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sionalen euklidischen Raum, wihrend die hier ausfilhrlich konstruierte
Menge X™ in den (2m-+-2)-dimensionalen euklidischen Raum ein-
gebettet ist. Wir haben die Menge X™*' und nicht die Menge ™+ kon-
struiert, da die Konstruktion von X"* komplizierter als die von X™*' ist.
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Some mappings of ANR-sets
by

A. Lelek (Wroctaw)

Recently, in connection with a method of construction of ANR-
sets (1) having some paradoxical properties, K. Borsuk raised the follow-
ing problem:

Given an ANR-set X. Take a sequence of mutually disjoint AR -sets
X, Xy, ... in X which have diameters converging o zero. Suppose & 1s
a mapping of X; such that &(X;) s an AR-set for i=1,2,.. Then the
decomposition of X into the sets & “y), where 1 =1,2, ... and y € E(X3),
and the points belonging to X—(X;u Xyu ...), is upper semicontinuous;
thus it induces a mapping & of X. Is £(X) an ANR-set?

We shall solve the problem in the affirmative for the case when &(X)
has a finite dimension (see Corollary 7 below). This will be done by showing
that £(X) is LC" i.e. homotopically locally connected in dimensions up
to n (see [3], p. 506), for # = 0,1, ... Therefore the condition that & (X)
is finitely dimensional plays an essential role in our result. It is now an
open question if the above problem has an affirmative solution also for
£(X) with infinite dimension.

TrEOREM. Let n=0,1,..., lef f be a continuous mapping of an ANR-set
X and let Xy, X;, ... be subsets of X such that

(i) X; are (n—1)-connected ANR-sets (%) for ¢ =1,2, ...,

(i1) f(X;) are n-connected ANR-sels for i=1,2,...,

(ii) f s 1-1 on the set X, = X — (X v Xy v ...) and [(X;) are mutually
disjoint sets for i = 0,1, .. with diameters converging to zero as i tends
to infinity.

Then the image f(X) is LC™

Proof. Put

X=X x{0,1,%, %, -}

(*) By ANR-set (or AR-set) we understand a compact metric absolute neigh-
bourhood (or absolute) retract.

(®) A set is said to be n-connected if it is homotopically connected in dimensions
up to m, i.e. if all its I-dimensional homotopy groups vanish for 1= 0,1, ..., % The
(—1) - connectedness means that no condition is required.
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and consider the decomposition of X into the sets f“(y) % {0}, where
¥ ef(X), the sets 7 (y) > {1/i}, where y ¢f(X) and F (y)C X, o Xy,
and the points belonging to (X;4, v X0 ...) X {13}, for every { = 1,2,..
It is & decomposition of the whole space X, since the sets 7(X;) are
mutually disjoint according to (iif), and is upper semicontinuous by the
continuity of 7. It thus induces a continuous mapping fe of X... Write

Fo =fw(ch)a
fo=FeolX x {0}, Fy=falX < {0}),
fi =Te|X X {1i}, Fi =fu(X x {1/3})

for i =1,2,... Then the sets F,, F,, ... are mutually disjoint and P,
is homeomorphic to 7(X). So it is sufficient to show that F, is LO™

For every i =1,2,... we have F;=f(X x {1/i}), the mapping ;
is 1-1 on the set [X—(X; v ... u X;)]x {1i} and the sets X,..., X; are
mutually disjoint, according to (iii). Thus their union X, o ...u X; is
an ANR-set, by (i). We also have f{(X; v ... v Xi)x {1i}) = f(X,
X {1fi}) v ... v fi(X; X {1]i}) and the union on the right is that of mutu-
ally disjoint sets homeomorphic to the sets 7{X,), ..., /(Xy), respectively.
Thus it is also an ANR-set, by (ii). It follows from the Borsuk theorem
(see [1], p. 250) that the compactum F; is locally contractible for
1=1,2,... Hence Fy, F,, ... are LC"

But from Pml X x {1/i} = X % {0} we obtain

@) J;'Jim F; =T,
and all Fy, Fy, ... are closed subsets of the compactum Fy. Consequently,
by virtue of the Kuratowski theorem (see [2], p. 122, Theorem A,), in
order to show that F, is LC" it is enough to prove that F,,F,,.. are
uniformly LC™ (see [2], p. 121, footnote). We are going to do it.

