a continuous funetion f(%), the set Yeoff) of values of y for which f(y) .
is infinite possessesa little weaker property. Viz. that if ¥, o(f) is unenumerable in every
interval, then it is residual. For, it has been proved by K. Borsuk ([1], p. 278) that
Foolf) is of the form G5+ F, where E is enumerable. '

) " It a%xy.interva.l I, contains one of the end-points of I, then, although it is
semi-closed, it is open relative to I.
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In a similar manner, corresponding to each interval I, we get a set
3, residual in J such that for each y e By, f~'(y) - In is either void or perfect.
Clearly, the set E = [} E, is residual in J, and, for every y e E,

n

7 Nw) is perfect in > I,. But, since y e EC J, and [™(J) = 3 I, we have
n n
FNy) C X I,. Hence, for every y < E the set f '(y), which is evidently

non—void): is perfect in I.

Thus E C Yp(f). Since E is residual in o, this proves the Theorem.

Remark 1. W. Sierpinski proved (8) in 1926 that for a continuous
function f(x) the set ¥ ,(f) is Fps. This evidently implies that ¥ ,(f) possesses
the Baire property (in the wider sense) (%), and so is of the form G—P @,
where G is open and P and @ are sets of the first category.

The above Theorem 3 proves that in case the continuous function
f () has no lines of invariability, the set Y ,(f) possesses a property stronger
than that of Baire, viz. it is of the form G— P+ N, where G is open,
P is of the first category and N is non-dense. The set Y,(f), in fact,
resembles in this case with a set G5, for a set G5 is also residual in
every interval in which it is everywhere dense.

Remark 2. For a continuous function f(z) defined in I, the set
Y,(f) can even be identical with f(I)(1%). For there exist continuous
functions for which every level set is non-dense and perfect; e.g. the two
classes of non-differentiable functions constructed by A. N. Singh in [9]
(see [10], p. 91) and [11] (see p. 1).

Remark 3. The proof of Theorem 3 can be easily extended to
functions which possess lines of invariability, provided the values that
they take in the intervals of invariability form a non-dense set.

In conclusion I wish to express my gratitunde to Dr. U. K. Shukla
for his kind guidance and help in the preparation of this paper.
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On the structure of homogroups with applications to
the theory of compact connected semigroups

by
R. P. Hunter * (University Park, Pennsylvania)

This work is, for the most part, devoted to the study and application
of a certain type of semigroup called a homogroup. By a homogroup,
we mean a semigroup having a two-sided minimal ideal which is a group.

In the first part, we obtain some conditions under which certain
semigroups become homogroups, and introduce the notion of maximal
sub-homogroup and other notions which will be useful in what follows.

In the second part, we apply these results to the study of topological
semigroups. In particular, we shall study the structure of certain compact
connected semigroups. The results in this arvea quite naturally depend
upon the nature of the canonical endomorphism associated with a homo-
group. Under suitable conditions, this endomorphism, in the topological
case, is a monotone. As we shall see, this fact enables one to construct
various sub-semigroups including arcs. In this connection we shall show
that a compact connected abelian semigroup (which is not a group),
having an identity 1 contains a non-degenerate compact connected sub-
semigroup whose intersection with the maximal subgroup at 1 is pre-
cisely 1. :

Another application of this canonical endomorphism is a natural
description of certain semigroups as coordinate ‘bundles with connected
fibres.

§ 1. Homogroups. The term homogroup was introduced by
G. Thierrin [29] who studied their regular equivalences and made a detailed
study of a special homogroup called resorbing (résorbant).

Rarlier, A. H. Clifford and D. D. Miller, [8], had studied homogroups
under the title ‘“‘semigroups with zeroide elements”. Let us recall that an
element & of a semigroup D is ealled net or zeroid if for any & there exist
elements s and ¢ such that ds =z and {d = 2. Now Clifford and Miller
show that K, the set of net elements, if non-vacuous, is a two-sided ideal

* The author holds a National Science Foundation grant NSF G 13758.
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