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On the independence of continuous functions
by
S. Swierczkowski (Wroclaw)

‘We shall investigate the inter-relation of two notions of independence
of continuous functions. One of these notions has an algebraical character
and is associated with a composition algebra (cf. definition below) on
the given set of functions; it depends on the choice of this algebra in
which it i3 naturally defined according to the scheme of independence
in abstract algebras proposed by E. Marczewski [2]. The second notion
expresses a more intrinsie, topological property of the functions involved.
Some textbooks on function theory give it in their course (ef. e.g. [1]).

We shall consider continuous real valued functions f{ay, ..., )
defined on an arbitrary open subset D of the Euclidean space E", where
n > 2. D will be fixed and the above class of funetions will be denoted
by F. By C° we shall denote the class of all continuous real valued functions
defined over the whole E". Every ¢ e C° can be regarded as an operation
associating with every n-tuple (f;, ..., fa), f; € F the function g(f;,...,fs) e F
defined by

1) g1y oy ) (@1 ooy #) = g(fl(wla vy Bn)y oery Ful @1y ooy wn)) .

For any HC (° we shall call the pair <f = (F, H) a composition
algebra. In this algebra, F is the set of elements and every g < H is an
operation acting on F according to formula (1). We say, following
E. Marczewski [2], that fy, ..., fm € F are independent in the algebra of
if every mapping of the set {fy, ..., fm} into F can be extended to a homo-
morphism of the subalgebra generated by fi, .., fm into of. We shall
compare this notion of independence with another notion (cf. [1], p. 156)
according to which 7y, ..., fm ¢ F are called independent if the set

(s s Im) (D) = {(fl(mli cees B}y vy fral By ony wn)); (@15 oy ¥n) eD}

is dense in some open subset of B™. To avoid misunderstanding we shall
say that the functions fy, ..., fm are independent if and only if they are
independent in the sense of this latter definition and we shall call them
ol-free if they are independent in a composition algebra . It iz well
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known [1] that if f;,...,fs are differentiable and their Jacobian does
not vanish identically on D, then these functions are independent.

We denote by C" the class of all k times differentiable functions on

- " ©
E" and we define ¢ = C*. Then our main result may be stated as
n=0

follows

THEOREM. There ewists a composition algebra ol = (F, H) such that
arbitrary w functions f,,...,fu € F are ol-free if and only if they are in-
dependent. Moreover HC O, hence, for every &, (F ~ " H) is o sub-
algebra of .

The question remains open whether there is a composition algebra
<ly such 1:,ha,t, for every %, any fy, ..., s e P are f,-free if and only if
they are independent. For the algebra <7 constructed below this is not
the case since every 'k < n functions are <{-free but there exist % <n
dependent f}lnotions in F, e.g. f,2f,..,%f (f arbitrary). On the other
hand, there is a class y of operations on F (which are not of the form (1))
such that (F, y)-freeness coincides with independence (cf. [3]).

The essential part of our proof is the construction of a class H C (o
such that: ‘

(i) HC 0%,

(i) The constani fumction identically equal 0 belongs to H.

(iii) The ‘projections’ ¢ (i =1, ey M), defined by ey, ..., @) = ay,
for every w, ..., % belong to H.

(V) If Boy by, ooy b € H, then ho(hy, ..., ha) € H.

'(V) I-f 7?1, .,h,, e H are different from each other and none of these
functions ds identically equal #ero, then these fundtions are independent on
every open subset VCE", or equivalently, (by (1)), the Jacobian

Iy oeey Bn)f0(yy ..., @)
does not vamish identically on amy open set.
(vi) If 8 is am arbitrary nowhere dense subset of B"™, then there is an
h e H such that b does not vanish identically and h is vanishing on §.

Sufﬁciency of (l), cany (Vi). Su P ipfi FRIXE)

- ppose thab H Satlsfles (1) . ( Vl)

and defnle ol = (F H). In view of il and (iv the £ (0} ’ ‘ veey
] ( ) ( ) unctions 1) s Jn

(2) .‘7(71;--wf'n)?ﬁh(fu-u;fn) when ¢, h<H and g#h.

Leb fy, ..., fs be independent. Then (f i i
> R 15 ---3 fn) (D) is denge in some
jofpen subset o.f E" and since g, h e H cannot coincide on any open set,
i the()lr a.re'dﬁferent, by (v), we have (2). Conversely, if f,, ..., f, are
ependent, i.e. § = (f,, ..., fa)(D) is nowhere dense, then h(fy, ..., fn) = 0
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holds for that function » which is given by (vi). Since % does not vanish
identically and {ii), we have an instance of non (2), hence f,,..., f» are
not f-free.

1. The definition of H. Let T be a set of power 2%. Suppose
that {8.}, TeT, is the family of all nowhere dense closed subsets of E™
and let

88 =8, U {(r, .o, Ta): 7 =0 or 2; = x; for some i,f; i #j}.
It is well known that for every 87 there exists a family of disjoint cubes
Mo ={(@y, o, n): —a <axj—bi<al, j=1,..,n} i=1,2,..
with rational a,ﬁt, b? such that Cj M., is dense in E" and disjoint to 8.

=1
Moreover, there are rational constants r; > 0 such that, if we define

3) Foi(@yy +e s Tu) = 7:6XD {~ H [(a;)g-— (2 — b;:)z]'l} '
=1
_ [ Belp)  when  p el
hei(p) = { 0 otherwise,

and h, = 2 h.si, then h, e 0. (For a similar construction see [1], p. 158.)

t=1

Obviously the function k. does not vanish identically on any open set
and we have h(p) =0 when p < St.

