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Functions with sets of points of discontinuity
belonging to a fixed ideal

by

Z. Semadeni (Poznan)

Many theorems concern description of global properties of sets or
functions from their local properties. According to C. Kuratowski ([20],
p. 34), it P is a property of sets in a topological space T, then a set 4
has this property locally at a point ¢ of T if there exists a neighborhood G
of this point such that G ~ A has the property P. In spaces satisfying
the second axiom of countability inference from local belonging to a class
to global belonging is often trivial and efforts are made to extend this
to more general cases. E.g. D. Montgomery [26] and C. Kuratowski [19]
have investigated this in non-separable metric spaces and so did
E. Michael [25] and S. Mréwka [26a] for paracompact and uniform spaces;
Banach ([2], see also [20], p. 49) has proved that if a set is locally of the
first category at all of its points, then it is globally of the first category.
(This theorem has many applications, e.g. it is the erucial point in the
proof of completeness of the quotient Boolean algebra of Baire sets modulo
sets of the first category.) Among others, let us also mention Bourbaki’s
integration theory in locally compact spaces the requirement of which
is that locally negligible sets be of measure zero, and Brelot’s results on
locally polar sets in the general potential theory [5].

The subject of this paper is an investigation of some guotient spaces
of function algebras considered modulo an ideal of sets. Specifically,
there are considered spaces 9(T, R) of bounded real-valued functions
on T with sets of points of discontinuity belonging to a o-ideal R
of boundary subsets of 7, with identification of functions #,y such that
{teT: w(t) # y(t)} ¢ R. The typical example is the space of Riemann-
integrable functions with identification of functions equal almost every-
where. By a well-known theorem of Lebesgue, a bounded funetion is
Riemann integrable if and only if the set of its points of discontinuity
is of measure 0. The question of characterization of functions equivalent
(i.e. equal a.e.) to some Riemann-integrable functions has been solved
by Carathéodory [7]. He proved, for any bounded function, the existence
of the least upper semicontinous function uy such that u}>f ae. and
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of the greatest lower semicontinuous function u} such that up L f .0.;
the equality w = u} a.e. characterizes the functions equivalent to
Riemann-integrable functions. The method of Carathéodory can be
easily applied to any o-ideal R in a space T satisfying the second axiom
of countability, but the general case needs the assumption that any set
which is locally in R is globally in R. Such ideals are considered in this
paper and it turns oub that actually there are two non-equivalent notions:

(i) Strong Banack's localization property means that if A belongs
to R locally at each of its points, then A4 ¢ R (this is just Banach’s state-
ment about the ideal of the sets of the first category).

(i) Weak Banach’s localization property means that if A belongs to R
locally at each point of its closure, then A R.

Condition (i) and sometimes condition (ii) enable us to generalize
theorems which follow simply from o-additivity of R in the case when
countable open coverings can be found.

The second part of the paper concerns the structure gpace (1", R)
of the ring 9 (7T, R). Theorem 2 states that the density character of
Q(T, R) is equal to that of f7. This implies, in particular, existence of
a countable dense subset in the Stone space of the Boolean algebra of
Baire sets of an interval considered modulo sets of the first category.
Since such a countable dense subset cannot exist in the Stone space of
the Boolean algebra of u-measurable sets modulo sets of 4-TNeAsUre zero
whenever 4 is an atomless measure on a get, this confributes a little to
the discussion of resemblances and differences between meagure and
category. In particular, this gives a new proof of non-existence of measures
vanishing just on the sets of the first category.

Concluding remarks concern Gleason’s irreducible map from an
extremally disconnected space onto Q(7T,R). It turns out that if 7' is
a fixed completely regular space, then all spaces Q(T , R) have the same
minimal extremally disconnected resolution independent of R, which is
just Q(BT', B) where B is the ideal of subsets of AT of the first category.

1. Preliminaries
1.1. Notation. Throughout this paper 7 will be any topological

space (the. finite sets will be assumed to be cloged only). Next, we shall
denote:

tytoy %, 0, ... —points of T, or one-point sets (we shall write for sim-
plicity 4 w1t and 4" ¢ instead of 4 w () and A\(t)),

T, %o, Y, 2, ... —real-valued functions on T,

4, B, ... —subsets of T, A\B — their difference,

® —the family of all open sets in T,
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G() = {G: Ge®, t G} —the family of neighbourhoods 'of t:-

% or By —the family of the sets of the first c.ategory in T,

D(z) —the set of points of discontinuity of z (in T),

4a(t) —the characteristic function of 4,

3 —the closed interval <0, 1%,

N —the class of all subsets of 7 of (L.ebesgue) measure zero,

0{ —the set of integers, o

B(E) —the Stone-Cech compactification of E, )

C*(B) —the space of real bounded continuous functions on E,

m(H) —the space of all bounded real functions on H, .