Namely, let p be an arbitrary point of Fy, and U—an arbitrary
open set in Fy to which p belongs. We ought to find an open subget V
of Fe, such that p « ¥ and every continuous mapping of the I-dimensional
sphere §8; (I<<n) into V A F; is homotopic in U ~ F; with a constant
mapping, i.e. p~0 in U ~ F; for every ¢: 81>V ~nFy, i =1,2,.. and
1=0,1,..,n

t;Lei: us first observe that since p e F,, a positive integer j exists such
tha

(2) P € fol X2 x {0}) .

Next, we have Fj ~ fuo(4) = fuo[4 =F)
every AC X, whence

@) Fj o fld) =114 ~ (X x 1)) .

= foold ~ (X x1/f)) for
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Further, let 7t XX ~ {0} be a retraction defined by the formula
ro(e, t) = (r, 0) for t =10,1, %, ... and take another retraction r so that
the diagram
X 35 X % {0}
feo, N
Fe —_ F,

be commutative, namely by putting r = f,7,f='. This is possible because
the inverses of points under f. are contained in those under f,r,.
Setting
¥y =717 l F;

for i=1,2,.., we get 77'(p)=F;nr (D) = F; ~ fold), where
4 =154 p), and 7' (p) =F(B) % {0}, where 7 e7(X;.,), according to
(2) and the definition of f,. Hence

r7(0) = F3(f7(B) % 1/5)

by (3), and f (P) C X;—;. It follows from the definition of f; that the
set 17 (p) reduces to a single point, say p’.

Now, since r is a retraction of Fo, to Fy and p eU ~ F,, there exist,
by (1), a positive integer % such that

(Fo UmUk-FHm) nrip)C U,
and an open subset V' of ¥, such that p « V' and
(Byo U From) A 47 C T .
m=k

Sinee 773m(V’) = Fiim ~ V'), we get

(4) 7#m(V) C U A Fiim

for m>%. Moreover, r; (V') is an open subset of F; and {9’} =7 (p)
CriY(V’). But F; is LC" Consequently, an open subset W’ of F; exists
such that p’ ¢ W' and

(5) p: §—->W',

1=0,1,...,n. We also can choose an open subset V"’ of F, such that
peV” and 17 (V') C W'

The sets fo(X;4:x 0) are homeomorphic to f(Xyjy) for 4 =1,2, ...,
respectively, and, by (iii), they are mutually disjoint and have diameters
converging to zero as 4 tends to infinity. By (ii), they are compact subsets
of F,. It follows that the decomposition of F, into the sets fo(X;rs x 0),

w0 in 77(V’) for every
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where 7 =1,2,.., and the remaining points, is upper semicontinuous,
and therefore it induces a continuous mapping ¢, of F,. Since no set
Fo(Xirs x 0) meets fo(X;-1 % 0) according to (iii), we get

fprcv’,
@ =Fo_90—1!/o(Fo—V”) ’

we obtain GCV"” and p e @ Let G be a component of G to which p
belongs. Since the set F,, being homeomorphic to f(X), is locally connected
and @ is an open subset of ¥y, the set &' is open in F,. Thus the set

W =17(&)

i 90 o) =
y (2). Hence putting

is open in F; and
(6) WCriN@) Cri (V") C W'

Moreover, the set g5 go(Fy— V") either does not intersect or contains
the set fo(X;4s x0) for ¢ =1, 2, ... Consequently, the set G and its com-
ponent & do the same, since all sets fo(X;1:x 0) are connected, by (ii).
This yields
(0 @ =95 9(&),

and we see that the set W either does not intersect or contains the set
77 o Xis: % 0) for 4 =1,2,... On the other hand, we have

15 o Xjsi X 0) = Fy ~ 17 o Xiai X 0) = F A foo( B)
where B =15 'fs fo( Xjre % 0) = 15 (Xjps % 0) by (iii). Hence (3) applied
to A = B gives
(8) 77 o X X 0) = f{(Xypi X 1ff)

fori=1,2,..

