Some mappings of ANR-sets

by
A. Lelek (Wrocław)

Recently, in connection with a method of construction of ANR-sets (1) having some paradoxical properties, K. Borsuk raised the following problem:

Given an ANR-set X. Take a sequence of mutually disjoint AR-sets $X_1, X_2, ...$ in X which have diameters converging to zero. Suppose ξ is a mapping of X_i such that $\xi_i(x)$ is an AR-set for $i = 1, 2, ...$ Then the decomposition of X into the sets $\xi^{-1}(y)$, where $i = 1, 2, ...$ and $y \in \xi_i(X_i)$, and the points belonging to $X - \bigcup X_i$, is upper semicontinuous; thus it induces a mapping ξ of X. Is $\xi(X)$ an ANR-set?

We shall solve the problem in the affirmative for the case when $\xi(X)$ has a finite dimension (see Corollary 7 below). This will be done by showing that $\xi(X)$ is LC^n, i.e., homotopically locally connected in dimensions up to n (see [3], p. 500), for $n = 0, 1, ...$ Therefore the condition that $\xi(X)$ is finitely dimensional plays an essential role in our result. It is now an open question if the above problem has an affirmative solution for $\xi(X)$ with infinite dimension.

Theorem. Let $n = 0, 1, ...$, let f be a continuous mapping of an ANR-set X and let $X_1, X_2, ...$ be subsets of X such that

(i) X_i are $(n-1)$-connected ANR-sets (2) for $i = 1, 2, ...$,

(ii) $f(X_i)$ are n-connected ANR-sets for $i = 1, 2, ...$,

(iii) f is 1-1 on the set $X_0 = X - \bigcup X_i$ and $f(X_i)$ are mutually disjoint sets for $i = 0, 1, ...$ with diameters converging to zero as i tends to infinity.

Then the image $f(X)$ is LC^n.

Proof. Put

$X_\infty = X \times \{0, 1, \frac{1}{2}, \frac{1}{4}, ...\}$

(1) By ANR-set (or AR-set) we understand a compact metric absolute neighbourhood (or absolute) retract.

(2) A set is said to be n-connected if it is homotopically connected in dimensions up to n, i.e. if all its i-dimensional homotopy groups vanish for $i = 0, 1, ..., n$. The (-1)-connectedness means that no condition is required.
and consider the decomposition of \mathcal{X}_n into the sets $f^{-1}(y) \times \{0\}$, where $y \in f(X)$, the sets $f^{-1}(y) \times \{1\}$, where $y \in f(X)$ and $f^{-1}(y) \subset \mathcal{X}_n \cup \ldots \cup \mathcal{X}_i$, and the points belonging to $(\mathcal{X}_{i+1} \cup \mathcal{X}_{i+2} \cup \ldots) \times \{1\}$, for every $i = 1, 2, \ldots$. It is a decomposition of the whole space \mathcal{X}_n, since the sets $f(\mathcal{X}_i)$ are mutually disjoint according to (iii), and is upper semicontinuous by the continuity of f. It thus induces a continuous mapping f_∞ of \mathcal{X}_n. Write

$$
\begin{align*}
F_\infty &= f_\infty(\mathcal{X}_n), \\
f_i &= f_\infty|\{X \times \{0\}\}, \\
f_{i-1} &= f_\infty|\{X \times \{1\}\}, \\
F_i &= f_\infty|\{X \times \{1\}\}
\end{align*}
$$

for $i = 1, 2, \ldots$ Then the sets F_1, F_2, \ldots are mutually disjoint and F_1 is homeomorphic to $f(X)$. So it is sufficient to show that F_∞ is LC$^\alpha$.

For every $i = 1, 2, \ldots$, we have $F_i = f_i(X \times \{1\})$, the mapping f_i is 1-1 on the set $(X \times \{1\}) \cup \{x \in \mathcal{X}_i \times \{1\}\}$ and the sets $X _1, \ldots, X_i$ are mutually disjoint, according to (iii). Thus their union $X_1 \cup \ldots \cup X_i$ is an ANR-set, by (ii). We also have $f_i(X \times \{1\}) \cup \{x \in \mathcal{X}_i \times \{1\}\} = f_i(X \times \{1\}) \cup \{x \in \mathcal{X}_i \times \{1\}\}$ and the union on the right is that of mutually disjoint sets homeomorphic to the sets $f_i(X_1), \ldots, f_i(X_i)$, respectively. Thus it is also an ANR-set, by (ii). It follows from the Borsuk theorem (see [1], p. 205) that the compactness F_1 is locally contractible for $i = 1, 2, \ldots$. Hence F_1, F_2, \ldots are LC$^\alpha$.