Now let {¢f,.1} €T, b,..,ln=0,1,2,... be a set composed
of irrational algebraically independent numbers such that, for every r,
the series
(4) 8@y ey &n) = 2 ot ORI B

Tyseroln

converges and its sum belongs to C~.

‘We associate with every v ¢ T' a function k, and a function s, defined
above and we call the functions

(5) $ulry ooy Ta)hal@yy ooy Ta), TET,

fundamental. Now we define H as the smallest class which contains the
projections e,, ..., e, (cf. (iii)), every fundamental function, and is closed
under composition as required by (iv). Given a fundamental function (5)
we shall call the functions s.h,; the afoms of (5).

‘We have to verify that H satisfies (i), ..., (vi). Of these conditions
only (v) needs a proof, the rest follows easily. (Condition (ii) follows by
#(h, ..., h) = 0 for any fundamental function %.) We shall give the proof
of (v) in section 4 after having obtained in sections 2 and 3 some auxiliary
results concerning the structure of H.
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2. Compositions. We shall now define a class I" of operations
acting on (. They will be called compositions. The unique unary com-
position will be denoted by B and it is defined by the condition B () =7
for every f ¢ (. Suppose that m is a positive integer and that all q-aq:
composition operations with ¢ < m have been defined. Then an m-ary
operation B on (° is called a composition if and only if

(6)  B(fiy ., fm)
= fm(Ql(f'rn1+15 ffu ey f"”ﬂ)? Qz(frmﬂy ey fm,), seey Q”(fmn+17 AL) fmn.u)) 3

where 0 = m; < my < Mg <...< My =m—1 and Q; are compositions
already defined. It is clear that if B e I" is m-ary, then m =1 or m > n.
It is also easily seen that the representation (6) is unique, i.e. given any
m-ary B < I" with m > n, the operations @1, ..., @, satisfying (6) for every
fiy ooy fm € C° are uniquely determined. '

Let us denote by H; the constant operations on (° guch that By(f) = e;
for every fe (9 where ¢; are the projections defined in (iti). Given an
m-ary Eel, we shall associate with every % =1,..,m an ordered
n-tuple [B, k] of operations on (° defined as follows. Tf m =1, i.e. B = B
then we put ) T K

[E; 1] = (El: vy En) ’

and assuming that we have defined the = -tupl

. ples [Q, k] for all g-ary
QeI with 1 <% < g < m, we take an m-ar i i
§ < -ary R eI, represent it uni
in the form (6) and set e o nmamely

: [R, m] = (Q,, ...

defining, for % < m, ’ e @)
[B, k] =[Qi, k—mi],
.Whe.re 4 is the unique integer such that m; < % < Miy1. We see that [R, &)
ig either an n-tuple of operations belonging to I' or it is the n-tuple
(Byy ..., Bs). For every n-tuple [B, k] we define an operation [R, k]*

which associates with every f fmeC® an n-t
: -tuple [R, k]*(f,, ...
of funetions belonging to (. Ilf7 R’=mE, we pub Pl L K1y s o)

[E: 1]*(f) = (El(f)y ey Eﬂ(f)) .

Assuming that we have defined [Q, kT* i
) BI* for all g-ary Q. with
¢ <m, we take an. m-ary R eI, represent it in the form (6) and define

(7) [-R7 Im']*(fl) sney fm) = ((Ql(jm;-}-l; seey fm,), seey Qn(fmn.(.l, "‘!fmn-u))

My and putb
(8) [—Ry k]*(fly ey fm) = [Qiy k_mﬂ']*(fm-{-ly ey fml+1) .

iom®
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It is not difficult to see that if Rel"is m-ary and [R, k] = (2y,..., %),
then there are numbers 0 << 8 < 8, < ... < Spt1 << M such that, for every
JEPRTY) fm € o,

(9) [Rv k]*(fls 9fm) = (-Ql(f81+1: s f&;): seey Qﬂ(jsWI—h -'-nynu)) .

‘We shall prove now a lemma concerning the operations [, kJ*.
For a > 0 and p ¢ E", we shall denote by K,p the interior of the sphere
with radius « and centre at p.

LEMMA 1.2. Let 1y, fme C° pye B, and let Rel be m-ary. We
denote py = [RB, k1*(fy; - fm) (o). Then, for every a > 0, there is a >0
such that for every y > 0 there is a 6 > 0 with the property thai whenever
Giy oery Gm € C° are such that for every k=1,...,m, |gx— x| < & holds inside
K,px, then, for every p « Kzp,,

(10) [B, kI*(gs, -+ s gm) (D) € KoDi,
(11) | R(gyy ey g) (D)= R{fry ooy Im) (D) <y -

Proof. If m =1, i.e. R = E, then clearly it is enough to put f =«
and 6 = y. Now take the inductive assumption that the lemma is proved
for all g-ary compositions with g < m. Let R e I" be m-ary and consider
the compositions @y, ..., @» appearing in (6). Since the lemma holds for
each @;, we have that to « correspond numbers f;, (¢ =1, ..., n) having
the property stated in the lemma with respect to @; and fmis1, ---s Fonisn -
Let 7 satisfy 0 < %< a. From the continuity of fi, ..., fm follows the
existence of a number f, such that

(12) (B, m]*(fu, s fm) (P) € KayPm  fOr P e Ky
We define f =min(fy, By, ..., fs). Now suppose that y is given.

The function fn is uniformly continuous on bounded sets, hence there
is an &> 0 such that
(13) fm(@)—fm(p)| <7/2 #  geKepmn Kp.

