

On the independence of continuous functions

bv

S. Świerczkowski (Wrocław)

We shall investigate the inter-relation of two notions of independence of continuous functions. One of these notions has an algebraical character and is associated with a composition algebra (cf. definition below) on the given set of functions; it depends on the choice of this algebra in which it is naturally defined according to the scheme of independence in abstract algebras proposed by E. Marczewski [2]. The second notion expresses a more intrinsic, topological property of the functions involved. Some textbooks on function theory give it in their course (cf. e.g. [1]).

We shall consider continuous real valued functions $f(x_1, ..., x_n)$ defined on an arbitrary open subset D of the Euclidean space E^n , where $n \ge 2$. D will be fixed and the above class of functions will be denoted by F. By C^0 we shall denote the class of all continuous real valued functions defined over the whole E^n . Every $g \in C^0$ can be regarded as an operation associating with every n-tuple $(f_1, ..., f_n)$, $f_i \in F$ the function $g(f_1, ..., f_n) \in F$ defined by

(1)
$$g(f_1, \ldots, f_n)(x_1, \ldots, x_n) = g(f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n)).$$

For any $H \subset C^0$, we shall call the pair $\mathcal{A} = (F, H)$ a composition algebra. In this algebra, F is the set of elements and every $g \in H$ is an operation acting on F according to formula (1). We say, following E. Marczewski [2], that $f_1, \ldots, f_m \in F$ are independent in the algebra \mathcal{A} if every mapping of the set $\{f_1, \ldots, f_m\}$ into F can be extended to a homomorphism of the subalgebra generated by f_1, \ldots, f_m into \mathcal{A} . We shall compare this notion of independence with another notion (cf. [1], p. 156) according to which $f_1, \ldots, f_m \in F$ are called independent if the set

$$(f_1, \ldots, f_m)(D) = \{(f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)) : (x_1, \ldots, x_n) \in D\}$$

is dense in some open subset of E^m . To avoid misunderstanding we shall say that the functions f_1, \ldots, f_m are independent if and only if they are independent in the sense of this latter definition and we shall call them \mathcal{A} -free if they are independent in a composition algebra \mathcal{A} . It is well

known [1] that if f_1, \ldots, f_n are differentiable and their Jacobian does not vanish identically on D, then these functions are independent.

We denote by C^k the class of all k times differentiable functions on E^n and we define $C^{\infty} = \bigcap_{n=0}^{\infty} C^k$. Then our main result may be stated as follows

THEOREM. There exists a composition algebra $\mathcal{A} = (\mathbf{F}, \mathbf{H})$ such that arbitrary n functions $f_1, \ldots, f_n \in \mathbf{F}$ are \mathcal{A} -free if and only if they are independent. Moreover $\mathbf{H} \subset \mathcal{C}^{\infty}$, hence, for every k, $(\mathbf{F} \cap \mathcal{C}^k, \mathbf{H})$ is a subalgebra of \mathcal{A} .

The question remains open whether there is a composition algebra \mathcal{A}_0 such that, for every k, any $f_1, \ldots, f_k \in F$ are \mathcal{A}_0 -free if and only if they are independent. For the algebra \mathcal{A} constructed below this is not the case since every k < n functions are \mathcal{A} -free but there exist k < n dependent functions in F, e.g. f, 2f, ..., kf (f arbitrary). On the other hand, there is a class χ of operations on F (which are not of the form (1)) such that (F, χ) -freeness coincides with independence (cf. [3]).

The essential part of our proof is the construction of a class ${\cal H}\subset {\it C}^{0}$ such that:

- (i) $H \subset C^{\infty}$.
- (ii) The constant function identically equal 0 belongs to H.
- (iii) The 'projections' e_i (i = 1, ..., n), defined by $e_i(x_1, ..., x_n) = x_i$, for every $x_1, ..., x_n$ belong to \mathbf{H} .
 - (iv) If $h_0, h_1, \ldots, h_n \in \mathbf{H}$, then $h_0(h_1, \ldots, h_n) \in \mathbf{H}$.
- (∇) If $h_1, \ldots, h_n \in H$ are different from each other and none of these functions is identically equal zero, then these functions are independent on every open subset $V \subseteq E^n$, or equivalently, (by (i)), the Jacobian

$$\partial(h_1,\ldots,h_n)/\partial(x_1,\ldots,x_n)$$

does not vanish identically on any open set.

(vi) If S is an arbitrary nowhere dense subset of E^n , then there is an $h \in H$ such that h does not vanish identically and h is vanishing on S.

Sufficiency of (i),..., (vi). Suppose that H satisfies (i),..., (vi) and define $\mathcal{A} = (F, H)$. In view of (iii) and (iv) the functions f_1, \ldots, f_n are \mathcal{A} -free if and only if

$$(2) g(f_1, ..., f_n) \neq h(f_1, ..., f_n) \text{when} g, h \in \mathbf{H} \text{ and } g \neq h.$$

Let f_1, \ldots, f_n be independent. Then $(f_1, \ldots, f_n)(D)$ is dense in some open subset of E^n and since $g, h \in H$ cannot coincide on any open set, if they are different, by (v), we have (2). Conversely, if f_1, \ldots, f_n are dependent, i.e. $S = (f_1, \ldots, f_n)(D)$ is nowhere dense, then $h(f_1, \ldots, f_n) = 0$

holds for that function h which is given by (vi). Since h does not vanish identically and (ii), we have an instance of non (2), hence f_1, \ldots, f_n are not \mathcal{A} -free.

1. The definition of *H***.** Let *T* be a set of power 2^{\aleph_0} . Suppose that $\{S_{\tau}\}$, $\tau \in T$, is the family of all nowhere dense closed subsets of E^n and let

$$S_{\tau}^{0} = S_{\tau} \cup \{(x_{1}, ..., x_{n}): x_{i} = 0 \text{ or } x_{i} = x_{j} \text{ for some } i, j; i \neq j\}.$$

It is well known that for every S_{τ}^{0} there exists a family of disjoint cubes

$$M_{\tau,i} = \{(x_1, \ldots, x_n): -a_j^i < x_j - b_j^i < a_j^i, \ j = 1, \ldots, n\}; \quad i = 1, 2, \ldots$$

with rational a_j^i, b_j^i such that $\bigcup_{i=1}^{\infty} M_{\tau,i}$ is dense in E^n and disjoint to S_{τ}^0 . Moreover, there are rational constants $r_i > 0$ such that, if we define

(3)
$$\overline{h}_{\tau,i}(x_1, \dots, x_n) = r_i \exp\left\{-\prod_{j=1}^n \left[(a_j^i)^2 - (x_j - b_j^i)^2\right]^{-1}\right\},$$

$$h_{\tau,i}(p) = \begin{cases} \overline{h}_{\tau,i}(p) & \text{when} \quad p \in M_{\tau,i}, \\ 0 & \text{otherwise,} \end{cases}$$

and $h_{\tau} = \sum_{i=1}^{\infty} h_{\tau,i}$, then $h_{\tau} \in C^{\infty}$. (For a similar construction see [1], p. 158.) Obviously the function h_{τ} does not vanish identically on any open set and we have $h_{\tau}(p) = 0$ when $p \in S_{\tau}^{0}$.

Now let $\{c_{l_1,\ldots,l_n}^{\tau}\}$, $\tau \in T$, $l_1,\ldots,l_n=0,1,2,\ldots$ be a set composed of irrational algebraically independent numbers such that, for every τ , the series

(4)
$$s_{\tau}(x_1, \ldots, x_n) = \sum_{l_1, \ldots, l_n} c_{l_1, \ldots, l_n}^{\tau} x_1^{l_1} x_2^{l_2} \ldots x_n^{l_n}$$

converges and its sum belongs to C^{∞} .

We associate with every $\tau \in T$ a function h_{τ} and a function s_{τ} defined above and we call the functions

(5)
$$s_{\tau}(x_1,\ldots,x_n)h_{\tau}(x_1,\ldots,x_n), \quad \tau \in T,$$

fundamental. Now we define H as the smallest class which contains the projections e_1, \ldots, e_n (cf. (iii)), every fundamental function, and is closed under composition as required by (iv). Given a fundamental function (5) we shall call the functions $s_\tau h_{\tau,i}$ the atoms of (5).

We have to verify that H satisfies (i), ..., (vi). Of these conditions only (v) needs a proof, the rest follows easily. (Condition (ii) follows by h(h, ..., h) = 0 for any fundamental function h.) We shall give the proof of (v) in section 4 after having obtained in sections 2 and 3 some auxiliary results concerning the structure of H.