But from \(\lim_{i \to \infty} X_i \times \{1\} = X \times \{0\}\) we obtain

$$
\lim_{i \to \infty} F_i = F_\infty
$$

and all F_1, F_2, \ldots are closed subsets of the compact set F_∞. Consequently, by virtue of the Kurschewski theorem (see [2], p. 122, Theorem A), in order to show that F_∞ is LC$^\alpha$ it is enough to prove that F_1, F_2, \ldots are uniformly LC$^\alpha$ (see [2], p. 121, footnote).

Namely, let p be an arbitrary point of F_∞, and U an arbitrary open set in F_∞ to which p belongs. We ought to find an open subset V of F_∞ such that $p \in V$ and every continuous mapping of the i-dimensional sphere $S_i (i \leq n)$ into $V \cap F_\infty$ is homotopic in $U \cap F_\infty$ with a constant mapping, i.e. $\forall n \in U \cap F_\infty$ for every $i = 1, 2, \ldots$, we have $S_i \to V \cap F_i$.

Let us first observe that since $p \in F_\infty$, a positive integer i exists such that

$$
p \in f_i(X_1 \times \{1\}) \cup \ldots \cup f_i(X_i \times \{1\})\,.
$$

Next, we have $F_i \cap \text{ran}(A) = f_i(A \cap f_i(X_1 \times \{1\}))$ for every $A \subset \mathcal{X}_n$, whence

$$
F_i \cap \text{ran}(A) = f_i(A \cap (X \times \{1\}))
$$

Further, let $r_i: \mathcal{X}_n \to X \times \{0\}$ be a retraction defined by the formula $r_i(x) = (x, 0)$ for $i = 0, 1, \frac{1}{2}, \ldots$ and take another retraction r so that the diagram

$$
\begin{array}{ccc}
\mathcal{X}_n & \xrightarrow{\gamma} & X \times \{0\} \\
\downarrow r & & \downarrow r_0 \\
\mathcal{X}_n & \to & F_0
\end{array}
$$

be commutative, namely by putting $r = f_0 r_0 f_0^{-1}$. This is possible because the inverses of points under f_0 are contained in those under f_0^{-1}.

Setting $r_i = r | F_i$ for $i = 1, 2, \ldots$, we get $r_i^{-1}(p) = F_i \cap r^{-1}(p) = F_i \cap \text{ran}(A)$, where $A = r_i^{-1}(r_i^{-1}(p))$, and $F_i \cap \text{ran}(p) = f_i^{-1}(\{0\}) \times \{0\}$, where $\psi \in f_i(X_1 \times \{1\})$, according to (2) and the definition of f_i. Hence

$$
r_i^{-1}(p) = f_i^{-1}(\{0\}) \times \{0\}
$$

by (3), and $f_i^{-1}(\{0\}) \subset X_i \subset \mathcal{X}_n$. It follows from the definition of f_i that the set $r_i^{-1}(p)$ reduces to a single point, say p'.

Now, since r is a retraction of \mathcal{X}_n to F_0 and $p \in U \cap F_0$, there exist, by (1), a positive integer k such that

$$
(F_0 \cup \bigcup_{m=0}^{k} F_i \cap \text{ran}^{-1}(p')) \subset U ,
$$

and an open subset V' of F_0 such that $p \in V'$ and

$$
(F_0 \cup \bigcup_{m=0}^{k} F_i \cap \text{ran}^{-1}(V')) \subset U .
$$

Since $r_i^{-1}(V') = F_i \cap \text{ran}^{-1}(V')$, we get

$$
r_i^{-1}(V') \subset U \cap F_i
$$

for $m \geq k$. Moreover, $r_i^{-1}(V')$ is an open subset of F_i and $(p') = r_i^{-1}(p) \subset r_i^{-1}(V')$. But F_i is LC$^\alpha$. Consequently, an open subset W' of F_i exists such that $p \in W'$ and

$$
\gamma \approx W' \quad \text{for every} \quad \psi : S_i \to W',
$$

$l = 0, 1, \ldots, n$. We also can choose an open subset V' of F_0 such that $p \in V'$ and $r_i^{-1}(V') \subset W'$.

