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Theorem 6.4 can be improved. We note that in the case of a denumerable
locally finite algebra 4 we can take m = w, and that n = 2" is alwagys

a solution of the equation 2=
s<m
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A complete first-order logic with infinitary predicates
by
H. J. Keisler (Princeton N.J.)

Tt is well known that the first order predicate logie (with or without
an identity symbol) has the following two properties:

(%) each proof involves only finitely many formulas;

(#x) a set of formulas is consistent if and only if it is savisfiable (Godel
Completeness Theorem) (*). .

Tn this paper we shall (in § 1) introduce a formal system L W.h'lch
hag predicates with infinitely many argument placgs and qum%t%ﬁers
over infinite sets of variables, but which has only finitary propositional
connectives and no identity symbol, and which satisfies (+). The sys.tem L
iy patterned after the finitary first-order system. ¥, of Church in [11,
and our motion of satisfaction is the natural extension of Tarski’s de-
finition (e.g. in [26], p. 193). Our main result, the Completeness Theorem
(Theorem 3.1), is that I also satisties (sx) (*). The method.s of p.roof are
based upon the proofs of Henkin, and of Rasiowa and Sikorgki, of the
Godel Completeness Theorem.

Generalizations of the Lowenheim-Skolem Theorem and of. the
Compactness Theorem to L (in § 8) will follow eas:ﬂy Jf.rom 3.1. It s t(;
be expected that many of the other familiar apphcatmps of the Go%;s
Completeness Theorem to first-order theo}x;y of rtnodegs (;W)ﬂl eventually be

eneralized to the theory of models of the gystem . o
¢ In § 4 we shall givg gome examples which indicate the difficulties
encountered when one attempts to make various improvements of our
main result. .

In § 5 we shall introduce a more general f.ormal system L#_vivlh{ch
has, in addition to the expressions of I, functions and terms with in-

1) See [5], [9], [17], [20], and [21]. .

((2; The [ngaii :Lesults of this paper were announced in abstmgf dgﬂt.)m Toteness

() For an expository discussion of several applications of the ; elat:)d nlts
theorem, and for a historical account and references, we refer to [15]. I:r r(*) e 8]
concerning the infinitary logics of [27] — which do not Ahave propel Yt ot the theory
and [28]. We shall not here be concerned with the systematic developmen
of models for I in the spirit of [21] or of [25].
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finitely many argument places. We shall generalize our results concern-
ing L, and in particular shall prove.that the system Z¥ hag both properties
(+) and (++). Stomifiski in [23] has introduced a formal system which
is essentially the system I¥ without any quantifiers, and he shows that
this system satisties both (x) and (#x). Our Completeness Theorem 5.9
for I is a generalization of Stomiriski's Completeness Theorem as well
as of our Theorem 3.1.

In the immediately preceding paper [3], Daigneault and Monk give
an independent, purely algebraic proof of the Representation Theorem
for polyadic algebras of infinite degree, which may be regarded as an
algebraic version of the Completeness Theorem (*). In the Appendix,
we shall give a rough outline of the close relationship which exists between
the logic L and the polyadic algebras of Halmos. Although this relation-
ship is not as simple (due to peculiarities of the substitution operator) as
one might expect, it does allow one to easily establish the equivalence of
the Completeness Theorem with the Polyadic Representation Theorem ().

The system L is one of a variety of logics with infinitely long formulas
which have been considered in the literature (°). In most cases, such as
those systems of logic which have infinitary propositional connectives,
and even the system L with identity, it is known to be impossible to
define a notion of proof in such a way that both (x) and (x%) are satis-
fied (7). We are thus confronted with the special situation that the system I
without identity behaves like ordinary first order logic, while L with
identity behaves like the stronger first order logies with infinitary con-
nectives (8).

(*) We refer to [3] for a historical account of the Representation Theorem and
for further references.

(*) It is implicit in Halmos [6], [7] that polyadic algebra corresponds to an ap-
propriate infinitary logic. The correspondence between cylindric algebra and infinitary
logics is discussed informally in [11].