2. Compositions. We shall now define a class Γ of operations acting on C^0 . They will be called *compositions*. The unique unary composition will be denoted by E and it is defined by the condition E(f)=f, for every $f \in C^0$. Suppose that m is a positive integer and that all q-ary composition operations with q < m have been defined. Then an m-ary operation R on C^0 is called a *composition* if and only if

(6)
$$R(f_1, ..., f_m)$$

= $f_m(Q_1(f_{m_1+1}, f_2, ..., f_{m_2}), Q_2(f_{m_2+1}, ..., f_{m_3}), ..., Q_n(f_{m_n+1}, ..., f_{m_{n+1}}))$,

where $0=m_1 < m_2 < m_3 < \ldots < m_{n+1}=m-1$ and Q_i are compositions already defined. It is clear that if $R \in \Gamma$ is m-ary, then m=1 or m>n. It is also easily seen that the representation (6) is unique, i.e. given any m-ary $R \in \Gamma$ with m>n, the operations Q_1, \ldots, Q_n satisfying (6) for every $f_1, \ldots, f_m \in C^0$, are uniquely determined.

Let us denote by E_i the constant operations on C^0 such that $E_i(f) = e_i$ for every $f \in C^0$, where e_i are the projections defined in (iii). Given an m-ary $R \in \Gamma$, we shall associate with every $k = 1, \ldots, m$ an ordered n-tuple [R, k] of operations on C^0 defined as follows. If m = 1, i.e. R = E, then we put

$$[E,1]=(E_1,\ldots,E_n),$$

and assuming that we have defined the *n*-tuples [Q,k] for all q-ary $Q \in \Gamma$ with $1 \le k \le q < m$, we take an *m*-ary $R \in \Gamma$, represent it uniquely in the form (6) and set

$$[R, m] = (Q_1, ..., Q_n),$$

defining, for k < m,

$$[R,k]=[Q_i,k-m_i],$$

where *i* is the unique integer such that $m_i < k \leq m_{i+1}$. We see that [R, k] is either an *n*-tuple of operations belonging to Γ or it is the *n*-tuple (E_1, \ldots, E_n) . For every *n*-tuple [R, k] we define an operation $[R, k]^*$ which associates with every $f_1, \ldots, f_m \in C^0$ an *n*-tuple $[R, k]^*(f_1, \ldots, f_m)$ of functions belonging to C^0 . If R = E, we put

$$[E, 1]^*(f) = (E_1(f), \dots, E_n(f)).$$

Assuming that we have defined $[Q, k]^*$ for all q-ary $Q \in \Gamma$ with q < m, we take an m-ary $R \in \Gamma$, represent it in the form (6) and define

$$(7) \qquad [R, m]^*(f_1, \ldots, f_m) = ((Q_1(f_{m_1+1}, \ldots, f_{m_2}), \ldots, Q_n(f_{m_n+1}, \ldots, f_{m_{n+1}}))$$

and for k < m we take the i satisfying $m_i < k \leqslant m_{i+1}$ and put

(8)
$$[R, k]^*(f_1, \dots, f_m) = [Q_i, k - m_i]^*(f_{m_i+1}, \dots, f_{m_{i+1}}).$$

It is not difficult to see that if $R \in \Gamma$ is m-ary and $[R, k] = (\Omega_1, \dots, \Omega_n)$, then there are numbers $0 \le s_1 < s_2 < \dots < s_{n+1} < m$ such that, for every $f_1, \dots, f_m \in C^0$,

(9)
$$[R, k]^*(f_1, \ldots, f_m) = (\Omega_1(f_{s_1+1}, \ldots, f_{s_n}), \ldots, \Omega_n(f_{s_n+1}, \ldots, f_{s_{n+1}})).$$

We shall prove now a lemma concerning the operations $[R, k]^*$. For a > 0 and $p \in E^n$, we shall denote by $K_a p$ the interior of the sphere with radius a and centre at p.

LEMMA 1.2. Let $f_1,\ldots,f_m\in C^0,\ p_0\in E^n,\ and\ let\ R\in \Gamma$ be m-ary. We denote $p_k=[R,k]^*(f_1,\ldots,f_m)(p_0).$ Then, for every a>0, there is a $\beta>0$ such that for every $\gamma>0$ there is a $\delta>0$ with the property that whenever $g_1,\ldots,g_m\in C^0$ are such that for every $k=1,\ldots,m,\ |g_k-f_k|<\delta$ holds inside $K_\alpha p_k$, then, for every $p\in K_\beta p_0$,

(10)
$$[R, k]^*(g_1, ..., g_m)(p) \in K_a p_k,$$

$$|R(g_1, ..., g_m)(p) - R(f_1, ..., f_m)(p)| < \gamma.$$

Proof. If m=1, i.e. R=E, then clearly it is enough to put $\beta=a$ and $\delta=\gamma$. Now take the inductive assumption that the lemma is proved for all q-ary compositions with q< m. Let $R\in \Gamma$ be m-ary and consider the compositions Q_1,\ldots,Q_n appearing in (6). Since the lemma holds for each Q_i , we have that to α correspond numbers β_i , $(i=1,\ldots,n)$ having the property stated in the lemma with respect to Q_i and $f_{m_i+1},\ldots,f_{m_{i+1}}$. Let η satisfy $0<\eta<\alpha$. From the continuity of f_1,\ldots,f_m follows the existence of a number β_0 such that

(12)
$$[R, m]^*(f_1, ..., f_m)(p) \in K_{\alpha-\eta}p_m \quad \text{for} \quad p \in K_{\beta_0}p_0.$$

We define $\beta = \min(\beta_0, \beta_1, \dots, \beta_n)$. Now suppose that γ is given. The function f_m is uniformly continuous on bounded sets, hence there is an $\varepsilon > 0$ such that

$$|f_m(q) - f_m(p)| < \gamma/2 \quad \text{if} \quad q \in K_\alpha p_m \cap K_\varepsilon p$$

We can assume that $\varepsilon < \eta$. Let μ be any number which is small enough so that a cube with sides equal 2μ is contained in a sphere of radius ε (in the space E^n). Recollecting that the hypothesis of the lemma holds for each Q_i and $f_{m_i+1}, \ldots, f_{m_{i+1}}$ with the values of α and β fixed above, we consider this hyphotesis with μ in place of γ . Then we have, for each $i=1,\ldots,m$, that there is a number δ_i with the property that whenever $g_{m_i+1},\ldots,g_{m_{i+1}}$ are such that, for every $k=m_i+1,\ldots,m_{i+1},$ $|g_k-f_k|<\delta_i$ holds inside the sphere

$$K_a[Q_i, k-m_i]^*(f_{m_i+1}, \ldots, f_{m_{i+1}})(p_0),$$

i.e. inside $K_{\alpha}p_{k}$, by (8), then, for every $p \in K_{\beta}p_{0}$,

$$[Q_i, k-m_i]^*(g_{m_i+1}, \ldots, g_{m_{i+1}})(p) \in K_a p_k$$

and

$$|Q_i(g_{m_{i+1}}, \ldots, g_{m_{i+1}})(p) - Q_i(f_{m_{i+1}}, \ldots, f_{m_{i+1}})(p)| < \mu.$$

We now assert that $\delta = \min(\gamma/2, \delta_1, ..., \delta_m)$ satisfies the hypothesis of the lemma. Indeed, if k < m, then (10) holds by (14) and (8). Moreover, if $p \in K_{\beta}p_0$, then, by (15) and by our definition of μ ,

(16)
$$[R, m]^*(g_1, ..., g_m)(p) \in K_{\varepsilon}[R, m]^*(f_1, ..., f_m)(p)$$

and hence, by (12) and by $\varepsilon < \eta$,

(17)
$$[R, m]^*(g_1, ..., g_m)(p) \in K_{\alpha} p_m .$$

This completes the proof of (10). Moreover, by (13), (16) and (17) we have

$$|f_m([R, m]^*(g_1, ..., g_m)(p)) - f_m([R, m]^*(f_1, ..., f_m)(p))| < \gamma/2$$

for $p \in K_{\beta}p_0$. Thus by (17) and by $|g_m-f_m| < \delta \leqslant \gamma/2$ on K_ap_m , we have that (18) implies (11).