We can assume that ¢ <#. Let u be any number which is small
enough so that a cube with sides equal 2u iz contained in a sphere of
radius e (in the space E"). Recollecting that the hypothesis of the lemma
holds for each Q; and fmui1, -y fmesy With the values of o and f fixed
above, we consider this hyphotesis with 4 in place of y. Then we have,
for each ¢ =1, ..., m, that there is a number §; with the property that
WHenever gmot1, -, Jmsn are such that, for every k = m;+1, ..., M1,
|gx—7Fx| < 6; holds inside the sphere

Ka[Qi; k— m’i]*(}f1n(+1; ceey fmi,-_l) (Po) )
i.e. inside K,pr, by (8), then, for every p e K;p,,
(14) [Q:) To—miI*(Gmit1s - 5 Gmisa) (p) e Kapx
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and
(15) ;Qi(!/nu+1: weey g'Ini—u) (P)'—Qi(fqn{+1, wery fm{+1)(.p)i << M
We now assert that ¢ = min(y/2, 6, ..., o) satisfies the hypothesis of

the lemma. Indeed, if k& < m, then (10) holds by (14) and (8). Moreover,
if p e Hgp,, then, by (15) and by our definition of u,

(16) B, mI(g1s -y gm) (P) € K [R, mT*(fy, ..., fm) (D)
and hence, by (12) and by ¢ <y,
(17) (B, MmI*(Gas s Gm) (D) € Kapm .

This completes the proof of (10). Moreover, by (13), (16) and (17) we have

(18) lfm([R: mIHgy, oo s Ym) (P))—fm([Ry MI(fyy vy fm) (Z’)H <y/2

for p € Kyp,. Thus by (17) and by |gn—fm| < 6 < /2 on Koupm, we have
that (18) implies (11).

COROLLARY. Let R, fi, ..., fm, Do, P be as in the Lemma 1.2. Then,
for every a > 0, there is a B> 0 with the property that whenever g, ..., gm
are functions such that, for &k =1, ..., m, g, = f5 holds on K,p, then

(19) E(gy; ooy gm) = B{fry .., fm)  holds on  EKup,.

To prove the corollary it is enough to take a f given by Lemma 1.2
and let y 0. Since obviously |g:—fi| < § holds on K,p; for every 6 > 0,
hence (11) implies (19).

To state the next lemma we need another definition. Suppose R e I"
is m-ary and let 4, ..., 4, be a sequence composed of some of the numbers
1,...,m. Let P=f;,..,J;, be a fixed sequence of functions. We say
that E depends on the %-th variable (1 < k < m) under fixed P if there
are functions gy, ..., gk, ..., gm, g sSuch that ¢; =f; for ¢ =4, ..., 4, and

R(gl7 b} gk1 M gm) 5(:13(917 A g;C’ s gm) M

Leyva 2.2. Let R, fiy .y fm, Doy Dr be as in Lemma 1.2 and let P
be the subsequence of fi, ..., fm composed of all projections among these
f'fmot'ions. Assume that every fr which is not a projection is vanishing iden-
tioally on each hyperplane x; = 0,§ =1, ..., n, and let B(fry ooy fmu) (p0) 5 0.
Then we have fi(pr) 5= 0 for all those fy, which are not projections and are
such thqt R depends on the k-th variable under fived P.

Proof. The lemma holds trivially if R = B. Now take the inductive
assumption that it is true for every g-ary composition with q < m. Let
R eI be m-ary of the form (6). Suppose tirst that fm 18 a projection, say
fm = €. Then R(fy, ..., fm) = Qulfmes1, woy fmg)e IE fr is not a projection
and R depends on the %k-th variable under fixed P, then obviously
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m; <k <mypa and Q; depends on the (k—my)-th variable. We have
Pr = [Qsy B— M (fas1s ovos Fmga) (Do), and, by the inductive assumption,
fulps) # 0.

Now let fm be not a projection. Then, by fu(pm) = B(f1, ..., m) (Dm);
we have fm(pm) # 0 and moreover p, does not lie on any of the hyper-
planes #; = 0. Thus Qi(fomr1s s friea) (Po) 7 0 holds for ¢ =1, ..., 7. If,
for some k& < m, fr is not a projection, and R depends on the k-th variable,
then, for this ¢ which satisfies m; <k < m;y, we have that @; depends
on the (k—m;)-th variable. As before, it follows by the induetive assumption
that fulpi) # 0. .

LEMMA 3.2. Let fyy ooy fr € C° VCE” and let R eI be an m-ary com-
position such that, for a certain function g € C° and a number 1 < m, we have

9(p) =H{R, U{f1s s fm) (D))  for every  peV.
Then there is a number 0 <k <1 and a composition Q € I' such that
B(fyy ooy Fm) (D) =Q{fas v s Ty @5 frvry ooy fm) (P)  for every  peV.
We omit the simple proof (induction on m). -

3. Atoms and compositions.
~ Lemwa 1.3. Let Biel' (i=1,2) be g;-ary compositions and let
i, ..., by be two sequences composed of atoms and projections such that,
for some p, e B,
(20) Ry(h1, .-, hgi) (Po) > 0 .
Assume that there is a neighbourhood V of p, such that
(21) By, ..., hy) () = Bo(Bi, s ) (p)  for every  peV.
Let us denote pt =[Ri, k1*hi, ..., B (po). Then, for arbitrary series

sh= > 0}’1',‘,,,,,,‘50?97;‘,..:1;,'{' such that
Tlreers Tn .
T st o=hi  whenever k% is a projection,
%
(p) st =si  whenever i =h] and Py =i,
we have

(22)  Byfsh, oy 81)(p) = Bulsh, ., $2)(p)  for every  p e E".