(*) For an informal discussion of various possibilities see [10]. Predicate logics
with infinitary connectives are introduced in [21], p. 211, and [27], and further early
references are given in these papers. A number of more recent papers involve the gystem
in [27); in particular, [12], [13], [8], [28], [16] deal with questions analogous to those
touched upon in this paper.

() See [22] (propositional logic with infinitary connectives) and [10], [28] (I with
identity). In some instances, for example in [22], [12], [18], [16], systems with infinitary
Fton.uectives have been given notions of proof which satisfy (%) but not (). Henkin
in [10] gives a notion of proof which satisfies () for a system like I/ but with an identity
a.m? with only finitary quantifiers, and he proves that () holds for sets of formulas
satisfying certain additional conditions.

() Stomidski has shown in [23] that the system I (or ) without any quantifiers
already has this behavior, i.e. the system satisfies both (x) and ( t

sponding logic with identity cannot be given a notion of pr
and ().

*x) but the corre-
oof which satisfies both (%)
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We shall make free use of the Axiom of Choice, often in the form
that any set can be well-ordered.

This paper is self-contained except for the Appendix, where we
agsume a familiarity with [3].

The author has benefited from diseussions with C. C. Chang, Leon
Henkin, and Donald Monk in connection with this paper.

Terminology and notation. The symbols C, ¢, u, [, n, (] have
their usual set-theoretic significance. The one-element set containing x is
denoted by {#}. X ~Y is the set-theoretic difference of X and ¥. Ordered
pairs and ordered triples will be written (w, y> and <z, y, 2) respectively;
in practice, we shall often omit the commas, thus <zy) and {zye), and
rely on the context to make the meaning clear. We shall denote by
Y* the set of all functions / on X into Y; thus if fe ¥¥, we have
f={, fx)y| veX}. If f and g are functions with domains X and ¥
respectively, we write

gof ={{z, g(f(®)>| v X and f(z) ¢ T}.

If f is a one-to-one function, we write

1= {G, o) <=, 9> ef}.

For any function f ¢ ¥~ and any set Z, we shall write {[Z] = {f(2)] X ~
~ Z}, and
INZ =Ko, f(@)y| we X nZ}o {<z,2)| 2eZ ~X}.

Thus 7} Z always has domain Z, and 0] Z is the identity function on Z.

We assume that the ordinals are defined in such a way that each
ordinal coincides with the set of all smaller ordinals. We shall use the
small Greek letters a, 8, y,... to denote arbitrary ordinals. The sum of
the ordinals a, 8 shall be denoted by a-+ p. The smallest infinite ordinal
is denoted by o, and the finite ordinals are identified with the natural
numbers. Thus 0 is the empty set. The letters k, I, m,n,p, .. denote
arbitary natural numbers.

We shall denote arbitrary cardinal numbers by small German letters
M, n, P, ... The sum of the system (m)er of cardinals is denoted by
>y, and the sum of the two cardinals m, is denoted by m+mn. The
el

cardinal m to the nth power is denoted by m®; we rely on context to

distinguish the cardinal power from the function _s.gt '.g_i. The power,

or cardinality, of a set X is denoted by X; thus =T Recall that

@ = §,. The smallest cardinal which is greater than m is denoted by mt.
For any set X and cardinal m, we define

Su(X) = {z] 2 C X and & <mj}.
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§1. A formal system with infinitary predicates: We shall
begin by introducing some purely syntactical notions, i.e: 1.101;10115 ‘which
do not deal with our intended interpretation of the infinite logic, but
only with its formal structure.

We shall construct our formal system L within the underlying set
theory. By a symbol we shall mean any set which is neither an ordered
pair nor an ordered triple. .

Let V and P be two disjoint sets of symbols, 4 a function whose
domain is P and whose range is a set of ordinals, and m a cardinal.

Throughout this paper we shall assume that V, s, and m satisty
the following conditions (®):

I. V is infinite;
oI m sﬁ‘; -

III. for each p e P, u(p) <V.

‘We construct the logic L(V, u, m), or more briefly L, in the following way.
The symbols of L include:

the implication symbol —;

the falsity symbol f;

the universal quantification symbol V;

the (individual) variables v € V;

the predicates p e P.