COROLLARY. Let $R, f_1, ..., f_m, p_0, p_k$ be as in the Lemma 1.2. Then, for every a > 0, there is a $\beta > 0$ with the property that whenever $g_1, ..., g_m$ are functions such that, for $k = 1, ..., m, g_k = f_k$ holds on $K_a p_k$, then

(19)
$$R(g_1, \ldots, g_m) = R(f_1, \ldots, f_m) \quad holds \ on \quad K_{\beta} p_0.$$

To prove the corollary it is enough to take a β given by Lemma 1.2 and let $\gamma \to 0$. Since obviously $|g_k - f_k| < \delta$ holds on $K_\alpha p_k$ for every $\delta > 0$, hence (11) implies (19).

To state the next lemma we need another definition. Suppose $R \in \Gamma$ is m-ary and let i_1, \ldots, i_q be a sequence composed of some of the numbers $1, \ldots, m$. Let $P = f_{i_1}, \ldots, f_{i_q}$ be a fixed sequence of functions. We say that R depends on the k-th variable $(1 \le k \le m)$ under fixed P if there are functions $g_1, \ldots, g_k, \ldots, g_m, g_k$ such that $g_i = f_i$ for $i = i_1, \ldots, i_q$ and

$$R(g_1, ..., g_k, ..., g_m) \neq R(g_1, ..., g'_k, ..., g_m)$$
.

LEMMA 2.2. Let $R, f_1, ..., f_m, p_0, p_k$ be as in Lemma 1.2 and let P be the subsequence of $f_1, ..., f_m$ composed of all projections among these functions. Assume that every f_k which is not a projection is vanishing identically on each hyperplane $x_j = 0, j = 1, ..., n$, and let $R(f_1, ..., f_m)(p_0) \neq 0$. Then we have $f_k(p_k) \neq 0$ for all those f_k which are not projections and are such that R depends on the k-th variable under fixed P.

Proof. The lemma holds trivially if R=E. Now take the inductive assumption that it is true for every q-ary composition with q < m. Let $R \in \Gamma$ be m-ary of the form (6). Suppose first that f_m is a projection, say $f_m = e_i$. Then $R(f_1, \ldots, f_m) = Q_i(f_{m_i+1}, \ldots, f_{m_{i+1}})$. If f_k is not a projection and R depends on the k-th variable under fixed P, then obviously

 $m_i < k \le m_{i+1}$ and Q_i depends on the $(k-m_i)$ -th variable. We have $p_k = [Q_i, k-m_i]^*(f_{m_i+1}, \ldots, f_{m_{i+1}})(p_0)$, and, by the inductive assumption, $f_k(p_k) \ne 0$.

Now let f_m be not a projection. Then, by $f_m(p_m) = R(f_1, ..., f_m)(p_m)$, we have $f_m(p_m) \neq 0$ and moreover p_m does not lie on any of the hyperplanes $x_i = 0$. Thus $Q_i(f_{m_i+1}, ..., f_{m_{i+1}})(p_0) \neq 0$ holds for i = 1, ..., n. If, for some k < m, f_k is not a projection, and R depends on the k-th variable, then, for this i which satisfies $m_i < k \leq m_{i+1}$ we have that Q_i depends on the $(k-m_i)$ -th variable. As before, it follows by the inductive assumption that $f_k(p_k) \neq 0$.

LEMMA 3.2. Let $f_1, ..., f_m \in C^0$, $V \subset E^n$ and let $R \in \Gamma$ be an m-ary composition such that, for a certain function $g \in C^0$ and a number $l \leq m$, we have

$$g(p) = f_l([R, l]^*(f_1, ..., f_m)(p))$$
 for every $p \in V$.

Then there is a number $0 \leqslant k < l$ and a composition $Q \in \Gamma$ such that

$$R(f_1,\ldots,f_m)(p)=Q(f_1,\ldots,f_k,g,f_{l+1},\ldots,f_m)(p)\quad \text{ for every }\quad p\;\epsilon\;V.$$

We omit the simple proof (induction on m).

3. Atoms and compositions.

LEMMA 1.3. Let $R_i \in \Gamma$ (i = 1, 2) be q_i -ary compositions and let $h_1^i, \ldots, h_{\alpha}^i$ be two sequences composed of atoms and projections such that, for some $p_0 \in E^n$,

(20)
$$R_i(h_1^i, ..., h_{qi}^i)(p_0) > 0.$$

Assume that there is a neighbourhood V of po such that

(21)
$$R_1(h_1^1, ..., h_{\alpha}^1)(p) = R_2(h_1^2, ..., h_{\alpha}^2)(p)$$
 for every $p \in V$.

Let us denote $p_k^i = [R_i, k]^*(h_1^i, ..., h_{q_i}^i)(p_0)$. Then, for arbitrary series $s_k^i = \sum_{\tau_1, ..., \tau_n} c_{r_1, ..., r_n}^{i,k} x_1^{\tau_2} x_2^{\tau_3} ... x_n^{\tau_n}$ such that

$$(\pi)$$
 $s_k^i = h_k^i$ whenever h_k^i is a projection,

$$(
ho)$$
 $s_k^i = s_l^j$ whenever $h_k^i = h_l^j$ and $p_k^i = p_l^j$,

we have

(22)
$$R_1(s_1^1, \ldots, s_{q_1}^1)(p) = R_2(s_1^2, \ldots, s_{q_2}^2)(p)$$
 for every $p \in E^n$.

COROLLARY. In particular (22) holds for any series s_k^i which satisfy (π) and are such that $s_k^i = s_l^i$ whenever $h_k^i = h_l^i$.

Proof. Let P_i be the subsequence of all the projections among the h_1^i, \ldots, h_{ai}^i . It follows from (π) that $h_k^i \to s_k^i$ are substitutions with fixed P_i . Thus we need to consider only these atoms h_k^i for which R_i depends on the k-th variable under fixed P_i . Let the following be all these atoms

(23)
$$h_b^a = s_{\varrho} h_{\varrho,m}, \ldots, h_d^c = s_{\sigma} h_{\sigma,r}, \ldots, h_w^u = s_{\mu} h_{\mu,r},$$

(24)
$$\bar{h}_b^a = s_a \bar{h}_{g,m}, \ldots, \bar{h}_d^c = s_\sigma \bar{h}_{\sigma,r}, \ldots, \bar{h}_w^u = s_\mu \bar{h}_{\mu,r}; \bar{h}_k^i = h_k^i$$
 for all other h_k^i .

We have, in view of (20) and by Lemma 2.2 that $h^a_b(p^a_b) > 0$, ..., $h^a_w(p^u_w) > 0$. Clearly there is a number a > 0 such that $h^a_b = \overline{h}^a_b, \ldots, h^u_w = \overline{h}^u_w$ hold in the spheres $K_a p^a_b, \ldots, K_a p^u_w$ respectively. Thus, by the Corollary to Lemma 1.2, we have that there is an open set $U \subset V$ such that

$$R_i(h_1^i,\,\ldots,\,h_{q_i}^i)(p) = R_i(\overline{h}_1^i,\,\ldots,\,\overline{h}_{q_i}^i)(p) \quad ext{ for every } \quad p \,\,\epsilon\,\,U\,.$$

Obviously, identically on E^n

$$R(\overline{h}_1^i, \dots, \overline{h}_{q_l}^i)(x_1, \dots, x_n) = \sum_{k_1, \dots, k_n} w_{k_1, \dots, k_n}^{(i)}(c_{l_1, \dots, l_n}^g, \dots, c_{l_1, \dots, l_n}^\mu) x_1^{k_1} x_2^{k_2} \dots x_n^{k_n},$$

where $v_{k_1,\ldots,k_n}^{(i)}$ are certain polynomials, with rational coefficients, of the algebraically independent irrational numbers $c_{l_1,\ldots,l_n}^{l_1},\ldots,c_{l_1,\ldots,l_n}^{l_1}$ appearing in (4). Since (21) holds on U, it follows from the above that

$$[w_{k_1,\ldots,k_n}^{(1)}-w_{k_1,\ldots,k_n}^{(2)}](c_{l_1,\ldots,l_n}^{\varrho},\ldots,c_{t_1,\ldots,t_n}^{\mu})=0.$$

We conclude that each of the polynomials $w_{k_1,\dots,k_n}^{(1)} - w_{k_1,\dots,k_n}^{(2)}$ is vanishing whatever numbers $\widetilde{c}_{l_1,\dots,l_n}^{(p)},\dots,\widetilde{c}_{l_1,\dots,l_n}^{(p)}$ we substitute for the $c_{l_1,\dots,l_n}^{q},\dots,c_{l_1,\dots,l_n}^{q}$ provided equal numbers are substituted for equal ones. Hence, if we replace all the series $s_{\varrho},\dots,s_{\mu}$ appearing in (24) by arbitrary series $\widetilde{s_{\varrho}},\dots,\widetilde{s_{\mu}}$ so that identical series are replaced by identical ones, and we set