The decomposition of F; into the mutually disjoint sets (X ;. % 1/f),
where i =1, ...,m, and the remaining points, is upper semicontinuous
form =1,2,..., and so it induces a continuous mapping gm of F;. By (8),
the set W either does not intersect or contains g7 (y) for y e gm(F;). Then
the inverses of points under gn|W coincide with the ones under g, for
m =1,2, .. It follows that the mapping ¢u|W is proper in the sense of
Smale (see [4], p. 604), ie. the inverses of compact sets under gm|W are
compact, for m =1, 2

Let sm(x,1fj) = (¢,1/(j+m)) for weX and m=1,2,.. We get
To8m(@, 1/f) =7o(w, 1/j) and can define a continuous mapping hm: F;—+Fiim
so that the diagram

Xx1i3B Xx 1/ +m)
,L Fi+m
7y > Fiem
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is commutative, namely by putting hm = fi4wsmf; for m =1,2,... The
definition is right since the inverses of points under f; lie in those under
fi+mSm. et us observe that the inverses of points under hn are single
points or subsets of f;(X;4;:¢1/f), where 4 =1, ..., m (compare the defini-
tion of fo and f;, p. 226). It follows that the inverses of points under hm|W
are contained in those under gm|W. The formula

U = (G| W) (| W)

defines thus a continuous mapping such that the diagram

w
[ avd \ ol
hem( W) 2 gn(W)

is commutative. Moreover, g»|W being a proper mapping, un is the same,
according to the continuity of hm|W, for m =1,2, ..
Since fo' =f; = on F;, we get

rhm(x)
for « ¢ F;, whence
(9) = Pspm o
for m =1, 2, ...
We now define the desired open subset V of F (see p. 226) by setting

=rYG)—(Fv

and verify its properties as follows.

The point p belongs to F,y, that is p = »(p), and so p er~1(p) Cr~H&').
The set F, being disjoint with any set F; for ¢ =1, 7~|—k 1, we con-
clude that p e V. Furthermore, V A Fjin = er(G’) f01 m >k, whence

(10) VA F]'—{-m == hm m 7‘7‘+m(G ) = hm'rj—l(G = hm(W)

for m > k, according to (9).

Now, let us point out that our theorem trivially holds for » = 0.
We can thus assume that n > 0.

Then the superposition ¢,7; is a monotone mapping. Indeed, for
z € go(Fy), the inverse g{ (2) is either 1° a single point y belonging to
fo(X: % 0), where 7 =0, ..., §, or 2° a seb fo(X;1;x0), where 1 =1,2,..
If 1°, we have

= fo%o ;jmfﬂmsmfi“l(x) = fn"'ofz‘_l(m) = r(2)

o Fypa)

(g079) (&) =750 () =77 (¥)

and confirm, in the same way as préviously for p (see p. 227) instead
of y, that the set 7 '(y) reduces to a single point. If 2°, we obtain

(9073)” H2) =17 fo( Xjr: X 0)
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whence by (8) the inverse of z under g,r; is the set f;(X;4;x 1/f), homeo-
morphie to X;.; by the definition of f;. It is therefore connected according
to (i) and the inequality » > 0. )

But since (7) implies

W =17{&) = (go7) 7 9o(&) ,

the connectedness of @' yields that of W.