The sets $f_i(X_1 \times \{0\})$ are homeomorphic to $f_i(X_1 \times \{0\})$ for $i = 1, 2, \ldots$, respectively, and, by (3), they are mutually disjoint and have diameters converging to zero as i tends to infinity. By (ii), they are compact subsets of F_i. It follows that the decomposition of F_i into the sets $f_i(X_1 \times \{0\})$, \ldots, $f_i(X_i \times \{0\})$
where \(i = 1, 2, \ldots \), and the remaining points, is upper semicontinuous, and therefore it induces a continuous mapping \(g_0 \) of \(F_1 \). Since no set \(f_i(X_{i+1} \times 0) \) meets \(f_i(X_{i-1} \times 0) \) according to (iii), we get
\[
\mathcal{G}^{-1}(p) = \mathcal{G}' \cap V',
\]
by (2). Hence putting
\[
G = F_0 - \mathcal{G}^{-1}(V')
\]
we obtain \(G \subset V' \) and \(p \in G \). Let \(G' \) be a component of \(G \) to which \(p \) belongs. Since the set \(F_1 \), being homeomorphic to \(f(X_i) \), is locally connected and \(G \) is an open subset of \(F_1 \), the set \(G' \) is open in \(F_1 \). Thus the set
\[
W = \mathcal{G}'^{-1}(G')
\]
is open in \(F_1 \) and
\[
W \subset \mathcal{G}'^{-1}(G') \subset V'.
\]
Moreover, the set \(\mathcal{G}^{-1}(F_1 - V') \) either does not intersect or contains the set \(f_i(X_{i+1} \times 0) \) for \(i = 1, 2, \ldots \). Consequently, the set \(G \) and its component \(G' \) do the same, since all sets \(f_i(X_{i+1} \times 0) \) are connected, by (ii). This yields
\[
G' = \mathcal{G}^{-1}(G'),
\]
and we see that the set \(W \) either does not intersect or contains the set
\[
r_{i+1} f_1(X_{i+1} \times 0)
\]
for \(i = 1, 2, \ldots \). On the other hand, we have
\[
r_{i+1} f_1(X_{i+1} \times 0) = f_i \circ r_i^{-1}(f_i(X_{i+1} \times 0)) = f_i \circ f_i^{-1}(B),
\]
where \(B = f_i^{-1}(f_i(X_{i+1} \times 0)) \), and the remaining points, is upper semicontinuous for \(m = 1, 2, \ldots \), and so it induces a continuous mapping \(g_m \) of \(F_1 \). By (8), the set \(W \) either does not intersect or contains \(\mathcal{G}^{-1}(y) \) for \(y \in \mathcal{G}^{-1}(F_1) \). Then the inverses of points under \(g_m \) \(W \) coincide with the ones under \(g_m \) for \(m = 1, 2, \ldots \). The decomposition of \(F_1 \) into the mutually disjoint sets \(f_1(X_{i+1} \times 1) \), where \(i = 1, 2, \ldots, m \), and the remaining points, is upper semicontinuous for \(m = 1, 2, \ldots \). It follows that the mapping \(g_m \) \(W \) is proper in the sense of Smale (see [4], p. 604), i.e., the inverses of compact sets under \(g_m \) \(W \) are compact, for \(m = 1, 2, \ldots \).

Let \(s_m(x, 1) = (x, 1(t - m)) \) for \(x \in X \) and \(m = 1, 2, \ldots \). We get
\[
r_{i+1} s_m(x, 1) = r_{i+1} s_m(x, 1),
\]
and can define a continuous mapping \(h_m : F_i \to F_{i+m} \) so that the diagram
\[
\begin{array}{ccc}
X \times 1 & \overset{r_i}{\to} & X \times 1 \\
\downarrow_{f_i} & & \downarrow_{f_i} \\
F_i & \overset{r_i}{\to} & F_{i+m}
\end{array}
\]
is commutative, namely by putting \(h_m = f_{i+m} \circ s_m \circ f_i^{-1} \) for \(m = 1, 2, \ldots \). The definition is right since the inverses of points under \(f_{i+m} \) lie in those under \(f_i \). Let us observe that the inverses of points under \(h_m \) are single points or subsets of \(f_i(X_{i+1} \times 1) \), where \(i = 1, 2, \ldots, m \) (compare the definition of \(h_0 \) and \(f_1 \), p. 226). It follows that the inverses of points under \(h_m \) \(W \) are contained in those under \(g_m \) \(W \). The formula
\[
w_m = (g_m \circ g) \circ (h_m \circ W) = (g_m \circ W)
\]
defines thus a continuous mapping such that the diagram
\[
\begin{array}{ccc}
W \circ & \overset{r_i}{\to} & W \circ \\
\downarrow_{h_i} & & \downarrow_{h_i} \\
h_m(W) & \overset{r_i}{\to} & g_m(W)
\end{array}
\]
is commutative. Moreover, \(g_m \) \(W \) being a proper mapping, \(u_m \) is the same, according to the continuity of \(h_m \) \(W \), for \(m = 1, 2, \ldots \).