R —a o-ideal of boundary subsets of T, i.e. a,.non-enlpty o-additive
and hereditary family containing no open non-void set,

Y(R) = {& em(T): D(x)eR} '

Ry = {B: BeR,BC A} —restricted ideal,

© —the trivial ideal consisting of one set 0,

o . 4
—-the principal ideal of all subsets of A4, .

?’; = {&: tIe)iR} __the set of all points of T such that the one-point
set ¢ belongs to R, i.e. the sum of all sets of R, . )
qetAm ={ :é’ T: G e’(ﬁ(t)» A ~ @¢é R} —the set of all points at which A
does not belong locally to R, :

= {teT: x(t) > a}
;]f;(;oa)a = 1{nf€ {a: A(r)\ M.,(a:’) ¢ R} —the R-essential supremwm of  on A;
4 . . L: . ' = — 0O

it may be defined equivalently as IlglifER EK% x(t); if A R, then fsgpm:r

for any « em(T); it 4 =T we ghall- often drop the letter T, i.e. supw®

= SUPRL,
T . . .
infgx = — [supp— o] —the R-essential infimum,
4 T4

Timp o (u) —the R-essential limes superior defined as éem hwx%m(u);
u—t By
it is equal to inf {sup s (u): G e G (1)} if ¢ is a limit point in T, and to 2(f)
NN

if ¢ iy isolated, and _
limy (1) = — [limg—a(%)] .
ot u—

The symbol & =5 y on A will mean that {t e A: 2(t) # y (1)} belongs
to iR: if that is the case, we shall say that @ is equal to y R-almost izi;g;;
'whm*é' #/R will denote the class of functions that are equal to z R-a g

)

everywhere.
I'Y;Vém y on A will mean that {¢ ed: () >y(t)}eR.

max[s(t) , ﬁ—ﬁx;m e(w)] i tel\Tw,
= i teTw.

Tims @ (1)
Ut
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Equivalently, «'(f) may be defined as inf{supr®: G «G(¢)}, or as
o d

supfa: te M2}, or as max[s&pmw(u) , imgo(u)]. We shall also write 2"
u—t

instead of ' if the ideal is not fixed, #* = —(—x)" has dual properties.
Let us resall some known properties of symbols written above
(¢f. Kuratowski [20], p. 35):
(AMNRC AR = e T 4 =13 =4%C 4,
AuB*=4"0B", (U\B"DANB",
infe < infpe < suppe < supr =supoxr  for AR,
4 A A A4 A

(1) < a'(t) = a™(t) < 2°(t) = max [z(1), 1?1?:0(@4)] .

Lemma 1. If »(t) is any bounded continuous fumctions on a dense
subset A of T, then the function

z(t) for ted,
(1) = li_n%m(u) for teT A,

is continuous at any point of T.

. We omit the easy proof. A subset H of 7 will be called a D-sef in T
xf. 4 = T\H iz dense in T and if there exists a real-valued bounded con-
tinuous function # on A such that 2, is discontinuous at every point of H.

1.2. The spaece (T, R). The family & of all sets of the form
H=GoER where Ge¢® and Re¢R satisfies the following conditions:
(1) the empty set and whole space 7' belongs to §, (2) if 4 « $and Be $,
then 4 ~nBe §, (3) if dne § (n=1,2,..), then |JA,e $. Thus, the
class Z of all real-valued functions z(f) on 7' such that the get {te I
a < x(f) <b} belongs to § for every a and b is closed with respect to
addition, multiplication, supremum, and infimum of a finite number
of functions and is closed with respect to the uniform convergence (Haus-
dorff [12], pp. 232-270, Carathéodory [6], pp. 369-393). Its subclass
ZnW_L(T) is just the class Y (R) of bounded functions with D(x)eR
(Alexiewicz [1]). Consequently, ¥ (R) is a closed linear subring with unit
and a sublattice of m(T). (T, R) will denote the quotient space Y (R)/R

of all functions of Y (R) considered up to sets of R. In other words, we con-
sider the set ’

I={@c¢Y(R): 2=30o0n T} ={ze Y(R): supg || =0},

* ©
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and we consider the quotient space Y (R)/I. Since I is a linear ideal in
the ring and lattice sense, 9 (T, R) is a linear lattice (cf. Birkhoff [4],
p. 222) and a ring as well. At the same time, 9¢(7, R) is a normed
space with

Il = sups ()] .

It is complete and the proof of completeness is analogous to that for the
space of Riemann-integrable functions with the uniform convergence
a.e. (1). Namely, if {#,} is a Cauchy sequence in 9¢(Z', R), then the corres-
ponding functions .(f) of Y (R) converge uniformly on IT\FP with some
PeR, and R, = D(w,) e R. Hence, B = )R, PeR, x(l) =lima(t)
is continuous on TR and its extension z, (according to Lemma 1) belongs
to Y(R) and determines the limit coset z,/R in (T, R).