Let m >k be an integer. Then the set hn(W) is open in I, according
to (10). The compacta F; and Fyi, being LC" their open subsets W and
hn(W), respectively, are LC" too. They are also locally compact and
0-connected, since W is connected.

Furthermore, the inverse of any point under gn|W is that under g,
i.e. it is a single point or one of the sets f;(X;4+; % 1/j), where i = 1,..,m.
As we have just asserted, all these sets are homeomorphic to X, re-
spectively. Hence the inverses of points under ¢,|W are (n—1)- connected
ANR-sets by (i). Consequently, the inverse of any point under u., is
a single point or one of the sets

Fonfi( X ps < 1f) = Framsmfi Fil X jas X 1fJ) = fram(Ties LG +m))

where £ = 1, ..., m. These sets are homeomorphic to f(X;y;), respectively,
as we have already seen (compare p. 226), and so the inverses of points
under um are n-connected ANR-sets by (ii).

The mappings gn|W and wm being proper, we thus conclude from
i;he Smale theorem (see [4], p. 604) that the homomorphism

(gn| Wt (W) —>aulgm(W)]
of homotopy groups induced by gm|W is an epimorphism and that
tUms: T hon( V)] >0 g W)]
is a monomorphism for every I =0, ..., n. Hence in view of the equality
(gm| W), = Uy (Fom | W),

(hm|W), is an epimorphism in all dimensions I = 0,...,7n.

Now, every mapping ¢: §;>V ~F;, where i=— 1,2,... and
I: =0, ..., n, must satisfy j+% <i because V ~ F; = 0 for ¢ <j+k So
-z=7'+m, where m > k. Then V ~ F; = hn(W) by (10). Since (Fom | W )se
is an epimorphism, there exists a mapping y: 8;-+W such that @~ hmy
in kn(W). It follows from (5) and (6) that p~0 in 77YV’), whence

Py 0 it (V') = 17in(V')C U A Fiim = U A Fy

by (4) and (9). This completes the proof of the theorem.
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Remarks. In the case where all f(X,) are single points (i=1, 2, ...) the theorem
is a simple consequence of the Smale theorem (see [4], p. 604). Easy examples show
that each of conditions (i)-(iii) is necessary. Analyzing our proof one sees that condition
(a) the diameters of f(X,) converge to zero when i->co,
given by (iii), has been used only when we assert that the decomposition of f(X) into
the sets f(X;), where iz, and the remaining points, is upper semicontinuous for
every j=1,2,... (ef. p. 227). The last statement is, however, equivalent to (a).
The following example shows that condition (a) cannot be replaced by a weaker
one, namely by
(b) there is a homeomorphism h of the union f(X,) v f(X,) u ...
diameters of hf(X,) converge to zero when i--co.

such that the

Indeed, let I* be the unit square on the plane and X;—an arc in I* composed
of two straight segments one of which joins the points (1/(2i—1), 0) and (1/2i,1) and
another—the points (172, 0) and (1/2¢, 1) for ¢=1,2, ... Consider the identification of
points belonging to the same X, and having the same ordinate. This determines
a mapping f of I® such that all X; and f(X;) are AR-sets (i =1,2,...), f is 1-1 outside
of X; v X, ... and the image j(I®) iz not L.C*. Here (b) holds, but (a) does not.

The preceding theorem states a local regularity of images of compaeta
under those mappings of special kind that are investigated here. This
allows us to deduce corollaries, some of which say that also a total re-
gularity of spaces is preserved.

CoroLLARY 1. Let X, f and n satisfy the hypotheses of the theorem
(see p. 225). If dimf(X) << n, then f(X) 4s an ANR-set.

For if an n-dimensional compact metric space is LC", it is an ANR-
set (see [3], p. 289).

COROLLARY 2. Let X, f and n satisfy the hypotheses of the theorem.
If e X, then | induces an epimorphism

fer ml(X, ) —>7Zl(f(X)1 f(m))
of homotopy groups for 1=0,1, .., n.