COROLLARY. Im particular (22) holds for any series sk which-satisfy (=)
and are such that s’}c = s} whenever B = h{.

Proof. f:et P; be the subsequence of all the projections among the
Bi, .y hiy. It follows from (x) that hL->s% are substitutions with fixed P;.
Thus we need to consider only these atoms kj for which R; depends on
the k-th variable under fixed P;. Let the following be all these atoms

(23) B = Shomy s Bg = Sabory ooy By = 8l s
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where s,, ..., s, are of the form (4). Let Zym,..., by De given by (3).
Define
(24) TS =8Tigme -y Rg = Sohop, -y T = 8uhuyi e = i for all other A%,

‘We have, in view of (20) and by Lemma 2.2 that k3(p3) > 0, ..., hi(p¥%)
> 0. Clearly there is a number « > 0 such that hf = k¢, ..., bt = 4% hold
in the spheres K.pj, ..., K.py, respectively. Thus, by the Corollary to
Lemma 1.2, we have that there is an open set U CV such that

Ri(hi, ooy hi)(p) = R(BL, ..., o) (p)  for every peU.
Obviously, identically on E™

. e : i VISP fon
BB, ooy By ey ) = 3 (s oo ) 0l
Kisennsken
where w{ . are certain polynemials, with rational coefficients, of
the algebraically independent irrational numbers - A A Oty AD-
pearing in (4). Since (21) holds on U, it follows from the above that

(1) (2)

[wkl,...,k,,“wlc-l,...,kn] (Gi,...,lm sery cﬁ,.-.,fn) =0.
We conclude that each of the polynomials wf, . x,—wi . is
vanishing whatever numbers & ., , ey Gty We substitute for the

s v 5 Oty Provided equal numbers are substituted for equal ones.
Hence, if we replace all the series s,, -y §, appearing in (24) by arbitrary
series §, ..., 5, so that identical series are replaced by identical ones,
and we set

(23) %g ’—‘Eﬁg,my ey 7&2 ="9\;Za,r) ey N% :‘?N#zﬂﬂ‘;

W, = 1% for the remainin, 38
hen k ke g N,
(26) Ry(ha, ..., hy,) = R, ..., T2) on B

We may assume that a is a sufficiently small number such that the
functions hym, ..., k. are positive valued in the spheres K.p§, ..., K,pm
respectively and moreover any two of these spheres are either disjoint
or coinciding. It follows by Lemma 1.2 that there is a number § > 0 such
that for any functions s} satisfying "|§}'c~h'fc| <8 on Rupk, (i=1,2;
k=1, ..,q), we have, by (10),

27 [R:, 75]*(51.7 sy EL)(PO) € aPYI;a .

Since there is a dense set of irrational algebraically independent
numbers, there are series 37, ..., 5% such that

a) [35—h3 <8, ..., |5~ k%] < 6 hold in K.ps, ..., Kapry respectively;
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b) Two of these series, say 55 and %, are identical if and only if the
corresponding atoms hg and hy are identical and p§ = p¥;

¢) The sets of coefficients of different series are mutually disjoint;

d) The coefficients of all series 37, ...,3. form a set of irrational
algebraically independent numbers.

We set; 52 = k%, for pgirs (4, k) such that A% does not appear in (23).
We denote Py = [Ri, kK143, ..., 55) (po). Then, by (27), there is a number
&> 0 such that K,7%C K,pi for every p’}c. We note that in the spheres
K. %5, ..., K, Py the corresponding functions Zgm, ..., k., (cf. (23)) are
positive. Suppose we now wish to find series §,,...,5, such that the
functions (25) approximate the series 33,...,5, in the spheres K, Py, ...,
K. 75 respectively. Remembering that two of the series 5, ..., 5oy -oey 85y
say §, and §,, have to be taken identical if and only if s, =s,, Wwe see
that such approximation is always possible provided that s, =s, and
K. i ~ K, Py + 0 implies 53 = 5;. Now this is always the case, as follows
from our construction: Indeed, we then have o = u and pg = ps. More-
over, by ho.(p3) > 0, h,,(py) > 0, the supports of h,, and h,, intersect,
hence r =v. From ¢ = pu, r = », we have hy = h,, and thus, by b), 5§ = 5.

It now follows that, for every 6 >0, we can find functions (25)
satisfying [h—3f < 6, ..., ht—3% <6 in K7, .., K.5% respectively.
We obtain, by Lemma 1.2, that there is a § > 0 with the property that
|Bi(Bi, ..., he) — Bi(S1, .., 5)| can be arbitrarily small on Kzp, at suitable

~

selections of the hi, ..., by of the form (25). Thus, by (26)
(28) Ry(81 ey 5) = Ru(8], v, 53,) 00 Kppy .

Since the functions in (28) are analytic, we have that (28) holds
identically on #* and moreover, by d), (28) will remain true if we replace
35, ..., 8w Dy arbitrary series sy, ..., sy provided that identical series 3} are
replaced by identical series s&. This proves the lemma.

LeMMA 2.3. Let R €I be m-ary, let hy, ..., hm be atoms and projections
and let pyc B". We define py =[R, k1*(hy, -, bm)(po). We write R Jor
R(hyy ooy hm) and if in R the functions hy, ..., hn are replaced by ﬁl, ""h,Z"
then we denote the resulting function by B. Then, for any functions %1, veey him
such that

(29) Fulpr) =Tulps)  and [a%’ﬁk] (o3) =[§;~ hk](pk)
for k=1,..,m;j=1,..,n we have
o~ 0 ~ o .
(30) B(p) =R(py) and [5;1%] (po) =['a,7,.R] (@i G=1,.yn.