Since \(f_i = f_i^{-1} \) on \(F_1 \), we get
\[
r_{i+1} s_m(x) = f_{i+m} s_m f_i(x) = f_{i+m} s_m f_i(x) = r_{i+m}(x)
\]
for \(x \in F_1 \), whence
\[
r_i = r_{i+m} s_m
\]
for \(m = 1, 2, \ldots \).

We now define the desired open subset \(V \) of \(F_m \) (see p. 226) by setting
\[
V = r^{-1}(G') = (F_1 \cup \ldots \cup F_{b+1-1})
\]
and verify its properties as follows.

The point \(p \) belongs to \(F_1 \), that is \(p = r(p) \), and so \(p \in V \) \(r^{-1}(p) \cap r^{-1}(G') \).

The set \(F_1 \), being disjoint with any set \(F_i \) for \(i = 1, 2, \ldots, j + k - 1 \), we conclude that \(p \in V \). Furthermore, \(V \cap F_{b+1-1} = r^{-1}(G') \) for \(m \geq k \), whence
\[
V \cap F_{b+1-1} = h_m^{-1} r^{-1}(G') = h_m^{-1} r^{-1}(G') = h_m(W)
\]
for \(m \geq k \), according to (9).

Now, let us point out that our theorem trivially holds for \(n = 0 \). We can thus assume that \(n > 0 \).

Then the superposition \(g_i r_i \) is a monotone mapping. Indeed, for \(x \in g_i F_i \), the inverse \(g_i^{-1}(x) \) is either \(x^2 \) a single point \(y \) belonging to \(f_0(X_{i+1} \times 0) \), where \(i = 0, \ldots, j \), or \(2^2 \) a set \(f_0(X_{i+1} \times 0) \), where \(i = 1, 2, \ldots \).

If \(1^2 \), we have
\[
g_i r_i^{-1}(x) = r_i^{-1} g_i^{-1}(x) = r_i^{-1}(y)
\]
and confirm, in the same way as previously for \(p \) (see p. 227) instead of \(y \), that the set \(r_i^{-1}(y) \) reduces to a single point. If \(2^2 \), we obtain
\[
g_i r_i^{-1}(x) = r_i^{-1}(f_0(X_{i+1} \times 0))
\]
whence by (8) the inverse of \(z \) under \(g_r f_i \) is the set \(f_j(X_{i+1} \times 1(j)) \), homeomorphic to \(X_{i+1} \) by the definition of \(f_j \). It is therefore connected according to (i) and the inequality \(n > 0 \).

But since (7) implies

\[W = r_{i+1}^* G' = (g_r f_i)^{-1} g_{i+1}^* (G') \],

the connectedness of \(G' \) yields that of \(W \).

Let \(m > k \) be an integer. Then the set \(h_m(W) \) is open in \(F_{i+m} \) according to (10). The compacta \(F_i \) and \(F_{i+m} \) being \(LC^\infty \), their open subsets \(W \) and \(h_m(W) \), respectively, are \(LC^\infty \) too. They are also locally compact and 0-connected, since \(W \) is connected.

Furthermore, the inverse of any point under \(g_m(W) \) is that under \(g_m \), i.e., it is a single point or one of the sets \(f_j(X_{i+1} \times 1(j)) \), where \(i = 1, \ldots, m \).

As we have just asserted, all these sets are homeomorphic to \(X_{i+1} \), respectively. Hence the inverses of points under \(g_m(W) \) are \((m-1) \)-connected ANR-sets by (i). Consequently, the inverse of any point under \(w_m \) is a single point or one of the sets

\[h_m(f_j(X_{i+1} \times 1(j))) = f_{j+m} w_m f_j^{-1} (f_j(X_{i+1} \times 1(j)) \) = \[f_{j+m} (X_{i+1} \times 1(j+m)) \],

where \(m = 1, \ldots, m \). These sets are homeomorphic to \(f_j(X_{i+1}) \), respectively, as we have already seen (see [4], p. 226), and so the inverses of points under \(w_m \) are \(m \)-connected ANR-sets by (ii).