1.3. Examples. 1. The space 9 (7, N), is the space of Riemann-
integrable functions considered with identification of functions equaj
a.e. (2).

2. The space ¥ (T, D) is just the space C*(T); e.g. H(N, D) = m(N)-

More general, let A be a fixed dense subset of 7. We shall show
that (T, Pr4) may be identified with C*(T). Indeed, given any point
t e T\ A, there exists a divect set {i,} of elements of A which is convergent
to t in the sense of Moore and Smith (cf. Kelley [16], p. 66), and there
exists a multiplicative linear functional & over the space C*(IT\4) such
that the value &(x) is the limit of a subnet of (i) (depending on )
and limx(t,) < &(x) < lima(t,) (Mazur [23], Sikorski [37], p. 118). De-
noting
_ | E(x) dfor teT A4,
wnlt) = la@ for ted
we extend any function « ¢ 0*(4) to a function zy defined on 7' Similarly
to Lemma 1, we have D(wg) C T"4, i.e. the extended function is con-
tinuous at each point of A.

Thus, we have proved that there exists a simultaneous extension
2wy of all bounded continuous functions on A to bounded functions
on T with D{(#g) ¢ Pra. The operation U(x) = xy is a ring and lattice
isomorphism from O*(4) into Y (Po.) with preserved norm, and to
every coset of (T, Pr.) there is a unique function oy belonging to the
coset.

(1) The author is indebted to Professor W. Orliez for guggestion of this proof.
The original proof of completeness of ¥ (T, N), due to Orlicz [28], applies some results
of Carathéodory [7]; the simplified Oxlicz’s proof has not been published.

(2) This space was considered first by Carathéodory [7] and Onrlicz [28]. For
a modern theory of Riemann integration, see Haupt [11], Bauer [3] and Marcus [22].
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3. The space N (L', B), where I' is of the second category at each
of its points, is the space of the so-called point-wise discontinuous func-
tions considered up to sets of the first category.

Now, let us consider any bounded function x(¢) satisfying the con-
dition of Baire on 7T (this means that counter-images #™*(F) of intervals
are of form (G v Q) B with G « ® and @, B « B). There exists a set P e B
such that & is relatively continuous on 4 = l’\P (cf Kuratowski [20],
. 306). Thus |4 ¢ Op(4) and the function (1) = (x|4), is (accordingly
to Lemma 1) continuous at any points of 4, whence D(x,) ¢ B and 2,
is point-wise discontinuous on T'. It is easily seen that the map #/B -z,/B
is a ring and lattice isomorphism and isometry from the space of bounded
functions satisfying the condition of Baire, considered up to sets of the
first category, onto the space (T, B).

1.4. Classes %(7,R) with various R. Given 7' and two
o-ideals R, R, of boundary subsets of 1, (1, R,) CH (T, Ny will
mean that there is a natural one-one correspondence between the cosets
of (T, R,) and cosets of 9 (1', R,). More precisely, this will mean that
the following two conditions are satisfied: (1) If x ¢ ¥(%,), then there
exists y ¢ Y(R,) such that z =g, y. (2) If @,8" ¢ Y(Ry), if y,y ¢« Y (M)
and if @ =g, ¥ and o' =g, §’, then © =g, 2’ is equivalent to y =g, y".

AT, Ry) =H(T,R,) will mean that A(T,R)CU(T,N,) and
QU(T, Ry) C AT, Ry).

It is easy to see that R, C R, implies “L(1', R,) C-H(TL, N,), but
QA(T, R) does not determine R uniquely, i.e. U(TL, R,) = WU(T, R,) need
not imply R, = R,. There exists, however, the least o-ideal leading to
a given clags (T, R), namely the o-ideal RP spanned upon the D-sets
of R. Indeed, ¥ (T, RP)C A (T,R) is obvious; further, every x e ¥ (R)
is R-equivalent to the extension (according to Lemma 1) of the restrieted
functlon #[T\D(z)], and if 2,yeY(RP) and o =gy, then {I: (i

y(1)} C D(z) v D(y) e RP, whence @ =g» y. Thus U (T, RP) = H (T, )
To show that RP is the least o-ideal of this property, let us suppose that
HU(T, R) =A(T, R,); we claim that all D-sets of R belong to R,. If it
were not so, there would exist ze Y(RP) such that D(z)¢ R, and no
function R-equivalent to 2 could be continuous at any point of D(x )
80 2z =5 y would imply D(y)D D(2) and y ¢ Y (R,).