Proof. The lemma is trivial if R = E. We take the inductive assump-
tion that it is true for all ¢-ary composition operations with ¢ <m. Let ReI

Fu ta M i T. LII 4



GUEST


50 8. Swierezkowski

be m-ary of the form (6). We .have, by (29) and by the mduemve > hypo-
thesis that Q,(po) =Qupo); 4=1,...,n. Hence pm=[R,m*F,... h,,,)(po)
and thus, by Jm(pm) = hm(pm), We have the first equation in (30).

Further N
[5_‘;; R] (po) = \1 [ai; h }(_’pm) [i Qi] (7o)

and there is an analogous equation with R, hm and ¢y veplaced by
R Fm and Ql Since we have

[527 77"‘] (2m) = [53” hm] (Pm)

and, by the inductive hypothesis,

|55 @) w0 = [ 2 @] @0,

the remaining equalities in (30) follow.

LeMMA 3.3. Let Rl be g;-ary and let hi, ..., ki, be sequences composed

of atoms amd projections satisfying (20) for a cer ta’m PoeE" (i=1,..,m)

Define pl and P; as in Lemma 1.3 and assume that kg, is an atom such

that whenever iy, = ki for some § % m or &  gm and R; depends on the

k-th variable under fized Py, then ply, = pi. Let further W (tss ey Ynyeeey Yomn)

be a polynomial with rational coefficients such that in some neighbourhood
of p, identically

2 2

(BmlRl’aw 1y seey BE;RL’ ...,M

where R; stands for By(h%, ..., h). Then, denoting by Q7 ..., @y the operations
appearing in the 1ep'resentatwn (6) of Rm we have that for a/rbm-cwy numbers
Dy, ..., Dy there are functions i, .. ,hq, such that for j =1,

Rm>=0,

(31) [ LA

2

1] po =[ﬁ' J(ZTO) 'i-—=1,...,m—l,

z“e’[m §’]m
Sl 5

(32) [

) [0 00 = [ 07|, W) =070, (=1, .im),

~ ~ 7 9 o
(84). W(ERI,%RI,...,%RI,...,~—R,,.>(p)=O for each p e E",

_:}me RB; and Qi, denote the functions resulting from R,, QF by mplacmg
% by ..

icm°®
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Proof. Let (23) be defined as in the proof of Lemma 1.3. Then,
a8 in the proof of that lemma, we have that (34) holds for any functions
7% of the form (25). Thus, in view of Lemma 2.3 it is enough to show
that there are functions %j of the form (25) which satisfy, for j =1, ..., n,

a m
(35) [ ) = s,
(36) Biph) =hilph); i=1,.,m; k=1,..,q,
0w, 4 0 i, s . .
(87) [55; hk] (p%) = [ﬁ; hk](pk) if dizEmoor ko gm.

Since kg, is not a projection, it is clear that this function appears
in (23); we may assume that kg, = hy = 8,h,,, le. u=m, w = gnm.
By (20), we have (s,h,,)(pg,) # 0. Thus we may define

(38) R P [ A R TS

Let s%,..., 83, ..., sq be series such that si(pi) =1 for every p}lc,

. e
[%s’i] (pk) =0 for (i,k)+# (m, gn) and [ sqm] (pg) =Dj for j=1,.
Moreover, let two of these series, say s; and sg,, be identical if and only
if the corresponding series s, and s, (cf. (23)) are identical. Such choice
is always possible as we cannot have simultaneously pj = pj, and s, = s,.
Indeed, this implies that the atoms hg, kg, have intersecting supports
and belong to the same fundamental function, hence kg = hg,. But, by
our assumption, kg = hy, implies pg +# pg,, . Obviously also the following
is an instance of (25)

T = 588, hymy ey By =858, Rary ey P = St 8,

% = hj, for all other Af.

It is easily seen that these functions satisfy (36) and (37). To check (35)
it is enough to apply (38). This completes the proof.

Levwma 4.3. Let R;eI" be g;-ary compositions, ¢; >n, © =1, .., m.
Suppose that hi, ...,y are sequences composed of atoms and projections
such that h;, are atoms and (20) holds for each i and every p, belonging to
a certain open Vo C E™. Let P; be the corresponding subsequence of projections.
For i, < m we write 1<j if there is an 1< gq; such that B; depends on
the 1-th variable under fized P;, hi = hi and for some open WCV,

(39) [Ri, (B, ..., B (p) = [By, 1*(h, ..., h,) (p)

holds for each p e W. Then - can be extended to an ordering relation on
{1,..,m}.
4%
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Proof. For t=1,..,m and r=1,...,¢ we define s = o7+l
ot if hf, is an atom and s& = B it hi is a projection. It is easily seen
that Rys, ..., si) is a polynomial. We denote by d(1) the degree of this
polynomial. Now let 4 < j. It follows, by (39) and by hy = ki that

Ry(hi, ..oy hig)(p) = Bi([Ry, MBI, ..., ki) (p))

for every p ¢ W. Hence, by Lemma 3.2, there is a ¢ ¢ [’ and a numbey
0 <k <1 such that

Ry(hly oo hi)(p) = @ (M, ooy By R(BY, ooy ),y hhax, ooey B} (9)

for every p ¢ W. It follows by Lemma 1.3 (Corollary) that the above
equality will hold identically in E" if we replace each K by .. Since
53 = a5+ ...+, We see that the degree of Ry(s{, ..., s) is at least twice
the degree of Rysi, ..., sk), i.e. 2d(i) < d(j). Thus we have a mapping d
of {1,..,m} into integers such that 4= j implies d(s) < d(j). This is
obviously sufficient for the existence of an ordering relation on {1, ..., m}
which is an extension of <.