We shall assume that the symbols —, f, V are not members of V or of P.

By an atomic formule in I we mean an ordered pair {pz), where
peP and xeV*.

@ is said to be a formula in L if there exists a finite sequence @,, &, ...,
Dy, called a formation of @ in L, such that &, = P and, for each m < n,
at least one of the following hold:

{1.1)  Pn is an atomic formula in Lj

{12} Om=H;

{1.3)  for some k,l<m, §n is the ordered triple (Dp—>Dy);

(1.4)  jor some &k <m and WeSu(V), On is the ordered triple (NW ®p).

It follows at once, from the fact that V, P, and {V, -, f} are disjoint
sets of symbols, that for each m < n exactly one of (1.1)-(1.4) hold. The
seb of all formulas in I is denoted by F.

Leaya 1.1. (Induetion principle). Suppose that G contains every
atomic formula in L, that f e G, that (D—>¥) e ¢ whenever &, ¥ e G, and
that <N'W @) ¢ G whenever ® ¢ G and W e 8u(V). Then F C G.

(°) Although these conditions are not required for the construction of the formal
system I, they are required for most of our results. An indication of the difficulties
which are encountered when assumption I is removed is given (for polyadic algebras
of finite degree) by Monk in [19].
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Proof. Suppose that &,, ..., @y is a formation in L, and every formula
which hag a formation of length less than n belongs to G. Then & ¢ @
for each k¥ <n. If n =1, then either &, is atomic or &, = f, 50 @, € Q.
If @, = (Pr—~>P;> for some k,1<m, then O, B;c G, 50 Bye @G If By
=(VW &> for some &k <n and W e 8u(V), then &y e @, 80 PG It
follows by induction that F C G.

The set V(D) of free variables of a formula, @ ¢ F is defined recursively
as follows:

(2.1) if @ is an atomic formula {pwd, then VD) is the range of x;
(2.2) if @ =1, then VHP) = 0;

(2.3) if @ =(¥—>0), then VD) =V(F)u V40);

(2.4) if @ =NW ), then V(D) =V F)~W.

Similarly, the set Vy(®) of bound variables of @ is defined by:

(8.1) if @ is atomic, then Vy(P) = 0;
(3.2) if @ =T, then Vy(P) = 0;
(3.3) if @ =<K¥->0), then V() = Vu(P) U V()
(3.4) if @ =YW W), then V(D) = V(W) u W.
Finally, the set V(®) of (all) variables of @ is defined by:
V(®) =V,(@) v Ve(D).

For each ¢V’ and @ eF, we define S(r)® (which is intuitively the
result of substituting each variable » in @ by 7 (v)), recursively as follows:
(4.1) if @ is an atomic formula (pz), then 8(7)@ = {p vox)d;

(4.2) if & =1, then S(7)0 ={;
(4.3) if @ =(F—>0), then B(x)P = (S(x)¥->8(r)6);
(4.4) if @ =<KVW ¥, then S(z)® = Nz[W]S8(z)¥).

Similarly, for each 7 ¢V’ and & ¢F, we define 8y(z)0 (intuitively
the result of substituting each free variable v of @ by 7(v)) recursively by:
(5.1) if @ is an afomic formula {px), then Siz)D = {(p Tox};

(5.2) if @ =1, then Syz)d =T;
(8.3) if @ =¥ —>0), then 8y(r)D = {8y(z) ¥ —8y(z)0);
(5.4) if @ =<KVW W), then S{r)0 = VW Si{c) V), where
o ={EMNV~W)|7.

It el (FP|WCV}and @ cF, let S(x)® = 8(=MV)P, and §(r)P
= 84z V).
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Lzancs 12 If @ e and 1 V7, then S(x)® «F and S{z)P e F.

Proof. By 1.1.
Levwa 1.3. Suppose W, XCV, WA X =0, e V7, re (V~W)5,

and @ e F. Then
Scu)® = 8(e)8(n)P,

and
Silow 1)@ = 84(0) 84{(7) P .

Proof. By 1.1.

We shall now give the rules of inference and the axiom schemata
for L.