If T is of the second category at any of it points (i.e. if 28 = 17,
then © and B are two extreme ideals in the family of all o-ideals of
boundary subsets of T in the sense that O C RPC B and

CHT) =A(T, D) C AT, R)CAH(T, B)

for any R in the family.
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2. Semicontinuous majorants

Let R be a o-ideal of subsets of T'; in sections 2.1 and 2.2 we shall
not assume R to contain only boundary subsets.

2.1, Ideals with Banach localization property. We shall
say that R has the Banach localization porperty with respect to a set A
(ACT) if conditions BC 4 and 4 ~ B® =0 imply B e¢R. The class of
all such ideals will be denoted by B(4). It A = T, we shall shortly say
that R has the Banach localization property.

We shall say that an ideal R has the strong Banach localization property
if, for every family B, (¥ ¢ ©) of sets relatively open in their union | J Bs,
the conditions Bs e R (9 € ©) imply | Bs € R. The class of all such ideals
will be denoted by B,

Former condition is essentially weaker than latter, i.e. B,C B(T1)
but B need not be equal to B (7). E.g. the ideal of all countable subsets
of the set T = I'(w,) of all ordinals less than or equal to the first uncount-
able ordinal o, belongs to B(T)\B,. In this example one-point open
gets (i.e. isolated points) belong to R but it is easy to modify this example
to have an ideal of boundary subsets with this property (e.g. considering
T'(0,) x9), Further, if T is a Lindeldf space (cf. [16], p. 50) and R is any
o-ideal, then R ¢ B(T). Condition R ¢ B, is satisfied if and only if R4 e B(4)
for every A C 7. Thus

=) B(4
dcr

If an ideal is invariant with respect to the operation “¥ of Montgo-
mery (cf. Montgomery [26], Kuratowski [19], p. 536, and [20] p. 268),
then R eB,. If T is metrizable and if R is a o-ideal (3) in B,, then R
is invariant with respect to (.

2.2. Equivalences. The Banach localization properties are related
to local R-esgential properties of functions.

LeMMA 2. The following conditions are equivalent and characterize
the class B(T):

(a) A% =0 implies A R for all ACT.

(b) Given any x em(T) and any basis of neighbourhoods Us (9 € 0)
in T, the identity supm T = sup[supm ] holds.

(¢) supm z = max [ sup m(t) , snp hmm x(w)] holds for any @ em(T)-

teT\T
(d) Ry e B(F) for every closed subset F of T.

{*) An ideal belonging to B, need not be a o-ideal, e.g. the ideal of no-where dense
sets belongs to By ([20], p. 41).
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Proof. (a)=(c): Given # e m(1) and ¢ > 0, let B = M, () where «
is the right-hand side of the equality in (e). Then, for every ¢ 7', there
exists a neighbourhood U() of ¢ such that # <g a+¢ on U () which mean
that B~ U(t) e R for all t ¢ T. Hence, by (a), B ¢R and supn @ < a e
Thus, we get sups # < @, the converse inequality being obvious.

(b)=(a): Let B be any subset of 7 such that B® =0 and let x(1)
be its characteristic function. There exist neighbourhoods U(Z) of the
points t ¢ T such that U(f) ~ B ¢ R. Applying (b) to the basis consisting
of all open non-void subsets of the sets U(f) we obtain supg ¢ = 0, whence
2 =50 and Be%R.

Implications (e)=-(b) and (a)<> (d) are obvious.

LevmA 3. The following conditions arve equivalent and characterize
the class Big:

(a) 4~ A% =0 implies A R for all AC T,

(b) Re e B(G) for all G ¢ 6.

(¢) ANAReR for all ACT.

(d) <z o' for all zem(T).

Proof. (a)<=> (b): Obvious.

(a)=(c): Given A CT, let us choose neighbourhoods G ¢ ® (u)
such that A NG eR and Gy~ AR =0 for all ue 4> A% Then A\ AR

= |J (4\4%) ~ G, belongs to R as well.
usA\Am
(e)=(a): We have A = (A \AF)u (4~ A%). Tf A" A% R, then
A~ A% =0 implies 4 ¢ R

(e) =(d): If =(t )atmz) with 4; ~ 4; =0 for 4 % j, UA¢ T

and a; > ay > ... > ay, then UAF =1" = T and 2'(t) = max {a;: te AN}
2n (t). If 2 is any bounded function, then it is the uniform limit of a se-
quence z, of simple functions. Hence

{teT: alt) > }CU{teT Balt) > ah(t)} e R

(d)=(c): It AC T, then A \,Am ={teT: zut)> ¥u(t)} ¢ R.

Lemua 4. Let R e B, Then (%)

(1) (A% = AR for any AC T,

(if) (2 =at for any x e m(T).

Proof. Since A™\(AM)RC (A\AT)R=0, we get A%C (4%)%; the con-
verse inclusion is always true. Equivalence (i ( ) <= (ii) can be proved analo-
gously to (¢)<=(d) in Lemma 3.