The mappings \(g_m(W) \) and \(w_m \) being proper, we thus conclude from the Snake theorem (see [3], p. 604) that the homomorphism

\[(g_m(W))_x \rightarrow (n_m(W))_x \]

is a homomorphism for every \(i = 0, \ldots, n \). Hence in view of the equality

\[(g_m(W))_x = (w_m(W))_x \]

\((h_m(W))_x \) is an epimorphism in all dimensions \(i = 0, \ldots, n \).

Now, every mapping \(\psi : S_i \rightarrow F_i \), where \(i = 1, 2, \ldots \) and \(i = 0, \ldots, n \), must satisfy \(f_{i+k} \leq k \) because \(V \cap F_i = 0 \) for \(i < k \). So \(f_{i+k} \leq m \), where \(m > k \). Then \(V \cap F_{i+m} = h_m(W) \), by (10). Since \((h_m(W))_x \) is an epimorphism, there exists a mapping \(\psi : S_i \rightarrow W \) such that \(\psi \equiv h_m \) in \(h_m(W) \). It follows from (5) and (6) that \(\psi \equiv 0 \) in \(r_{i+1}^* (V') \), whence

\[\psi \equiv h_m \psi \equiv 0 \text{ in } h_m r_{i+1}^* (V') = r_{i+1}^* h_m (V') \subset U \cap F_{i+1} = U \cap F_i \]

by (4) and (9). This completes the proof of the theorem.

Remarks. In the case where all \(f(X_i) \) are single points \(i = 1, 2, \ldots \) the theorem is a simple consequence of the Snake theorem (see [4], p. 604). Easy examples show that each of conditions (i)-(iii) is necessary. Analyzing our proof one sees that condition (a) the diameters of \(f(X_i) \) converge to zero when \(i \to \infty \), given by (iii), has been used only when we assert that the decomposition of \(f(X_i) \) into the sets \(f(X_i) \), where \(i \geq 1 \), and the remaining points, is upper seminoncilluous for every \(i = 1, 2, \ldots \) (cf. p. 227). The last statement is, however, equivalent to (a).

The following example shows that condition (a) cannot be replaced by a weaker one, namely by

(b) there is a homomorphism \(k \) of the union \(f(X_i) \cup f(X_0) \ldots \) such that the diameters of \(k(f) \) converge to zero when \(i \to \infty \).

Indeed, let \(I \) be the unit square on the plane and \(X_i \) an arc in \(I \) composed of two straight segments, one of which joins the points \((1/2m, 1) \) and \((1/2, 1) \) and another — the points \((1/2n, 1) \) and \((1/2, 1) \) for \(i = 1, 2, \ldots \). Consider the identification of points belonging to the same \(X_i \) and having the same ordinate. This determines a mapping \(f \) of \(I \) such that all \(X_i \) and \(f(X_i) \) are AR-sets (i.e., \(i = 1, 2, \ldots, i = 1 \); outside of \(X_i \cup X_0 \ldots \) and the image \(f(I) \) is not \(LC^\infty \). Here (b) holds, but (a) does not.

The preceding theorem states a local regularity of images of compacta under those mappings of special kind that are investigated here. This allows us to deduce corollaries, some of which say that also a total regularity of spaces is preserved.

COROLLARY 1. Let \(X_i \), \(f \), and \(n \) satisfy the hypotheses of the theorem (see p. 225). If \(d_{\min}(f(X_i)) \leq n \), then \(f(X_i) \) is an AR-set.

For if an \(n \)-dimensional compact metric space is \(LC^\infty \), it is an AR-set (see [3], p. 289).

COROLLARY 2. Let \(X_i \), \(f \), and \(n \) satisfy the hypotheses of the theorem. If \(x \in X_i \), then \(f \) induces an epimorphism

\[\lambda_x : n(f(X_i), x) \rightarrow n(f(X_i), f(x)) \]

of homotopy groups for \(i = 0, 1, \ldots, n \).

In fact, according to (iii), the decomposition of \(f(X_i) \) into the sets \(f(X_i) \), where \(i = 1, 2, \ldots \), and the points belonging to \(f(X_0) \) is upper seminoncilluous. It thus induces a continuous mapping \(g(f(X_i)) \) such that the inverses of points under this decomposition, and so they are \(n \)-connected ANR-sets by (ii). Consequently, the inverse of a point under the superposition \(g(f) \) is a single point or one of the sets \(X_0 \cup X_0 \ldots \) by (iii). It is therefore an \((n-1) \)-connected ANR-set by (1).