In fact, according to (iii), the decomposition of f(X) into the sets
f(X;), where i =1,2, ..., and the points belonging to f(X,), is upper
semicontinuous. It thus induces a continuous mapping ¢ of f(X) such
that the inverses of points under g are elements of this decomposition,
and so they are n-connected ANR-sets by (ii). Consequently, the inverse
of a point under the superposition gf is a single point or one of the sets
X,, X,, ... by (iil). It is therefore an (n—1)-connected ANR-get by (i).
Sinee both compacta X and f(X) are LC" by our theorem, it follows from
the Smale theorems that

gu: m{f(X), f (@) ->m{gf (X), gf (2))

is 2 monomorphism (see [4], p. 607, Theorem 8) and

(9h)e: m(X, @) >m(gf(X), gf (=)
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is an epimorphism (see [4], p. 608-609, Theorems 9 and 11) for I =0, ..., n,
Hence f, is an epimorphism, as (gf)« = gufs-

COROLLARY 3. Let X, f and n satisfy the hypotheses of the theorem
(see p. 228). If X is n-connected, then f(X) is also n-comnected.

This instantly follows from Corollary 2.

CoroLLARY 4. Let X, f and n satisfy the hypotheses of the theorem.
If X is n-connected and dimf(X) < n, then f(X) is an AR-set.

For f(X) is an n-connected ANR-set by Corollaries 1 and 3 (see [3],
D. 289).

COROLLARY 5. Let X, f and n satisfy the hypotheses of the theorem
with eonditions (i) and (ii) replaced by condition

(iv) X; and f(X;) are n-connected ANR-sets for i =1,2,..

If e X, then f induces an isomorphism

fot (X, w) ~mf (X), f(@))

of homotopy groups for 1=10,1,..,n

Indeed, taking the mapping g, as previously after Corollary 2, we
see that the inverses of points under ¢ as well as under gf are n-connected
ANR-sets by (iv). It follows from the same Smale theorems that both g,
and (gf), are isomorphisms, whence f, = ¢g;%(gf), is an isomorphism.

COROLLARY 6. Let X, f and n satisfy the hy Jpotheses of the theorem
with conditions (i) and (i) replaced by condition (iv). If dimX <n and
dimf(X)<n, then f is a homotopy equivalence, and so X and f(X) are
of the same homotopy type.

In fact, the compacta X and f(X) are both ANR-sets by Corollary 1.
Then X has a finite number of components €y, ..., Oy each of which is
a 0-connected ANR-seb with dimension less than or equal to n. By (iv),
all sets X; are connected (i =1,2,...), whence the sets f(Cy), ..., 7(Ck)
are mutually disjoint according to (iii); thus they are components of
J(X), i.e. 0-connected ANR-sets with dimensions less than or equal to n.
It follows that the hypotheses of the theorem (sce p. 225) ave satisfied
for C; and f[C; instead of X and f (j =1, ..., k), respectively, and with
conditions (i) and (ii) replaced by condition (iv). In view of the well-known
fact that every m-dimensional ANR-set is dominated by an m-dimen-
sional finite simplicial complex, we conclude from Corollary 5 and from
the Whitehead theorem (see [5], p. 1133) that each flC; is a homotopy
equivalence for j =1,..., k. Hence f is also a homotopy equivalence.

COROLLARY 7. Let ]‘ be o continuous mapping of a space X and lot
X1y Xy, ... be subsels of X satisfying condition (iii) and

(v) Xf and [(X;) are AR-sels for i =1,2,...
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If the image f(X) has a finite dimension and X is an ANR-set (or
AR-set), then f(X) is also an ANR-set (or AR-set). Further, if X is an
ANR- set and both X and f(X) have finite dimensions, then they are of the
same homotopy type.
Since (v) implies (iv) for every » =0,1, ...,
follows from Corollaries 1, 4 and 6.

Corollary 7 directly
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