(25)
$$\widetilde{h}_{b}^{a} = \widetilde{s}_{\varrho} \overline{h}_{\varrho,m}, \ldots, \widetilde{h}_{d}^{c} = \widetilde{s}_{\sigma} \overline{h}_{\sigma,r}, \ldots, \widetilde{h}_{w}^{u} = \widetilde{s}_{\mu} \overline{h}_{\mu,v};$$

$$\widetilde{h}_{k}^{i} = h_{k}^{i} \text{ for the remaining } h_{k}^{i},$$

then

(26)
$$R_1(\widetilde{h}_1^1, \dots, \widetilde{h}_{q_1}^1) = R_2(\widetilde{h}_1^2, \dots, \widetilde{h}_{q_1}^2) \text{ on } E^n.$$

We may assume that α is a sufficiently small number such that the functions $\bar{h}_{e,m},\ldots,\bar{h}_{\mu,\nu}$ are positive valued in the spheres $K_{\alpha}p_{a}^{b},\ldots,K_{\alpha}p_{w}^{u}$ respectively and moreover any two of these spheres are either disjoint or coinciding. It follows by Lemma 1.2 that there is a number $\delta>0$ such that for any functions \bar{s}_{k}^{i} satisfying $|\bar{s}_{k}^{i}-h_{k}^{i}|<\delta$ on $K_{\alpha}p_{k}^{i}$, $(i=1,2;k=1,\ldots,q_{i})$, we have, by (10),

$$[R_i, k]^*(\bar{s}_1^i, \dots, \bar{s}_{g_i}^i)(p_0) \in K_g p_k^i.$$

Since there is a dense set of irrational algebraically independent numbers, there are series $\bar{s}_{n}^{0}, \dots, \bar{s}_{n}^{w}$ such that

a)
$$|\bar{s}_b^a - h_b^a| < \delta, \dots, |\bar{s}_w^u - h_w^u| < \delta$$
 hold in $K_a p_b^a, \dots, K_a p_w^u$ respectively;

- b) Two of these series, say \bar{s}_d^c and \bar{s}_w^u , are identical if and only if the corresponding atoms h_a^c and h_w^u are identical and $p_a^c = p_w^u$;
 - c) The sets of coefficients of different series are mutually disjoint;
- d) The coefficients of all series $\bar{s}^a_b, \dots, \bar{s}^u_w$ form a set of irrational algebraically independent numbers.

We set $\bar{s}_k^i = h_k^i$ for pairs (i,k) such that h_k^i does not appear in (23). We denote $\bar{p}_k^i = [R_i, k]^*(\bar{s}_1^i, \dots, \bar{s}_{q_l}^i)(p_0)$. Then, by (27), there is a number $\varepsilon > 0$ such that $K_\varepsilon \bar{p}_k^i \subset K_\alpha p_k^i$ for every p_k^i . We note that in the spheres $K_\varepsilon \bar{p}_b^a, \dots, K_\varepsilon \bar{p}_w^i$ the corresponding functions $\bar{h}_{\varrho,m}, \dots, \bar{h}_{\mu,\nu}$ (cf. (23)) are positive. Suppose we now wish to find series $\bar{s}_\ell^o, \dots, \bar{s}_\mu^o$ such that the functions (25) approximate the series $\bar{s}_\delta^a, \dots, \bar{s}_w^i$ in the spheres $K_\varepsilon \bar{p}_w^i, \dots, K_\varepsilon \bar{p}_\delta^i$ respectively. Remembering that two of the series $\bar{s}_\varrho^i, \dots, \bar{s}_\sigma^i, \dots, \bar{s}_\mu^i$, say \bar{s}_σ and \bar{s}_μ , have to be taken identical if and only if $s_\sigma = s_\mu$ and $K_\varepsilon \bar{p}_\alpha^i \cap K_\varepsilon \bar{p}_w^i \neq 0$ implies $\bar{s}_\alpha^i = \bar{s}_w^i$. Now this is always the case, as follows from our construction: Indeed, we then have $\sigma = \mu$ and $p_\alpha^i = p_w^i$. Moreover, by $h_{\sigma,r}(p_\alpha^i) > 0$, $h_{\mu,\nu}(p_w^i) > 0$, the supports of $h_{\mu,r}$ and $h_{\mu,\nu}$ intersect, hence $r = \nu$. From $\sigma = \mu$, $r = \nu$, we have $h_\alpha^i = h_w^i$ and thus, by b), $\bar{s}_\alpha^i = \bar{s}_w^i$.

It now follows that, for every $\delta>0$, we can find functions (25) satisfying $|\tilde{h}_u^b-\bar{s}_u^b|<\delta$, ..., $|\tilde{h}_w^u-\bar{s}_u^w|<\delta$ in $K_*\bar{p}_o^t$, ..., $K_*\bar{p}_w^w$ respectively. We obtain, by Lemma 1.2, that there is a $\beta>0$ with the property that $|R_i(\tilde{h}_1^i,\ldots,\tilde{h}_{q_i}^i)-R_i(\bar{s}_1^i,\ldots,\bar{s}_{q_i}^i)|$ can be arbitrarily small on $K_\beta p_0$ at suitable selections of the $\tilde{h}_1^i,\ldots,\tilde{h}_q^i$ of the form (25). Thus, by (26)

$$(28) \hspace{3cm} R_{\bf 1}(\overline{s}^1_1,\,\ldots,\,\overline{s}^1_{q_1}) = R_{\bf 2}(\overline{s}^2_1,\,\ldots,\,\overline{s}^2_{q_2}) \,\, \, {\rm on} \,\, \, K_{\beta} \, p_0 \, .$$

Since the functions in (28) are analytic, we have that (28) holds identically on E^n , and moreover, by d), (28) will remain true if we replace \bar{s}_b^a , ..., \bar{s}_w^u by arbitrary series s_b^a , ..., s_w^u provided that identical series \bar{s}_k^i are replaced by identical series s_k^i . This proves the lemma.

LEMMA 2.3. Let $R \in \Gamma$ be m-ary, let h_1, \ldots, h_m be atoms and projections and let $p_0 \in E^n$. We define $p_k = [R, k]^*(h_1, \ldots, h_m)(p_0)$. We write R for $R(h_1, \ldots, h_m)$ and if in R the functions h_1, \ldots, h_m are replaced by $\widetilde{h}_1, \ldots, \widetilde{h}_m$, then we denote the resulting function by \widetilde{R} . Then, for any functions $\widetilde{h}_1, \ldots, \widetilde{h}_m$ such that

(29)
$$\widetilde{h}_k(p_k) = h_k(p_k)$$
 and $\left[\frac{\partial}{\partial x_j}\widetilde{h}_k\right](p_k) = \left[\frac{\partial}{\partial x_j}h_k\right](p_k)$

for k = 1, ..., m; j = 1, ..., n we have

(30)
$$\widetilde{R}(p_0) = R(p_0)$$
 and $\left[\frac{\partial}{\partial x_j}\widetilde{R}\right](p_0) = \left[\frac{\partial}{\partial x_j}R\right](p_0); \quad j = 1, ..., n.$

Proof. The lemma is trivial if R = E. We take the inductive assumption that it is true for all q-ary composition operations with q < m. Let $R \in \Gamma$

be m-ary of the form (6). We have, by (29) and by the inductive hypothesis that $\widetilde{Q}_i(p_0) = Q_i(p_0)$; i = 1, ..., n. Hence $p_m = [R, m]^*(\widetilde{h}_1, ..., \widetilde{h}_m)(p_0)$ and thus, by $\widetilde{h}_m(p_m) = h_m(p_m)$, we have the first equation in (30). Further

$$\left[\frac{\partial}{\partial x_j}R\right](p_0) = \sum_{i=1}^n \left[\frac{\partial}{\partial x_i}h_m\right](p_m) \cdot \left[\frac{\partial}{\partial x_j}Q_i\right](p_0)$$

and there is an analogous equation with $R,\ h_m$ and Q_i replaced by $\widetilde{R},\ \widetilde{h}_m$ and \widetilde{Q}_i . Since we have

$$\left[\frac{\partial}{\partial x_i}\,\widetilde{h}_m\right](p_m) = \left[\frac{\partial}{\partial x_i}\,h_m\right](p_m)$$

and, by the inductive hypothesis,

$$\left[\frac{\partial}{\partial x_j}\,\widetilde{Q}_i\right](p_{\scriptscriptstyle 0}) = \left[\frac{\partial}{\partial x_j}\,Q_i\right](p_{\scriptscriptstyle 0})\,,$$

the remaining equalities in (30) follow.