(*) An example analogous to that considered in 2.1 shows that (i) does not imply
R ¢ Bs.
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2.3. Criteria of belonging to 9 (7, R). In this section we shall
consider semicontinuous representations of cosets of (T, R).

TrmorEM 1. Let R have the strong Banach localization property and
let © be any bounded function on T. Then:

(i) The junction a* is the least function wupper semicontinuous and
majorizing the function » R-almost everywhere, i.e. & <g &' and if 2 is any
upper semicontinuous function on T such that = <uz, then @'(t) < 2(t)
for all teT.

(ii) There exists o function y defined on T and such that
2=y on T,
o) =y <y() <y'() =) for all teT,
@(t) = max[y(s), Imy(u)], 24(t) =minfy(®), Lim y (u)] .

In other words, % =y = ¢°.

(iii) In order that there exist a function = e m(T) such that © =g 2z on T
and D(z) e R, it is necessary and sufficient that #' =g 2.

Proof. (°) Upper semicontinuity of o' is obvious; 2 <x «' has been
proved in Lemma 3. So let us suppose that x <2 and that 2 is upper
semicontinuous, i.e.s = 2. Then #® < 2% < 2° = 2. Condition (ii) is satisfied
by the function

o'(t) i x() > i),
Yty =ja(t) i =) <),
z(t) elsewhere on T .
and (ii) yields (iii).

3. Multiplicative linear functionals on % (T, R)

8.1. General remarks. Q or (7, R) will denote the set of all
non-trivial multiplicative linear functionals on X = (T, R), the trivial
functional O being excluded. In other words, Q is the set of all ring homo-
morphisms (or, equivalently, the set of all lattice homomorphismg)
from X onto the set of reals. Q is a compact Hausdortf space in the *-weak
topology of functionals. X is an M -space with unit in the sense of Ka-
kutani [15] and iy equivalent (in the linear, metric and lattice sense)

(%) Similar conditions have been proved by Carathéodory [7] in case of Riéim#nn-
integrable functions; some conditions are related to results of Levi [21] who assumes,
however, some countability axioms.

The converse theorem is true in the following sense: If T is completely regular for
each z em(T) and there exists the least wpper semi-continuous function y such that
Yy 25, then R ¢ B,. Indeed, suppose that 4 ¢ R and 4 ~ A% — 0. Consider z = Xar
If y >x o, then y must not be identically 0, whence we can construct an upper
semi-continuous y; such that 0 < 4 <y, % #y and y, =gy, whence y; >4 .

Fundamenta Mathematicae, T. LII 3
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to the space C(2) (Kakutani [15], M. Krein and S. Krein [18]). At the
same time, this isomorphism given by the formula

x(&) =&() where awedX,fef, xe((Q)

is a ring isomorphism from X" onto C(f).
Now, let us examine the examples of 1.3.

1. The set 2(9, N) corresponding to the class of Riemann-integrable
funetions is 0-dimensional (= totally disconmected, £ being compact)
and is the Stone space corresponding to the Boolean algebra M of
Jordan-measurable subsets of J considered up to sets of measure 0. This
is an immediate consequence of the following theorem (cf. Marcus [227):
given any Riemann-integrable function # on J and &> 0, there exists
a simple Riemann-integrable function z (i.e. a linear combination of a fi-
nite number of characteristic functions of Jordan-measurable subsets
of J such that |@()— 2(t)| < & for all { ¢ §. Next, a get is J ordan-measurable
if and only if the measure of its boundary is zero; hence the sets A, 4 and
Int(4) are equal modulo M for any 4 . Thus, every coset in AN
contains a closed set and an open get ag well.

AN is mot o-complete. Indeed, If¥ (k=1,..,2" 7", n=1,2,..),
being the intervals of the usual partition leading to a set ¢ = AU U IR
of Cantor type and of positive measure, the family {I£™} has no Lu.b.

The space m = m () of bounded sequences can be embedded into
H(I, N) as a subring with unit; consequently, by the Stone continuous
image theorem ([39], p. 475), there exists a continuous map from
2(9, M) onto B(N). Hence 2(J, N) is of power 25,

2. If T is completely regular, the set Q(T, O) may be identified
vith the Stone-Cech compactification (T) and Q(T, ) & B(TN\A).

3. By the consideration of 1.3, the set Q(T, B) is the Stone space
of the Boolean algebra of the Borel sets in 7' considered up to sets of
the first category; this algebra being complete, 2(7', B) is extremely
disconnected (cf. Stone [38], Sikorski [35] and [386]).