4. Proof of (v). We shall prove, for every d, the following two
staments () and (sx). It is easily seen that (xx) implies () but it is re-
quired by our method of proof that, for each d, (x) has to be assumed
in order to obtain (x). It iy clear that (s+) implies (v). To see this, it is
enough to observe that for each h ¢ H there is a sequence hy, ..., hy com-
posed of fundamental functions and projections such that for a certain
m-ary R eI’ we have b = R(h,, ..., hm).

(*) If By el are g;-ary compositions, ¢; < d, i =1, 2, and there are
sequences hi, ..., hy, composed of fundamental functions and projections
such that
Ra(b1y ey hgy) = Ry(h, ..., h3,) holds on some open set V,

then this equality holds identically on E™

(%x) If Riel are Qi-ary compositions, q; < d,-i'=1, ..., n, and there
are sequences hi, ..., hy (0 =1, ..,n) composed of fundamental functions
and projections such that no two of the functions Ri(hi, ..., ki) coincide
on B and none is vanishing identically, then these functions are imdependent
on every open set VC B, i.e. there is a p € V such that

[B(RuBTy ey ), e, Rn(hi”, oy By (@, oy 3a)] () # 0.

Proof of (x) for d=1. If d =1, we have R, = R, = H. Thus
condition (x) means that there are two different functions, each of them
being either a projection or a fundamental function which coincide on V.
Applying the corollary to- Leiima 1.3, we obtain a contradiction.
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Proof of (s+) for d =1. We have to show that if &, ..., h, are
projections and fundamental functions, all distinet, then they are in-
dependent on every open set. Let the indices of these functions be so
permuted that %, ..., ks, (¢ < n) are all the projections among hy, ..., hn
and moreover k; = ¢; for 4 =1, ...,¢ If { =n, then there is nothing to
prove. In the other case, let U be an open subset of ¥ such that every
fundamental function ki1, -.., fn is equal on U to some of its atoms,
88Y Resr = Soligmy -y bn = Suk,,. Supposing that hy, ..., b, are dependent
on U, we have

(40)  B(@yy.oey Bay Solpmy oy Saliyyb)[8(@yy ooy ) =0 on U,

It is clear that this Jacobian is identical to a series and, using
a similar argument as in the beginning of the proof of Lemma 1.3, we
conclude that (40) will hold if we replace the series s, ..., s, by arbitrary
series §,, ..., §, which are convergent and differentiable on U. But if we
define §, = W1 figmy -y 55 = Tulms (cf. (3)), then this Jacobian will take
identically the value 1, hence a contradiction. Thus by, ..., ks are in-
dependent.

Induction step in the proof of (x). We assume (*) and (x#)
for d < d, and we shall prove that () holds for d = d,. Suppose that
RieT, g <dy, (i =1,2) and

(41)  Ry(hi, ..., hg) = Ry(H3, ..., bZ,) holds on some open V C E™.

Clearly we may assume that kg, and kg, are fundamental functions.
Suppose first that R,(A3, ..., kg) =0 on V. Write R, in the form (6) as

(42) Byl eve hgy) = (@ oevy Qn) -

If the functions @; are all distinct and none of them is vanighing
identically on E™, then it follows by our induetive assumption that they
are independent on every open set, in particular on V. This hovewer
is impossible because it would imply, by (42), that h;l is vanighing iden-
tically on some open set. Hence two of the functions @; are identical or
one of them is vanishing identically, and thus, by the property of funda-
mental functions that they vanish on the hyperplanes ; =0, z; = ;,
it follows, by (42), that Ry(hi, ..., hg) =0 on E". By (41), the same is
true for R, and thus (41) holds identically on E™.

Before passing to the second part of our proof we have to consider
a certain property of [R;, k]. We denote by ©%* the operations for which
(ef. (9))

[Ri, K15k, ooy ) = (@0 (Rt ooy Bl)y ooy (Bt ooy Blga))
(Ry, %A, ooy Bly) = (8B, oy By oony @B Ry oy B -
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We wish to show now that if for some Q5% Q¥ identically on some open set:
s B = QPR 1y ooy Bl

then (43) holds identically on E™. Indeed, if @5, QI ¢ I', then this follows
by our inductive assumption (x) for d << d,. In the other caﬂe we have
that at least one of these operations is equal to L‘r, say Qi =Ff,. It
also Q%% = E,, then there is nothing to prove. If Q%%¢ I then (43) is
equivalent to an equality

(43) (o (P

(44) QP (Besny voey Borsa) = 27 (Bhpta woes

h’ll;rﬂ) h;ﬂ) )

where h§ = ¢, for every s. By the inductive assumption, we have that (44)
holds identically on E", hence (43) holds identically.
We give now the second part of our proof. It follows from the first
part that, replacing ¥ by a smaller set, if neeessary, We Inay assume
l(hl, ,B) > 0on V. For p « V we denote by p} the point [R;, k]¥( hl,
q,)( Slnce, by the above, (43) never holds on an open set if the functlons
on both sides of the equality are different, there is a p ¢V such that

(45) pi=pi implies [Ri EJ(hi, ..., hy) =[RBy, UL, ..., i)

identically on E™ Let P; be the subsequence of hi, ..., B, congisting of
all the projections among these functions and let N; be the subsequence
of those fundamental functions k) such that R; does not depend on the
k-th variable under fixed P;. Since Rk, ... Bl (p) > 0, .we have, by
Lemma 2.1 that hi(p}) >0 holds for every h which does not appear
in ¥; nor in P;. We define now the functions %y (¢ =1,2; & =1, )

as follows

(G0 If hi does not appem in N; nor in Py, then ki is the umque atom of
hk such that b = 1t holds in some neighbourhood of gjk

() I Ky appears in P, then iy = hi.