LEMMA 3.3. Let $R_i \in \Gamma$ be q_i -ary and let h_i^i, \ldots, h_q^i be sequences composed of atoms and projections satisfying (20) for a certain $p_0 \in E^n$ $(i = 1, \ldots, m)$. Define p_k^i and P_i as in Lemma 1.3 and assume that $h_{q_m}^m$ is an atom such that whenever $h_{q_m}^m = h_k^i$ for some $i \neq m$ or $k \neq q_m$ and R_i depends on the k-th variable under fixed P_i , then $p_{q_m}^m \neq p_k^i$. Let further $W(y_1, \ldots, y_n, \ldots, y_{mn})$ be a polynomial with rational coefficients such that in some neighbourhood of p_0 identically

$$W\left(\frac{\partial}{\partial x_1} R_1, \frac{\partial}{\partial x_2} R_1, \ldots, \frac{\partial}{\partial x_n} R_1, \ldots, \frac{\partial}{\partial x_n} R_m\right) = 0$$
,

where R_i stands for $R_i(h_1^i, ..., h_{q_i}^i)$. Then, denoting by $Q_1^m, ..., Q_n^m$ the operations appearing in the representation (6) of R_m we have that for arbitrary numbers $D_1, ..., D_n$ there are functions $\widetilde{h}_1^i, ..., \widetilde{h}_{q_i}^i$ such that for j = 1, ..., n

(31)
$$\left[\frac{\partial}{\partial x_j}\widetilde{h}_{q_m}^m\right](p_{q_m}^m)=D_j,$$

$$(32) \ \left[\frac{\partial}{\partial x_j} \widetilde{R}_i \right] (p_0) = \left[\frac{\partial}{\partial x_j} R_i \right] (p_0); \quad i = 1, \dots, m-1,$$

$$(33) \left[\frac{\partial}{\partial x_j} \widetilde{Q}_i^m \right] (p_0) = \left[\frac{\partial}{\partial x_j} Q_i^m \right] (p_0) , \quad \widetilde{Q}_i^m (p_0) = Q_i^m (p_0) , \quad (i = 1, ..., n) ,$$

$$(34) \ \ W\left(\frac{\partial}{\partial x_1}\widetilde{R}_1, \frac{\partial}{\partial x_2}\widetilde{R}_1, \dots, \frac{\partial}{\partial x_n}\widetilde{R}_1, \dots, \frac{\partial}{\partial x_n}\widetilde{R}_m\right)(p) = 0 \quad \text{ for each } \quad p \in E^n,$$

where \widetilde{R}_i and \widetilde{Q}_m^i denote the functions resulting from R_i , Q_i^m by replacing h_k^i by \widetilde{h}_k^i .

Proof. Let (23) be defined as in the proof of Lemma 1.3. Then, as in the proof of that lemma, we have that (34) holds for any functions \tilde{h}_k^i of the form (25). Thus, in view of Lemma 2.3 it is enough to show that there are functions \tilde{h}_k^i of the form (25) which satisfy, for j = 1, ..., n,

(35)
$$\left[\frac{\partial}{\partial x_j} \widetilde{h}_{q_m}^m \right] (p_{q_m}^m) = D_j,$$

(36)
$$\widetilde{h}_{k}^{i}(p_{k}^{i}) = h_{k}^{i}(p_{k}^{i}); \quad i = 1, ..., m; k = 1, ..., q_{i},$$

$$(37) \qquad \left[\frac{\partial}{\partial x_j}\widetilde{h}_k^i\right](p_k^i) = \left[\frac{\partial}{\partial x_j}h_k^i\right](p_k^i) \quad \text{if} \quad i \neq m \text{ or } k \neq q_m.$$

Since h_{am}^m is not a projection, it is clear that this function appears in (23); we may assume that $h_{am}^m = h_w^u = s_\mu h_{\mu,r}$, i.e. u = m, $w = q_m$. By (20), we have $(s_\mu h_{\mu,r})(p_{am}^m) \neq 0$. Thus we may define

(38)
$$D_{j}^{*} = \left\{ D_{j} - \left[\frac{\partial}{\partial x_{j}} s_{\mu} \overline{h}_{\mu,r} \right] (p_{qm}^{m}) \right\} \left\{ \left[s_{\mu} \overline{h}_{\mu,r} \right] (p_{qm}^{m}) \right\}^{-1}.$$

Let $s^a_b,\dots,s^c_d,\dots,s^m_{q_m}$ be series such that $s^i_k(p^i_k)=1$ for every $p^i_k,$ $\left[\frac{\partial}{\partial x_j}s^i_k\right](p^i_k)=0$ for $(i,k)\neq (m,q_m)$ and $\left[\frac{\partial}{\partial x_j}s^m_{q_m}\right](p^m_{q_m})=D^*_j$ for $j=1,\dots,n$.

Moreover, let two of these series, say s_d^c and s_{qm}^m , be identical if and only if the corresponding series s_σ and s_μ (cf. (23)) are identical. Such choice is always possible as we cannot have simultaneously $p_d^c = p_{qm}^m$ and $s_\sigma = s_\mu$. Indeed, this implies that the atoms h_d^c , h_{qm}^m have intersecting supports and belong to the same fundamental function, hence $h_d^c = h_{qm}^m$. But, by our assumption, $h_d^c = h_{qm}^m$ implies $p_d^c \neq p_{qm}^m$. Obviously also the following is an instance of (25)

$$\widetilde{h}^a_b = s^a_b s_{\varrho} \overline{h}_{\varrho,m}, \ldots, \ \widetilde{h}^c_a = s^c_a s_{\sigma} \overline{h}_{\sigma,\tau}, \ldots, \ \widetilde{h}^m_{q_m} = s^m_{q_m} s_{\mu} \overline{h}_{\mu,\tau};$$

$$\widetilde{h}^i_k = h^i_k \ \text{for all other} \ h^i_k.$$

It is easily seen that these functions satisfy (36) and (37). To check (35) it is enough to apply (38). This completes the proof.

LEMMA 4.3. Let $R_i \in \Gamma$ be q_i -ary compositions, $q_i > n$, i = 1, ..., m. Suppose that $h_1^i, ..., h_{q_i}^i$ are sequences composed of atoms and projections such that $h_{q_i}^i$ are atoms and (20) holds for each i and every p_0 belonging to a certain open $V_0 \subseteq E^n$. Let P_i be the corresponding subsequence of projections. For $i, j \leq m$ we write i < j if there is an $l < q_j$ such that R_j depends on the l-th variable under fixed P_j , $h_{q_i}^i = h_j^i$ and for some open $W \subseteq V_0$

(39)
$$[R_i, q_i]^*(h_1^i, \dots, h_{q_i}^i)(p) = [R_j, l]^*(h_1^j, \dots, h_{q_j}^j)(p)$$

holds for each $p \in W$. Then \prec can be extended to an ordering relation on $\{1, ..., m\}$.

Proof. For $t=1,\ldots,m$ and $r=1,\ldots,q_t$ we define $s_t^t=x_1^2+x_2^2+\ldots+x_n^2$ if h_t^t is an atom and $s_t^t=h_t^t$ if h_t^t is a projection. It is easily seen that $R_t(s_1^t,\ldots,s_{tt}^t)$ is a polynomial. We denote by d(t) the degree of this polynomial. Now let $i \prec j$. It follows, by (39) and by $h_{tt}^t=h_t^t$ that

$$R_i(h_1^i, ..., h_{q_i}^i)(p) = h_i^j([R_j, l]^*(h_1^j, ..., h_{q_j}^j)(p))$$

for every $p \in W$. Hence, by Lemma 3.2, there is a $Q \in \Gamma$ and a number $O \le k < l$ such that

$$R_j(h_1^j, \ldots, h_{q_j}^j)(p) = Q(h_1^j, \ldots, h_k^j, R_i(h_1^i, \ldots, h_{q_i}^i), h_{l+1}^j, \ldots, h_{q_j}^j)(p)$$

for every $p \in W$. It follows by Lemma 1.3 (Corollary) that the above equality will hold identically in E^n if we replace each h^t_r by s^t_r . Since $s^t_{qj} = x^2_1 + \ldots + s^2_n$, we see that the degree of $R_i(s^j_1, \ldots, s^j_{qj})$ is at least twice the degree of $R_i(s^i_1, \ldots, s^i_{qi})$, i.e. $2d(i) \leq d(j)$. Thus we have a mapping d of $\{1, \ldots, m\}$ into integers such that $i \prec j$ implies d(i) < d(j). This is obviously sufficient for the existence of an ordering relation on $\{1, \ldots, m\}$ which is an extension of \prec .