RULE 1: From @, (O—>¥5, infer ¥, whenever @, ¥eF. (Modus
ponens.)

RULE 2: From @, infer (VW @), whenever YW &) e F. (Rule of
generalization.)

Ruts 3: From §,(r)0, infer O, whenever ek, e (V V(@) 7,
and v is one fo one. (Rule of free substitution.)

RULE 4: From @, infer S(v)®, whenever O T, reVV“’), and T s
one to one. (Rule of substitution.)

AxI0M 1: <@ (¥ B>, whenever D, ¥ e F.

AxioM 2 ((6——>(@—>!P)>—>((0—>45;—>(0—>‘F;>),wheoze’ue') D, ¥, feF.

Axiom 3: (P ~F> »f> >0, whenever D e F.

Axion 4: VW (DT3P ~NW V), whenever D, W el and
W e Su(V ~V{D)).

AxI0M 5: (YW B > 84(7) B>, whenever (NW Oy e F and ve(Ve~
~Vo @)

By an awiom of I we mean any formula which is an instance of one

of the axiom schemata 1-5 above.
By a proof of @ in L we mean a finite sequence of formulas &y, ..., Pu
in I such that &, = & and, for each m < n, one of the following holds

(6.1) for some k, 1 <m, @n is inferred from @y, O; by Rule 1;
(6.2) for some k< m, Dn is inferred from Oy by Rule 2;

(6.3) for some k< m, On is inferred from Oy by Rule 3;

(6.4) for some &k <m, Pn is inferred from @ by Rule 4;

(6.5) OPm is an axiom of L.

@ is said to be a theorem in L, in symbols 7 @, if there exists a proof
of @ in L.
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Lemma 1.4. Suppose that @y, ..., Dy is a proof in L, X =V (B v ...u
U V(Pn), and 1V 45 one to one. Then 8(z)®s, ..., 8(x)®y is also a proof
in L.

Proof. This results from the following easily verified facts, where
V@)vwV(¥P)uV(h)CX:

if @ is inferred from ¥, § by Rule 1, then S(r)® is inferred from
S(t)¥, 8(z)6 by Rule 1;

if ne{2,3,4} and @ is inferred from ¥ by Rule %, then S(7)® is
inferred from S(z)¥ by rule n;

it ne{l,2,3,4,5} and @ is an instance of Axiom =, then S(r)®
is an instance of Axiom =.

THEEOREM 1.5. Suppose m < Vv and, for each peP, y( )< V. Then
any theorem in L has a proof which does not use Rule 4, 1.e. a proof ¥y, ..., ¥n
in which either (6.1), (6.2), (6.3), or (6.5) holds for each k < n.

Proof. It is sufficient to prove that if @ has a proof ¥, ..., ¥um
in L which does not use Rule 4, and if 7 ¢ V' is one to one, then 8(z)®
has & proof in I which does not use Rule 4. It follows from the hypotheses
that V(@) < V. Therefore there is a one to one function o ¢ ¥” such that
7C o. Clearly S(6)® = S(z)®. Then by Lemma 1.4 and its proof,
8(0) ¥y, ..., S(0) ¥u is a proof of §(r)@ in L which does not use Rule 4.

Notice the analogy between the notions of formation and formula
and those of proof and theorem. An important feature of the logic L is
the fact that all formations and all proofs are finite, although it is possible
for infinitely many variables to occur in a single formula in L.

Rule 1 and Axioms 1, 2, 3 form the basis of the classical finitary
propositional logic, e.g. as developed in [1]. In case m = 2 and all of the
values of u are finite, L is a finitary first order predicate logic. In case
m <1 and all values of u are zero, L is a finitary propositional logic.

As we have pointed out in the introduction, the system L is patterned
after Church's system F,. There are, however, certain differences. The
rule of substitution, Rule 4, has no counterpart in F,, and is included
here to cope with the case in which the hypotheses of 1.5 are not satisfied.
Note that for the ordinary first order logic, Theorem 1.5 is applicable
and Rule 4 may be eliminated. In order to avoid a rather complicated
condition involving the substitution of variables, we have stated Axiom 5
in a weaker, but simpler, form than the corresponding axiom of F, and
to fill the gap we have included an additional rule of inference—the rule
of free substitution, Rule 3.