(i) If Wi appears in Ny, then K is any atom of hi.

Applying Lemma 1.1 (Corollary) we see that p has a neighbourhood

V,CV such that

Ri(hi, o, bi) =Re(Bi, ..., B holds on ¥y, i=1,2
Thus, by (41),
(46) Ry(A, ..., ) =Ry(B3, ..., %)  on V.

Since none of the functions Ry(A?, . hfu) does vanish on any open
set, we shall prove that they are identical if we show that they coincide
at all those points where they are positive. Let t < E® be such that

icm
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Ri{ll, ..., hig)(£) > 0. Denote By = [Ry, kJ*(hi, .., h) () Then, by Lemma
2.2, hk(pk)>0 for these A% which do not appem in ¥; nor in P;. We
define % by the conditions

() If Ri does not appear in N; nor Py, then h, is the unigue atom of B

such that B = hi in some neighbourhood of pz.

(L) If kY appears in P;, then T = R,

() Ij B appears in Ny, then i = .

Oleanly we have in (1) that if B = h{ and pi pi, then the atoms
hk, # are identical. Since from Ro=h it follows that B, = hi (e.g. by (%)
for d = 1) and, by (45) , Pl = p] implies % = 71, we have that the functions
hy satisfy the condition

(po) Ry =F and pk =p] implics T =H.
Trivially the condition
(o) If % is a projeciion, then hy = By

holds. It follows that, on every bounded set, the functions %% can be
uniformly approximated by series st satisfying the conditions (=) and (p)
of Lemma 1.3 where &%, hj should be replaced by i, . Applying this
lemma we get, by (46),

Ry(si, ..o, 34111) = Rs(sis S sga) on B,
for any such series. Hence
Ry(RY, . B = Ro(R3, ..., B,)  on E™.

Further, by (1), (1) and (I;) and by the corollary to Lemma 1.2, we have
Ri(®:, ... hq‘) = Rk, ... h,j,i) in some neighbourhood of .

Hence Ry(hl, ..., hg) (t) = o3, ..., higy) (0).

Induction step in the proof of (x+). We assume (x*) for d < d,
and (%) for d = d,. Let R; and R, satlsfy the assumptions of (xx) where
d = d,. Clearly we can assume that Ri, are not pr0]ect10ns To simplify
the notation, we shall sometimes abbreviate Ry(h, ..., hy) to R; and
gipmilarly for other operations. Bach E; such.that q1> n, i.e. R; # E,
we represent in the form (6) as

(47) Re =hi(@, -y Q) -

o 2
We prove first that if R; is of the form (47) then all derivatives -—Ri
( =1,..,n) cannot vanish identically on the open set V. Indeed, the

functions Q! ..., Q% are different and none of them is vanishing identically,
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for otherwise R; would be identically 0. It follows, by our inductive
assumption that @i, .., @, are independent on V, and hence, by the

A . o .
continuity of the derivatives —;Ql, there iy an open set ¥V° C ¥V such that
¥

(48) [0(QF, ey QL2 (@1, .., 2n)](p) £ 0 i peTO.

For each p ¢V° denote P = (@%, ..., Q%) (p). Tt follows by the in-
dependence of @F, ..., QL that the set B of all the points g, such that

p eV is dense in some open subset of B". Now suppose that %—Ri =0
i

(j =1,...,m), identically on V°. Hence, for every p e V%, by (47)

%ﬂm=j[mwm[my

I=1

j=1,...,n.

This implies, by (48) that 5% B =0 on B for j =1, ..., . From the
7

continuity of these derivatives we conclude that they are vanishing on
the open set in which B is dense. This however is impossible since we have
assumed (+x) for d =1. Hence [% Rz-] (p) = 0 cannot hold for every pe Vo
and §=1,..,n -

To prove that B; are independent on V, we take an open set VOC
such that (48) holds for ¢ =1,...,n and we select a p ¢ V° such that
By(p}> 0 for i =1, ..., n. Such point p exists since we have assumed (%)
for @ = d,, hence none of the functions B; can be vanishing identically
on any open $et. Defining funetions kk by (j1)s (a) and (j;), we have, as
in the proof of (x) that Ry(A, ... ) B = Ry(%i, ey h ;) holds on some
nelghbou.rhood V, of p. We can assume V,C Vo. Applymg Lemma 4.3
(where the A% in the lemma should be replaced now by h,,) we consider
the relation <3 on those pairs (i,4) for which giy g5 > n. Let -3, be an
ordering relation which is an extension of -3. Permuting the indices,
if necessary, we may assume that R,,...,R; are all those among the
operations Ry, ..., R, which are identical mth H, (t>0), and for ¢, j > t,

134§ 1s equlvalent to ¢ <j. We shall show that then, for each of the
matrices

9 a )
m ™
2 P
N R R
T = | B2 0w | m=1,..,n,
2 2
L Ryg ceereennnn g
| o™ By m

icm°®
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there is an open set ¥V, CV, such that at each point of V¥, the rank of
Jm is m. This will clearly suffice to complete our proof, in fact, we then
have, for m =n

{Jn| = &(Ry, ooy Ba)0(y, ey 2p) 520 on Vy.
The proof is by induction on m. Consider first m =1. If R, % F

(i.e. t=0), then, as we have shown above, we cannot have identically

%Rl = 0 on an open set. Hence there is an open set V;CV, such that,
for some 4, [S%,Rl] (p) # 0 holds for all p eV,. Thus J, has rank 1 at every
point of V,. If B, =R, =... = R, =E, then it follows from (sx), for
d =1, that V, contains an open set V; such that at each point of V; the
rank of J; is t.