- **4. Proof of (v).** We shall prove, for every d, the following two staments (*) and (**). It is easily seen that (**) implies (*) but it is required by our method of proof that, for each d, (*) has to be assumed in order to obtain (**). It is clear that (**) implies (v). To see this, it is enough to observe that for each $h \in H$ there is a sequence h_1, \ldots, h_m composed of fundamental functions and projections such that for a certain m-ary $R \in \Gamma$ we have $h = R(h_1, \ldots, h_m)$.
- (*) If $R_i \in \Gamma$ are q_i -ary compositions, $q_i \leqslant d$, i=1,2, and there are sequences $h_1^i,\ldots,h_{q_i}^i$ composed of fundamental functions and projections such that

$$R_1(h_1^1, \ldots, h_{q_1}^1) = R_2(h_1^2, \ldots, h_{q_2}^2)$$
 holds on some open set V ,

then this equality holds identically on E^n .

(**) If $R_i \in \Gamma$ are q_i -ary compositions, $q_i \leq d$, i = 1, ..., n, and there are sequences $h_1^i, ..., h_{ai}^i$ (i = 1, ..., n) composed of fundamental functions and projections such that no two of the functions $R_i(h_1^i, ..., h_{ai}^i)$ coincide on E^n and none is vanishing identically, then these functions are independent on every open set $V \subset E^n$, i.e. there is a $p \in V$ such that

$$\left[\partial\left(R_1(h_1^1,\,...,\,h_{q_1}^1),\,...,\,R_n(h_1^n,\,...,\,h_{q_n}^n)\right)/\partial\left(x_1,\,...,\,x_n\right)\right](p)\,\neq\,0\,\,.$$

Proof of (*) for d=1. If d=1, we have $R_1=R_2=E$. Thus condition (*) means that there are two different functions, each of them being either a projection or a fundamental function which coincide on V. Applying the corollary to Lemma 1.3, we obtain a contradiction.

Proof of (**) for d=1. We have to show that if h_1, \ldots, h_n are projections and fundamental functions, all distinct, then they are independent on every open set. Let the indices of these functions be so permuted that h_1, \ldots, h_t , $(t \leq n)$ are all the projections among h_1, \ldots, h_n and moreover $h_i = e_i$ for $i = 1, \ldots, t$. If t = n, then there is nothing to prove. In the other case, let U be an open subset of V such that every fundamental function h_{t+1}, \ldots, h_n is equal on U to some of its atoms, say $h_{t+1} = s_e \overline{h}_{\varrho,m}, \ldots, h_n = s_\mu \overline{h}_{\varrho,r}$. Supposing that h_1, \ldots, h_n are dependent on U, we have

$$(40) \quad \partial(x_1, \dots, x_t, s_o \overline{h}_{o,m}, \dots, s_o \overline{h}_{u,v} h) / \partial(x_1, \dots, x_n) = 0 \quad \text{on} \quad U.$$

It is clear that this Jacobian is identical to a series and, using a similar argument as in the beginning of the proof of Lemma 1.3, we conclude that (40) will hold if we replace the series s_e, \ldots, s_μ by arbitrary series $\widetilde{s_e}, \ldots, \widetilde{s_\mu}$ which are convergent and differentiable on U. But if we define $\widetilde{s_e} = x_{t+1} \overline{h_{e,m}}, \ldots, \widetilde{s_\mu} = x_n \overline{h_{\mu,r}}$ (cf. (3)), then this Jacobian will take identically the value 1, hence a contradiction. Thus h_1, \ldots, h_n are independent.

Induction step in the proof of (*). We assume (*) and (**) for $d < d_0$ and we shall prove that (*) holds for $d = d_0$. Suppose that $R_i \in \Gamma$, $q_i \leqslant d_0$, (i = 1, 2) and

(41)
$$R_1(h_1^1, \ldots, h_{q_1}^1) = R_2(h_1^2, \ldots, h_{q_2}^2)$$
 holds on some open $V \subset E^n$.

Clearly we may assume that $h_{a_1}^1$ and $h_{a_2}^2$ are fundamental functions. Suppose first that $R_1(h_1^1, \dots, h_{a_1}^1) = 0$ on V. Write R_1 in the form (6) as

(42)
$$R_1(h_1^1, \ldots, h_{q_1}^1) = h_{q_1}^1(Q_1, \ldots, Q_n).$$

If the functions Q_i are all distinct and none of them is vanishing identically on E^n , then it follows by our inductive assumption that they are independent on every open set, in particular on V. This hovever is impossible because it would imply, by (42), that $h_{q_i}^1$ is vanishing identically on some open set. Hence two of the functions Q_i are identical or one of them is vanishing identically, and thus, by the property of fundamental functions that they vanish on the hyperplanes $x_j = 0$, $x_i = x_j$, it follows, by (42), that $R_1(h_1^1, \ldots, h_{q_1}^1) = 0$ on E^n . By (41), the same is true for R_2 and thus (41) holds identically on E^n .

Before passing to the second part of our proof we have to consider a certain property of $[R_i, k]$. We denote by $\Omega_r^{i,k}$ the operations for which (cf. (9))

$$[R_i, k]^*(h_1^i, \dots, h_{q_i}^i) = \left(\Omega_1^{i,k}(h_{s_{i+1}}^i, \dots, h_{s_k}^i), \dots, \Omega_n^{i,k}(h_{s_{n+1}}^i, \dots, h_{s_{n+1}}^i) \right),$$

$$[R_i, l]^*(h_1^j, \dots, h_{q_i}^j) = \left(\Omega_1^{j,l}(h_{q_{i+1}}^i, \dots, h_{q_n}^j), \dots, \Omega_n^{j,l}(h_{q_{n+1}}^i, \dots, h_{q_{n+1}}^j) \right).$$

We wish to show now that if for some $\Omega_r^{i,k}$, $\Omega_r^{j,l}$ identically on some open set

(43)
$$\Omega_r^{i,k}(h_{s_r+1}^i, \dots, h_{s_{r+1}}^i) = \Omega_r^{j,l}(h_{\sigma_r+1}^j, \dots, h_{\sigma_{r+1}}^j),$$

then (43) holds identically on E^n . Indeed, if $\Omega_r^{i,k}$, $\Omega_r^{j,l} \in \Gamma$, then this follows by our inductive assumption (*) for $d < d_0$. In the other case we have that at least one of these operations is equal to E_r , say $\Omega_r^{j,l} = E_r$. If also $Q_r^{i,k} = E_r$, then there is nothing to prove. If $Q_r^{i,k} \in \Gamma$, then (43) is equivalent to an equality

$$Q_r^{i,k}(h_{s_r+1}^i,\ldots,h_{s_{r+1}}^i) = Q_r^{i,k}(h_{s_r+1}^*,\ldots,h_{s_{r+1}}^*),$$

where $h_s^* = e_r$ for every s. By the inductive assumption, we have that (44) holds identically on E^n , hence (43) holds identically.

We give now the second part of our proof. It follows from the first part that, replacing V by a smaller set, if necessary, we may assume $R_i(h_1^i, \ldots, h_{q_i}^i) > 0$ on V. For $p \in V$ we denote by p_k^i the point $[R_i, k]^*(h_1^i, \ldots, h_{q_i}^i)$ $h_{\alpha}^{i}(p)$. Since, by the above, (43) never holds on an open set if the functions on both sides of the equality are different, there is a $p \in V$ such that

(45)
$$p_k^i = p_l^j$$
 implies $[R_i, k]^*(h_1^i, ..., h_{q_l}^i) = [R_j, l]^*(h_1^j, ..., h_{q_l}^j)$

identically on E^n . Let P_i be the subsequence of $h_1^i, \ldots, h_{q_i}^i$ consisting of all the projections among these functions and let N_i be the subsequence of those fundamental functions h_k^i such that R_i does not depend on the k-th variable under fixed P_i . Since $R_i(h_1^i, \dots, h_{q_i}^i)(p) > 0$, we have, by Lemma 2.1 that $h_k^i(p_k^i) > 0$ holds for every h which does not appear in N_i nor in P_i . We define now the functions \bar{h}_k^i $(i=1,2; k=1,...,q_i)$ as follows

- (j₁) If h_k^i does not appear in N_i nor in P_i , then \overline{h}_k^i is the unique atom of h_k^i such that $\overline{h}_k^i = h_k^i$ holds in some neighbourhood of p_k^i .
- (j₂) If h_k^i appears in P_i , then $\bar{h}_k^i = h_k^i$.
- (j_3) If h_k^i appears in N_i , then \overline{h}_k^i is any atom of h_k^i .