For each @, ¥eF, let (O A W) denote the formula P ¥F P> -1,
which is called the conjunction of & and W. The familiar commutative

and associative laws for conjunction are provable in L. If @, ..., Dpe P,
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let (@ A...AP,) denote the formula ((D;A... ADp1)ADy) i 5>1, the
formula &, if n =1, and the formula <f-f> if n = 0. ’

We shall similarly introduce the other usual propositional connectiveg
and quantifiers in the following definitions. For each D, Vel let

(PVY) denote (D> ->¥>;
(P¥)  denote ((P—=¥)A(F>DY);
(T19) denote (D ->{);

and
(AW @)  denote (TIKVW (T19))) .

We shall write I''- ¥ if I'CF, ¥ ¢ F, and there exigt Diy ey Ppel’
gueh f;hat (DA . ADy) > 5. A subset I of F is said to be ineonsistent
in L if I'.f, and otherwise I" is said to be consistent in I,.

' We shall now introduce some semantical, or model-theoretic notions
ie. notions dealing with our intended interpretation of the logic L. ’
‘ By a structure of type u we mean a system % = (4, Ey)pep in which 4
Is & non-empty set and, for each p ¢ P, R, C A*®. U is said to be of
power n if the set 4 is of power n. -

Herea;fter A will always demote a structure (4y Bp)pep of type u
Let aed”. The notion of a formula & being satisfied by a in U l.n
symbols |=y P[a], is defined recursively as follows: ’

(7.1) if @ is an atomic formula $px}, then =y ®[a] if aox € Rp;
pl D1
(1.2) if @ =¥, then not =y ®la];
(1.3) if & =(P>0), then |=y Dla] if either =y 0[a] or not =o Yal;
(7.4) of @=NW¥), then Fu®la] if, for every beA” such that

bMNV~W) = aMV~W), we have [=o P[0].

Az)%; formula @ is said to be satisfiable in U if there exists a function
aed suc]_l tha.t =u @[a]. Similarly, at set I" of formulas is said to be
sa,th‘mble !in ‘g [1f there exists a funetion a € 47 such that, for each @ e I,
Wwe have =g O[a]. I' iy said to be satisfiable if it i isfi i
structmre of oo fiable if it is satisfiable in some

hﬁ formula @ is 'said'to be valid in U if, for every function a c A,
:rg : ve [=y Oa). & is said to be valid it it is valid in every structure of

78
We shall now state without

proof a number of simpl i
are analogous to familar results e e

in the ordinary predicate logic.

THEOREM 1.6. .
nd aed” llr’he: Suppose that @, ¥ < F, I'C F, A is a structure of type ,

W) [Fu(@AY)[a] if and only if g Bla] and ky Pla].

icm°
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(i) If 7« V" and 7 is one to one, then =uS8(v)®[a] if and only
if f=u @Lac(z PV)].
(iti) If 7 e (VW (®)) " then |=u 8;(v)D[a] if and only if |=x Plac ([ V)].
(iv) @ 4s satisfiable if and only if (T1D) is not valid.
(v) If 1D, then @ is valid.
(vi) If I is satisfiable, then I' is comsistent in L.
(vii) The empty set of formulas is consistent, i.e. it is not the case
that —rf.
(viii) If '~z ® and =y 0[a] for each 0 T, then |=g®P[a].
(ix) If I'is satisfiable in a structure of power 1, and if n<n', then
I' is satisfiable in a structure of power m'.

§ 2. Lemmas for the Completeness Theorem. Throughout
this section, we shall assume that ¥* denotes a set of symbols which
includes ¥V, but is disjoint from P and contains none of the symbols
—, f, V. We shall let I* = L(V*, u, m), and let F* be the set of formulas
of I*. For certain purposes, it is intuitively helpful fo regard the elements
of V*~V as “individual constants”.

@ is said to be & V-formula in L* in @ eF* and Vo (®)CV. D is
said to be a V-sentence in L* in @ e F*, Vy(P) C ¥, and VH®) C V*~V.