Since both compacta \(X_i \) and \(f(X_i) \) are \(LC^\infty \) by our theorem, it follows from the Snake theorem that

\[g_x = g(f(X_i), f(x)) \rightarrow g(f(X_i), f(x)) \]

is a homomorphism (see [4], p. 607, Theorem 8) and

\[(g_x)_x = n(X_i, x) \rightarrow n(f(X_i), f(x)) \]

by (4) and (9). This completes the proof of the theorem.
is an epimorphism (see [4], p. 608-609, Theorems 9 and 11) for \(l = 0, \ldots, n \). Hence \(f_* \) is an epimorphism, as \((g/x)_* = g_* f_* \).

Corollary 3. Let \(X, f, u \) satisfy the hypotheses of the theorem (see p. 226). If \(X \) is \(u \)-connected, then \(f(X) \) is also \(u \)-connected.

This instantly follows from Corollary 2.

Corollary 4. Let \(X, f, u \) satisfy the hypotheses of the theorem. If \(X \) is \(u \)-connected and \(\operatorname{dim}(X) \leq u \), then \(f(X) \) is an AR-set.

For \(f(X) \) is an \(u \)-connected ANR-set by Corollaries 1 and 3 (see [3], p. 289).

Corollary 5. Let \(X, f, u \) satisfy the hypotheses of the theorem with conditions (i) and (ii) replaced by condition (iv) \(X \) and \(f(X) \) are \(u \)-connected ANR-sets for \(u = 1, 2, \ldots \).

If \(x \in X \), then \(f \) induces an isomorphism

\[f_* : \pi_0(X, x) \cong \pi_0(f(X), f(x)) \]

of homotopy groups for \(l = 0, 1, \ldots, u \).

Indeed, taking the mapping \(g \), as previously after Corollary 2, we see that the inverses of points under \(g \) as well as under \(g/f \) are \(u \)-connected ANR-sets by (iv). It follows from the same Smale theorems that both \(g_* \) and \((g/f)_* \) are isomorphisms, whence \(f_* = (g/f)_* g_* \) is an isomorphism.

Corollary 6. Let \(X, f, u \) satisfy the hypotheses of the theorem with conditions (i) and (ii) replaced by condition (iv). If \(\operatorname{dim}(X) \leq u \) and \(\operatorname{dim}(f(X)) \leq u \), then \(f \) is a homotopy equivalence, and so \(X \) and \(f(X) \) are of the same homotopy type.

In fact, the compacta \(X \) and \(f(X) \) are both ANR-sets by Corollary 1. Then \(X \) has a finite number of components \(C_1, \ldots, C_k \) each of which is a \(0 \)-connected ANR-set with dimension less than or equal to \(u \). By (iv), all sets \(C_i \) are connected \((i = 1, 2, \ldots) \), whence the sets \(f(C_i) \), \(f(C_k) \) are mutually disjoint according to (iii); thus they are components of \(f(X) \), i.e., \(0 \)-connected ANR-sets with dimensions less than or equal to \(u \).

It follows that the hypotheses of the theorem (see p. 226) are satisfied for \(C_1 \) and \(f(C_i) \) instead of \(X \) and \(f \) \((j = 1, \ldots, k)\), respectively, and with conditions (i) and (ii) replaced by condition (iv). In view of the well-known fact that every \(m \)-dimensional ANR-set is dominated by an \(m \)-dimensional finite simplicial complex, we conclude from Corollary 5 and from the Whitehead theorem (see [5], p. 1133) that each \(f|C_i \) is a homotopy equivalence for \(j = 1, \ldots, k \). Hence \(f \) is also a homotopy equivalence.

Corollary 7. Let \(f \) be a continuous mapping of a space \(X \) and let \(X_1, X_2, \ldots \) be subsets of \(X \) satisfying condition (iii) and

(v) \(X \) and \(f(X) \) are AR-sets for \(i = 1, 2, \ldots \)

If the image \(f(X) \) has a finite dimension and \(X \) is an ANR-set (or AR-set), then \(f(X) \) is also an ANR-set (or AR-set). Further, if \(X \) is an ANR-set and both \(X \) and \(f(X) \) have finite dimensions, then they are of the same homotopy type.

Since (v) implies (iv) for every \(n = 0, 1, \ldots \), Corollary 7 directly follows from Corollaries 1, 4, and 6.

References

Reçu par la Rédaction le 18-4-1962