Finally, let us remark that if 7' is a metric space and R = O, then
the power of Q(T, R) is at least 2°. Indeed, if ¢ is a point of Ty, it is not
isolated in T', whence there exists a continuous map from (7, R) onto
B(T"1) (by Lemma 1) and B(T\t) containg - topologically the set SIN\N
of power 2°,

3.2, Separability of 0. Q(T, R) satisfies the second axiom of
countability (ie. it is metrisable) if and only if R = O and 7 is metrisable
and compact (if that is the case, Q2 = T).

Now, in order that there exist a countable set dense in £ it is nec-
essary and sufficient that there exist a continuouns map from BN onto 2
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(sufficiency is trivial, necessity is a consequence of the Stone continuous
image theorem). Let T be a completely regular.

THEOREM 2. The density character (.. the least cardinal nwmber
of @& dense subset) of Q(T, R) is equal to that of BT.

In particular, in the sets QT,R) and (7, B) there ewist countable
dense subsels, whence there exist strictly positive measures on these spaces
(cf. also Tarski [41], p. 229 and Heider [13], p. 218).

Proof. Necessity is an immediate consequence of the existence of

a continuous map from Q(T, R) onto ST. To prove sufficiency, let us
consider the ideal Ry = RVPsr\r of all sets of the form B A where
EeR and 4 C BT T. By Lemma 1, the spaces (T, R) and U (AT, Rs)
are equivalent. Consequently, we may assume for simplicity that a set {1,}
is dense in 7. Let & be any generalized limit at lo, i.e. a functional of
(T, R) such that

limg 2 < £,(#) < limpe

Uty Uy
for all z <% (T, R) (ef. [31], [32] and [33]). We shall prove that the
sequence {&,} is dense in Q. Since (T, R) = 0(2), we have to prove
that 2]} = sups|e(t)| = sup|é,(z)| for any z e ¥ (R). Let us choose ¢ > 0

and z ¢ Y(R) arbitrarily and then, successively, a point u ¢ T\D(2) such
that [2(u)] > |le]—e a neighbourhood & of u such that te@ implies
|2(t)—2(u)| < & and, finally, a point ¢, e @ Then

|62)] = &ll2l) > limalo()] > intale] > |o(u)|—e > -2

Since |£(2)] < Jl#/| and since & may be arbitrarily small, the theorem has
been proved.

Now, we can deduce a variant of a theorem of Szpilrajn [40] (cf. also
[14], p. 490; [34]).

TreoREM 3. Let T be a completely reqular space with a countable dense
subset and such that BT\T is of the first category in BT. There ewists no
finite atomless Borel measure poon T such that a set AC T 48 of the first
category if and only if u(A) = 0.

Proof. Let us assume, a contrario, a non-trivial non-negative atomless
regular Borel measure u onto 7' vanish exactly on the sets of the first
category. We extend x to ST by the formula #(EB) =u(B ~T),ie. u(B)
=0 for B C gT\T. Obviously, the extended measure is still an atomless
Borel measure and vanishes just on the sets of the first category in 87,
since ¥ is of the first category in AT if and only if E ~ T is of the first
category in I' (ef. [20], p. 50). Consequently, the spaces X (8T, B) and
Loo(BT, u) coincide, though no countable set is dense in the Stone space
of the Boolean algebra of the u-measurable sets ([33], Chapt. VII).

3+
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The assumption of existence of a countable dense subset in 7' (or,
more general, in A7) as well as the assumption that u is atomless are
essential. Indeed, in the Stone space of the algebra of Lebesgue measurable
subsets of 9 considered modulo 9t and in S there exist measures such
that a seb is of the first category if and only if its measure is zero (cf.
Stone [38], Mibu [24], Sikorski [35], p. 2567 and [36], Heider [13], p. 221).

CorOLLARY. The spaces N(F, B) and m = m () are isomorphic as
Banach spaces, i.e. there ewists a linear bicontinuous map from ome space
onto the other.

Proof. This is a consequence of a theorem of Pelezyniski [29], since
either space is isomorphic to a subspace of the other (¢ (7, B) is isometric
to a subspace of m by Theorem 2), and either space has the oxtension
property (cf. [8], p. 94).

3.3. Canoniecal irreducible maps. A. M. Gleason ([10], see also
[30]) has shown the following theorem: For each compact Hausdorff space
8 there exists a unique extremally disconnected compact Hausdortf space
Gg and a (unique up to homeomorphism) continuous irreducible map
gs from Gy onto § (irreducibility means that F =F C Gy and F + Gy
imply gs(F) # 8). Gs will be called the minimal Stonian resolution of §
and gs will be called the canonical #rreducible map onto S.