Applying Lemma 1.1 (Corollary) we see that p has a neighbourhood $V_0 \subset V$ such that

$$R_i(h_1^i,\ldots,h_{q_i}^i)=R_i(\overline{h}_1^i,\ldots,\overline{h}_{q_i}^i) \quad \text{holds on } V_0, \quad i=1,2.$$

Thus, by (41),

$$(46) \hspace{1cm} R_{\scriptscriptstyle \rm I}(\overline{h}^{\scriptscriptstyle 1}_1,\,\ldots,\,\overline{h}^{\scriptscriptstyle 1}_{q_1}h) = R_{\scriptscriptstyle \rm I}(\overline{h}^{\scriptscriptstyle 2}_1,\,\ldots,\,\overline{h}^{\scriptscriptstyle 2}_{q_2}) \quad \text{ on } V_0\,.$$

Since none of the functions $R_i(h_1^i, \ldots, h_{q_1}^i)$ does vanish on any open set, we shall prove that they are identical if we show that they coincide at all those points where they are positive. Let $t \in E^n$ be such that

 $R_i(h_1^i, ..., h_{a_i}^i)(t) > 0$. Denote $\tilde{p}_k^i = [R_i, k]^*(h_1^i, ..., h_{a_i}^i)(t)$. Then, by Lemma 2.2, $h_k^i(\tilde{p}_k^i) > 0$ for these h_k^i which do not appear in N_i nor in P_i . We define h_i^i by the conditions

- (1_1) If h_k^i does not appear in N_i nor P_i , then \tilde{h}_k^i is the unique atom of h_k^i such that $h_k^i = \tilde{h}_k^i$ in some neighbourhood of \tilde{p}_k^i .
- (1.) If h_k^i appears in P_i , then $\tilde{h}_k^i = h_k^i$.
- (l_a) If h_k^i appears in N_i , then $\tilde{h}_k^i = \bar{h}_k^i$.

Clearly we have in (l_1) that if $h_k^i = h_l^j$ and $\tilde{p}_k^i = \tilde{p}_l^j$, then the atoms $\tilde{h}_k^i, \tilde{h}_l^j$ are identical. Since from $\bar{h}_k^i = \bar{h}_l^j$ it follows that $h_k^i = h_l^j$ (e.g. by (*) for d=1) and, by (45), $p_k^i=p_l^i$ implies $\widetilde{p}_k^i=\widetilde{p}_l^i$, we have that the functions \tilde{h}_{k}^{i} satisfy the condition

$$(\rho_0)$$
 $\overline{h}_k^i = \overline{h}_l^j \text{ and } p_k^i = p_l^j \text{ implies } \widetilde{h}_k^i = \widetilde{h}_l^j.$

Trivially the condition

$$(\pi_0)$$
 If \overline{h}_k^i is a projection, then $\widetilde{h}_k^i = \overline{h}_k^i$

holds. It follows that, on every bounded set, the functions \widetilde{h}_k^i can be uniformly approximated by series s_k^i satisfying the conditions (π) and (ρ) of Lemma 1.3 where h_k^i , h_l^j should be replaced by \bar{h}_k^i , \bar{h}_l^j . Applying this lemma we get, by (46),

$$R_1(s_1^1, \ldots, s_{q_1}^1) = R_2(s_1^2, \ldots, s_{q_2}^2)$$
 on E^n ,

for any such series. Hence

$$R_1(\widetilde{h}_1^1,\ldots,\widetilde{h}_{q_1}^1)=R_2(\widetilde{h}_1^2,\ldots,\widetilde{h}_{q_2}^2) \quad \text{on } E^n.$$

Further, by (l₁), (l₂) and (l₃) and by the corollary to Lemma 1.2, we have

$$R_i(h_1^i, \ldots, h_{q_i}^i) = R_i(\widetilde{h}_1^i, \ldots, \widetilde{h}_{q_i}^i)$$
 in some neighbourhood of t .

Hence $R_1(h_1^1, \ldots, h_{q_1}^1)(t) = R_2(h_1^2, \ldots, h_{q_2}^2)(t)$.

Induction step in the proof of (**). We assume (**) for $d < d_0$ and (*) for $d = d_0$. Let R_i and h_k^i satisfy the assumptions of (**) where $d=d_0$. Clearly we can assume that $h^i_{q_i}$ are not projections. To simplify the notation, we shall sometimes abbreviate $R_i(h_1^i, ..., h_{a_i}^i)$ to R_i and similarly for other operations. Each R_i such that $q_i > n$, i.e. $R_i \neq E$, we represent in the form (6) as

$$(47) R_i = h_{q_i}^i(Q_1^i, ..., Q_n^i).$$

We prove first that if R_i is of the form (47) then all derivatives $\frac{\partial}{\partial x_i} R_i$ $(j=1,\ldots,n)$ cannot vanish identically on the open set V. Indeed, the functions $Q_1^i, ..., Q_n^i$ are different and none of them is vanishing identically,

for otherwise R_i would be identically 0. It follows, by our inductive assumption that Q_1^i,\ldots,Q_n^i are independent on V, and hence, by the continuity of the derivatives $\frac{\partial}{\partial x_j}Q^i$, there is an open set $V^0 \subset V$ such that

(48)
$$[\partial(Q_1^i, ..., Q_n^i)/\partial(x_1, ..., x_n)](p) \neq 0$$
 if $p \in V^0$.

For each $p \in V^0$ denote $p_{q_i}^i = (Q_1^i, \dots, Q_n^i)(p)$. It follows by the independence of Q_1^i, \dots, Q_n^i that the set B of all the points $p_{q_i}^i$ such that $p \in V^0$ is dense in some open subset of E^n . Now suppose that $\frac{\partial}{\partial x_j} R_i = 0$ $(j = 1, \dots, n)$, identically on V^0 . Hence, for every $p \in V^0$, by (47)

$$\left[rac{\partial}{\partial x_j}R_i
ight](p) = \sum_{l=1}^n \left[rac{\partial}{\partial x_l}h^i_{q_l}
ight](p^i_{q_l}) \cdot \left[rac{\partial}{\partial x_j}Q^i_l
ight](p) = 0 \;, \;\;\;\; j=1,\,...,\,n \;.$$

This implies, by (48) that $\frac{\partial}{\partial x_j}h^i_{ai}=0$ on B for $j=1,\ldots,n$. From the continuity of these derivatives we conclude that they are vanishing on the open set in which B is dense. This however is impossible since we have assumed (**) for d=1. Hence $\left[\frac{\partial}{\partial x_j}R_i\right](p)=0$ cannot hold for every $p\in V^0$ and $j=1,\ldots,n$.

To prove that R_i are independent on V, we take an open set $V^0 \subset V$ such that (48) holds for $i=1,\ldots,n$ and we select a $p \in V^0$ such that $R_i(p)>0$ for $i=1,\ldots,n$. Such point p exists since we have assumed (*) for $d=d_0$, hence none of the functions R_i can be vanishing identically on any open set. Defining functions \overline{h}_k^i by (j_1) , (j_2) and (j_3) , we have, as in the proof of (*) that $R_i(h_1^i,\ldots,h_{al}^i)=R_i(\overline{h}_1^i,\ldots,h_{al}^i)$ holds on some neighbourhood V_0 of p. We can assume $V_0 \subset V^0$. Applying Lemma 4.3 (where the h_k^i in the lemma should be replaced now by \overline{h}_k^i) we consider the relation \prec on those pairs (i,j) for which $q_i,q_j>n$. Let \prec_1 be an ordering relation which is an extension of \prec . Permuting the indices, if necessary, we may assume that R_1,\ldots,R_t are all those among the operations R_1,\ldots,R_n which are identical with E, $(t\geqslant 0)$, and for i,j>t, $i\prec_1 j$ is equivalent to i< j. We shall show that then, for each of the matrices

$$J_m = egin{bmatrix} rac{\partial}{\partial x_1} R_1 & rac{\partial}{\partial x_2} R_1 & \cdots & rac{\partial}{\partial x_n} R_1 \ rac{\partial}{\partial x_1} R_2 & \cdots & \cdots & rac{\partial}{\partial x_n} R_2 \ \dots & \dots & \dots & \dots \ rac{\partial}{\partial x_1} R_m & \cdots & \cdots & rac{\partial}{\partial x_n} R_m \end{bmatrix}, \qquad m = 1, \dots, n \, ,$$

there is an open set $V_m \subset V_0$ such that at each point of V_m the rank of J_m is m. This will clearly suffice to complete our proof, in fact, we then have. for m=n

$$|J_n| = \partial(R_1, \ldots, R_n)/\partial(x_1, \ldots, x_n) \neq 0$$
 on V_n .