Now take the inductive assumption that the matrix J,-; has rank
m—1 at each pomt of Vp_1, where m>max(1,t) and Vu-1CV,. Let
(45:k;), 4 =1,..., 8, be all those among the pairs (¢, %) for which = T,
R; depends on the k-th variable under fixed P; and. (¢,%) # (m ,qm)
For t<i;<m and k; < g; we have, by i;-3,m, that m<34; does not
hold, hence in every open subset of V, there is a point p such that

= [Reyy kiTH(RY, ooy Bgl) (0) -

Since m~-3 m never holds, we have this property also for these j for which
i; =m and k; < gm. It is clear that also in the case when k; = ¢;;, every
open subset of V, contains a point » at which (49) holds (otherwise Em
and Ry, would be coinciding on an open subset of ¥,, and, by property (x)
for @ = dy, Rw and R; would be identical on E"). Since for i; <{?, we
have k; = ¢;; =1, we conclude that, for every pair (i;,%;), § =1,...,5,
every open subset of ¥, contains a point p at which (49) holds.

Renumerating the variables #, ..., s, if necessary, we can putb
our inductive assumption in the form

(49) [Ru, qul*(B2, .y Bigy,) (D)

(50) [2(RByy ooy Bme1)f0(&1y oo; Tm—a)](p) # 0 for each peVip—y.

Since V-1 CV,, there is an open set Vi C Vs such that (49) bolds for
each p eV and j =1, ...,5 To complete our proof it is enough to show
that it cannot be 1c1entlca,11y

(51) 8(Ry, cory Ru)[0{@yy ey 2m) =0 on Vi,
We shall show that, a,ssummg (51), one obtains a contradiction. Suppose
(51) holds and let p, € Vo Denomng by pk the point [R;, KRS, ...,y B (Do),

we have, by (49), that pqm;ﬁpk whenever 7y, = B, i<m, {, k) (m, qm)
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and R; depends on the k-th variable under fixed P;. Now let D, ..., D,
be numbers which satisfy the system of equations

(52). Doler|w) e i=1 e,

i=1
where e =1 and ¢ = 0 for j = m. This system has a solution by (48).
Since the Jacobian in (51) is of the form W(—?LR1 s ,—B—Rm
8901 Om
Wisa polynomia;Nl with rational coefficients, we are in position to apply
Lemma 3.3. Let 7, ..., % be the functions which satisty (31), (32) and
(33). By (31), (33) and (52) we have

‘where

o 2 o .
[B—a-; Rm] (po) =1 and [517] Rm’ (po) =0 for 4 =1,..,m—1.
Hence

(83) [a(ﬁu 71~31'n)/a(m17 oy Zm)] (Do) = [a(ﬁly --wﬁm—-l)/a(mlv ey @m-1)1(Do) »
and by (34), (51)

(54) [0(By, ey Bn)fe (@, ooy o)) (Do) =0,
and by (32)
(85)  [8(Ry, ..., Bnon)fo(ay, oo., Bmms)] ()

=[0 (R17 XS] Rm—l)/a(wly ey w"v.—l)](po) .

It is clear that (53), (54) and (55) contradict (50). Therefore (51)
cannot hold and we have an open set Vi C V3, such that

[O(By, -y Bm)[0 (@1, ..., 2m))(p) # 0
This completes the proof.

for every peVm.
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On level sets of a continuous nowhere monotone function
by
K. M. Garg (Lucknow)

Let f(xz) be a real function, defined and continuous in a real closed
interval I. Let 7(I) denote the interval of values taken by f(x) in I. For
any ¥ <f(I), let f(y) denote the set of points in I where f(x) takes the
value 7. The set 7 '(y) is known as the set of level y of f(), or, briefly, as
a level set of f(z). Evidently, f~'(y) is closed for every ¥.

K. Padmavally [6] proved in 1953 that:

(%) “If f(x) is continuous but monotonic in no interval, then )
has the power of the continuum for a set of values of y which is
of the second category.”

8. Marcus ([4], p. 102) improved this result in 1958 into the follow-
ing form:

(#%) ‘““Given a real function f(x), defined and continuous in I. A necessary
and sufficient condition so that j(x) may not be monotene in any
interval contained in I is that, for every interval J C I, the values ¥
for which the set {#; f(x) =y, #eJ} is unenumerable form a set

of the second category in (—oo, co) and residual in f(J).”

Let a funection f(z) be nowhere monotone in I if it is not monotone
in any subinterval of I. Let, further, a nowhere monotone function f()
be of the second species in I in case the function f(#)+ r@ remains nowhere
monotone in I for every real value of r ().

We prove in § 1 that for a continuous nowhere monotone function
f(z) in I, the level set 7 y) is non-void and perfect for a set of values
of & which is residual in f(I). In case of a continuous nowhere monotone
function of the second species in I, we investigate in § 2 the sets. that
are obtained by the intersection of the curve y = f(x) with different
straight lines y = ma+ec.

() A detailed study of the Dini derivatives of nowhere monotone funetions has
been made by the author; see Garg [13], [14]. These investigations are farther con-
tinned. It may be remarked here that non-differentiable functions constitute a par-
ticular case of nowhere monotone functions of the second species.


GUEST