Let T be a compact Hausdorff space. Then all compact sets £(Z', R)
have the same minimal Stonian resolution. Specifically, (7', 8) is the Gg
for each 8 =Q(T',R) and gs is just the natural map of Q(T', B) onto
AT, R), ie. if £ is a multiplicative linear functional on %¥(7', B), then
gs(§) is the restriction of & to the subring (7, %R). Consequently if
R, C Ry, then the canonical map onto (T, R,) is the composition of that
of 2(T, R,) and of the natural map of (T, R,) onto 2(T, R,).

The proof of irreducibility of the natural map from 7T, B) onto
T is easy and the fact that Gr is just the Stone space of the Boolean
algebra A/B of all Borel sets (or of Baire sets) on 7 modulo sets of the
first eategory is implicitly contained in [38], [35] and [10]. Gleason con-
siders the algebra of all closed domains (i.e. closures of open sets) which
is isomorphic to UA/B; indeed, in any coset 4 of there is a unique closed
domain F (F C T), namely F is the set of points of T' at which the elements
of the coset are of the second category (cf. [20], p. B2). If 4, is the closed-
open subset of Gy = Q(T, B) corresponding to 4 in the Stone isomorphism,
then ¥ is just the image gr(4,) of 4,. At the same time, (1, B) is the
normal completion of ¢(T) in the sense of Dilworth [9] and any coset
of % (T, B) contains exactly one ‘“‘normal” function, i.e. an upper semi-

continuous function » such that 2(f) = im limx(v). Note that y» is such
u-t v

a function if and only if 7 is a closed domain.
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If T is a non-compact completely regular space, then (T, R)
= Q0(BT, Rs) (cf. the proof of Theorem 2), whence the minimal Stonian re-
solution of 2(T, R)is 2(8T, Bpr). Note that T may be of the first category
and cosets of 9 (BT, Bpr) may have no meaning on T, so every space
A(T,R) corresponds to a space 9 (BT, S) but not conversely.

If T is compact and Q(T,R) is extremally disconnected, then
A(T,R) =%(T, B) by uniqueness of the canonical map. In particular,
if T' is compact and extremally disconnected, then all spaces (T, R)
coincide. Another example is the space X of all bounded real-valued
funetions on § such that left-hand side and right-hand side limits exist
at each point of J; if R is the ideal of all countable subsets of J, then
C(I)CXMCH(T,R) (natural embeddings). X/R is equivalent to C(S)
where § is the lexicographical product of J and of a two-element set
(with the order topology) and Gg = Gg.

PROPOSITION. Given a compact Hausdorff space T, the following con-
ditions are equivalent:

(1) The set T, of isolated points of T is dense in T.
(il) Gr is homeomorphic to a space BN, where N, is a discrete space.
(iil) The set of isolated points of 2(T, R) is dense in Q(T,R) for some
(or for each) R.

Proof. (i)=(ii): If I" T, is boundary, it is nowhere dense because
it is closed. Hence Br = By r, and every bounded function on 7, cor-
responds to exactly ome coset of 9((7, By). Thus, Gr = §(T,) and gr
maps points of T, onto themselves. Implications (ii) = (iii) = (i) are trivial.

Further, for any continuous map & of SN, N, onto a Hausdorff
space § there is a unique compact T such that Gy =pgN,, T =8 v N,
gr(t) =1 for t e N, and gr(t) = h(t) for ¢t e SN \N,.

Let us note that if § is compact and zero-dimensional, then Gg is
the Stone space of the minimal extension (in the sense of MacNeille)
of the algebra of open-closed subsets of 8 (cf. [36], p. 119).

References

[1] A. Alexiewicz, On Hausdorff classes, Fund. Math. 34 (1947) pp. 61-65.

[2] 8. Banach, Théoréme sur les ensembles de premiére catégorie, Fund. Math. 16
(1930), pp. 395-398.

[3] H. Bauer, Uber die Bezichungen einer abstrakten Theorie des Riemann-
Integrals zur Theorie Radonscher Masse, Math. Zeitschr. 65 (1956), pp. 448-482.

[4] G. Birkhoff, Laitice theory, sec. ed., New York 1948.

[5] M. Brelot, Aziomatique des fonctions harmoniques ef surharmoniques dans
un espace localement compact, Séminaire de Théorie du Potentiel, vol. 2 (1957-1958),
no. 1, 40 pp.

[6] C. Carathéodory, Vorlesungen iiber reeile Funktionen, Leipzig 1918.