The proof is by induction on m. Consider first m=1. If $R_1\neq E$ (i.e. t=0), then, as we have shown above, we cannot have identically $\frac{\partial}{\partial x_j}R_1=0$ on an open set. Hence there is an open set $V_1\subset V_0$ such that, for some $j,\left[\frac{\partial}{\partial x_j}R_1\right](p)\neq 0$ holds for all $p\in V_1$. Thus J_1 has rank 1 at every point of V_1 . If $R_1=R_2=\ldots=R_t=E$, then it follows from (**), for d=1, that V_0 contains an open set V_t such that at each point of V_t the rank of J_t is t.

Now take the inductive assumption that the matrix J_{m-1} has rank m-1 at each point of V_{m-1} , where $m>\max(1,t)$ and $V_{m-1}\subset V_0$. Let $(i_j,k_j),\ j=1,\ldots,s$, be all those among the pairs (i,k) for which $\overline{h}_i^k=h_{q_m}^m$ R_i depends on the k-th variable under fixed P_i and $(i,k)\neq (m,q_m)$. For $t< i_j < m$ and $k_j < q_{i_j}$ we have, by $i_j \prec_1 m$, that $m \prec i_j$ does not hold, hence in every open subset of V_0 there is a point p such that

(49)
$$[R_m, q_m]^*(\overline{h}_1^m, ..., \overline{h}_{q_m}^m)(p) \neq [R_{ij}, k_j]^*(\overline{h}_1^{ij}, ..., \overline{h}_{q_i}^{ij})(p).$$

Since $m \prec m$ never holds, we have this property also for these j for which $i_j = m$ and $k_j < q_m$. It is clear that also in the case when $k_j = q_{ij}$, every open subset of V_0 contains a point p at which (49) holds (otherwise R_m and R_{ij} would be coinciding on an open subset of V_0 , and, by property (*) for $d = d_0$, R_m and R_{ij} would be identical on E^n). Since for $i_j \leq t$, we have $k_j = q_{ij} = 1$, we conclude that, for every pair (i_j, k_j) , $j = 1, \ldots, s$, every open subset of V_0 contains a point p at which (49) holds.

Renumerating the variables $x_1, ..., x_n$, if necessary, we can put our inductive assumption in the form

(50)
$$[\partial(R_1, ..., R_{m-1})/\partial(x_1, ..., x_{m-1})](p) \neq 0$$
 for each $p \in V_{m-1}$.

Since $V_{m-1} \subset V_0$, there is an open set $V_m^0 \subset V_{m-1}$ such that (49) holds for each $p \in V_m^0$ and j = 1, ..., s. To complete our proof it is enough to show that it cannot be identically

(51)
$$\partial(R_1, ..., R_m)/\partial(x_1, ..., x_m) = 0$$
 on V_m^0 .

We shall show that, assuming (51), one obtains a contradiction. Suppose (51) holds and let $p_0 \in V_m^0$. Denoting by p_k^i the point $[R_i, k]^*(\overline{h_i^i}, ..., \overline{h_{q_i}^i})(p_0)$, we have, by (49), that $p_{q_m}^m \neq p_k^i$ whenever $\overline{h}_{q_m}^m = \overline{h}_k^i$, $i \leq m$, $(i, k) \neq (m, q_m)$

and R_i depends on the k-th variable under fixed P_i . Now let $D_1, ..., D_n$ be numbers which satisfy the system of equations

(52)
$$\sum_{i=1}^{n} D_{i} \left[\frac{\partial}{\partial x_{j}} Q_{i}^{m} \right] (p_{0}) = \varepsilon_{j}; \quad j = 1, ..., n,$$

where $\varepsilon_m=1$ and $\varepsilon_j=0$ for $j\neq m$. This system has a solution by (48). Since the Jacobian in (51) is of the form $W\left(\frac{\partial}{\partial x_1}R_1,\ldots,\frac{\partial}{\partial x_m}R_m\right)$ where W is a polynomial with rational coefficients, we are in position to apply Lemma 3.3. Let $\widetilde{h}_1^i,\ldots,\widetilde{h}_{q_i}^i$ be the functions which satisfy (31), (32) and (33). By (31), (33) and (52) we have

$$\left[\frac{\partial}{\partial x_m}\,\widetilde{R}_m\right](p_0) = 1 \quad \text{ and } \quad \left[\frac{\partial}{\partial x_j}\,\widetilde{R}_m\right](p_0) = 0 \quad \text{ for } \quad j=1\,,\,\ldots\,,\,m-1\,.$$

Hence

(53)
$$[\partial(\widetilde{R}_1, ..., \widetilde{R}_m)]\partial(x_1, ..., x_m)](p_0) = [\partial(\widetilde{R}_1, ..., \widetilde{R}_{m-1})]\partial(x_1, ..., x_{m-1})](p_0),$$
 and by (34), (51)

(54)
$$[\partial(\widetilde{R}_1,\,...,\,\widetilde{R}_m)/\partial(x_1,\,...,\,x_m)](p_0)=0$$
 and by (32)

(55)
$$[\partial(\widetilde{R}_1, ..., \widetilde{R}_{m-1})/\partial(x_1, ..., x_{m-1})](p_0)$$

$$= [\partial(R_1, ..., R_{m-1})/\partial(x_1, ..., x_{m-1})](p_0).$$

It is clear that (53), (54) and (55) contradict (50). Therefore (51) cannot hold and we have an open set $V_m \subset V_m^0$ such that

$$[\partial(R_1,\ldots,R_m)/\partial(x_1,\ldots,x_m)](p)\neq 0$$
 for every $p\in V_m$.

This completes the proof.

References

- [1] O. Haupt, G. Auman, C. Y. Pauc, Differential- und Integralrechnung, Vol. II, Berlin 1950.
- [2] E. Marczewski, A general scheme of the notions of independence in mathematics, Bulletin Acad. Pol. Sci., Série Sc. Math. Astr. et phys. 6 (1958), pp. 731-736.
- [3] S. Świerczkowski, A sufficient condition for independence, Coll. Math. 9 (1962), pp. 39-42.

Reçu par la Rédaction le 29, 8, 1961

On level sets of a continuous nowhere monotone function

by

K. M. Garg (Lucknow)

Let f(x) be a real function, defined and continuous in a real closed interval I. Let f(I) denote the interval of values taken by f(x) in I. For any $y \in f(I)$, let $f^{-1}(y)$ denote the set of points in I where f(x) takes the value y. The set $f^{-1}(y)$ is known as the set of level y of f(x), or, briefly, as a level set of f(x). Evidently, $f^{-1}(y)$ is closed for every y.

K. Padmavally [6] proved in 1953 that:

- (*) "If f(x) is continuous but monotonic in no interval, then $f^{-1}(y)$ has the power of the continuum for a set of values of y which is of the second category."
- S. Marcus ([4], p. 102) improved this result in 1958 into the following form:
- (**) "Given a real function f(x), defined and continuous in I. A necessary and sufficient condition so that f(x) may not be monotone in any interval contained in I is that, for every interval $J \subset I$, the values y for which the set $\{x; f(x) = y, x \in J\}$ is unenumerable form a set of the second category in $(-\infty, \infty)$ and residual in f(J)."

Let a function f(x) be nowhere monotone in I if it is not monotone in any subinterval of I. Let, further, a nowhere monotone function f(x) be of the second species in I in case the function f(x) + rx remains nowhere monotone in I for every real value of r(1).

We prove in § 1 that for a continuous nowhere monotone function f(x) in I, the level set $f^{-1}(y)$ is non-void and perfect for a set of values of y which is residual in f(I). In case of a continuous nowhere monotone function of the second species in I, we investigate in § 2 the sets that are obtained by the intersection of the curve y = f(x) with different straight lines y = mx + c.

⁽¹⁾ A detailed study of the Dini derivatives of nowhere monotone functions has been made by the author; see Garg [13], [14]. These investigations are further continued. It may be remarked here that non-differentiable functions constitute a particular case of nowhere monotone functions of the second species.