GUEST


® ©
38 Z. Semadent Im

[7] — Uber die Fourierschen Keoffizienten der nach Riemann ntegrierbaren
Tunktionen, Math, Zeitschr, 1 (1918), pp. 309-320.
[8] M. M. Day, Normed linear spaces, Berlin 1958.
[9] R. P. Dilwoxth, The normal completion of the lattice of continuous functions,
Trans. Amer. Math. Soc. 68 (1950), pp. 427-438,
[10] A. M. Gleason, Projective topological spaces, Illinois Jour. Math. 2 (1958),
PD. 482-489. :
[11] O. Haupt, Uber die Entwicklung des Integralbegriffes seit Riemann, Sehu.
Forschungsinst. Math. 1 (1957), pp. 303-317.
[12] ¥. Hausdorif, Mengenlehre, Gittingen 1927.
[13] L. J. Heider, A represeniation theory for measures on Foolean algebras,
Michigan Math, Journ. 5 (1958), pp. 213-221.
[14] A. Horn and A. Tarski, Measures in Boolean, algebras, Trans. Amer.
Math. Soc. 64 (1948), pp. 467-497.
[15] 8. Kakutani, Concrete representation of abstract (M)-spaces, Annals of
Math. 42 (1941), pp. 994-1024.
[16] J. L. Kelley, General topology, New York 1955.
[17] — Measures on Boolean algebras, Pacific Journ. Math. 9 (1959), pp. 1165-1177,
[18] M. Krein et S. Krein, Sur Uespace des fonctions continues définies sur un
bicompact de Hausdorff et ses sousespaces semiordomnés, Matem. Sbornik 13 (1943)
pp. 1-38.
[19] C. Kuratowski, Quelques problémes concernant les espaces métriques non-sépa-
rables, Fund. Math. 25 (1935), pp. 534-545.
[20] — Topologie I, 2-éme éd., Warszawa 1948.
[21] F. W. Levi, On freq tes and iconti 8 functions, Canadian J. Math. 2
(1950), pp. 33-43.
[22] 8. Marcus, La meswre de Jordan et Vintégrale de Riemann dans un espace
mesuré topologique, Acta Sci. Math. Szeged 20 (1959), pp. 156-163.
[28] 8. Mazur, On the generalized limit of bounded sequences, Coll. Math. 2 (1951)
pp. 178-175,
[24] Y. Mibu, Relations bet measures and topology in some Boolean spaces,
Proc. Imp. Acad. Tokyo 20 (1944), pp. 454-458.
[25] E. Michael, Local properties of topological spaces, Duke Math. Jour. 21
(1954), pp. 163-172,
[26] D. Montgomery, Non-separable metric spaces, Fund. Math. 25 (1935),
DD 527-533.
[26a] 8. Mréwka, On local topological properties, Bull, Acad. Pol. Seci.,, Cl. III,
5 (1957), pp. 951-956.
[27] H. Nakano, Uber das System aller sieligen Funlitionen auf einem topologi-
schen Raum, Proc. Tmp. Acad. Tokyo 17 (1941), pp. 308-310,
[28] W. Orlicz, Beitrdge zur Theorie der Orthogonalentwicklungen, Studia Math. 1
(1929), pp. 241-255.
[29] A. Pelezyniski, On the isomorphism of the spaces m amd M, Bull. Acad.
Polon. Sci. 6 (1958), pp. 695-696.
[30] J. Rainwater, 4 note on projective resolutions, Proc. Amer. Math. Soc. 10
(1959), pp. 734-735.
[81] Z. Semadeni, Spaces of continuous functions (II) (On multiplicative linear
Functionals over some Hausdorff classes), Studia Math. 16 (1957), pp. 198-195.

[32] — A Tlocalization theorem for multiplicative linear functionals, Bull. Acad.
Polon. Sei. 6 (1958), pp. 289-292.

)

»

Functions with sets of points of discontinuity 39

[83] — Spaces of conlinuous functi (VI) (Localization of multiplicative linear
functionals), to appear in the Studia Math.

[34] W. Sierpiriski, Sur la dualité entre la premitre calégorie et la mesure nulle,
Fupd. Math. 22 (1934), pp. 276-280.

[85] R. Sikorski, On the representation of Boolean algebras as fields of sets, Fund.
Math. 35 (1948), pp. 247-258.

[86] — Boolean algebras, Berlin 1960.

[37] — On the existence of the generalized limt, Studia Math. 12 (1951), pp. 117-124.

[38] M. H. Stone, Algebraic characterization of special Boolean rings, Fund.
Math. 29 (1937), pp. 223-303.

[89] — Applications of the theory of Boolean rings to general topology, Trans. Amer.
Math. Soc. 41 (1987), pp. 375-481. . B

[40] E. Szpilrajn, Remarques sur les fumctions plémenial t  additives
d’ensembles et sur les ensembles jouissamt de la propriété de Baire, Fund. Math. 22 (1934),
pp. 303-311.

[41] A. Tarski Uber das absolute Mass linearer Punkimengen, Fund. Math. 30
(1938), pp. 218-234.

ADAM MICKIEWICZ UNIVERSITY, POZNAN
and UNIVERSITY OF WASHINGTON, SEATTLE

Regu par la Rédaction le 1. 7. 1961
Revisé le 15. 12. 1961


GUEST