Lmnis 2.1, Let ' be the set of all V-formulas in L*. Then

F= 2?"-]—2?*7‘7?’—}‘“0-

n<m pep

Proof. The number of atomic formulas in F' is clearly Y, v+,
peP

50 D V4@ < 7. The set Sn(V) has power > f’", in view of the as-

peP n<imn

sumption II. Hence ) V"< F. By (1.2) and (1.3), we have &, <F.
n<in
Since each member of F” is constructed from finitely many atomic for-

mulas, members of Su(V), and symbols ¥, —, §, we have
F< YT Y Vb +x,.
n<m

The desired conclusion follows.

Levca 2.2. Let I'CF. Then T is consistent in I* if and only if it is
consistent in L. ’

Proof. It is obvious that, if I'5f, then I'z.f, for any proof
in Z is also a proof in L*.

Suppose that I'—z-f. Then for some &, ..., Psel’, We have

b rel(D A ADy) T2
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Let @ = {(DiA...ADy) —f). Suppose that ¥, ..., ¥y, is a proof of @ in I*
Let
X =V(F) 0 GV (¥y).

Then, X <7, in view of I, II, TII. Let = be a one to one function on X
into V. Then by 1.4,

I 8(2) Ty, . 8(7) P

is & proof in L*. Since each formula in (1) belongs to F, (1) is also a proof
in L. Thus -, 8(z)®. Let ¢ = MV (®). Then §(0)® = 8§ (v)D. Moreover,
8(s71)8(0)® = @. Since & ¢ F, we have V(®)CV, and thus o is a one
to one function on V(S (0)@) into V. It now follows by the rule of sub-
stitution that |~ ®. We therefore have I'—zf, and our proof is complete,

Leyea 2.3. Suppose that I' is a consistent sef of V-sentences in L*,
Then there exists a maximal consistent set of V-sentences in L* which in-
cludes T

Proof. Let ¥ be any function whose domain is an ordinal « and
whose range is the set of all ¥V -gentences in L* TLet Iy =T Define the
set I of V-sentences recursively for each f < a as follows:

i f=y+1,
| L it o o brst,
PTln, o @) otherwise;

if >0 and § is a lLimit ordinal,
Ip=r,.

r<p

It follows by transfinite induction that I7, is consistent in I. Clearly,
I'CI,and T, is a seb of V-gentences. Finally, I, is maximal, because
if @ is any V-sentence not belonging to I, then ¢ = ¥, for some B <a,
and since Ipyy # Iy w {¥,}, we have Tyrr v {@}-11, and so I, u (@1 1.

Lemma 2.3 is analogous to, and is proved in the same way, as Lin-
denbaum’s Theorem (see [26], p. 98 ff; [21], p. 39). Like Lindenbaum’s
Theorem, Lemma 2.3 may also be obtained constructively from the
prime ideal theorem in Boolean algebra (cf. [24]), by a well-known method
using the so-called “Lindenbanm algebra” formed from equivalence
classes of formulas (cf. [20], [26], p. 348).

Suppose that 7* = V, and I' is a set of V-setences in I*. We shall
denote by A(I", V) the structure A of type u such that

(8.1) A =TV* T
and
(8.2) for each peP, R, ={ze A" D) cpay el

©
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LEMMA 2.4. Assume that

(i) I" is a mawimal consistent set of V -sentences in L*;

(i) for any V-sentence <NW W, there exists T (V*~V)” such that
{Bi(T) T >VW > eI ,

Then for each V-formula @ in I* and each function b e (V¥*~V), we
fave l=aay) PIOD V*] if and only if Sy(b)P el .

Proof. Let A =A(I", V). Let H be the set of all V-formulas @ « F
such that for any function b e (V*~V), we have .

F=a @[bNMV*]  if and only f Sib)Pel.

We shall show by induction that every ¥-formula belongs to H.

By (8.2), (5.1), and (7.1), every atomie V-formula belon.gs to H.
By (7.2) and (5.2), fe H. If & ={¥—>0> and ¥, 6 ¢ H, then it follows
easily, from (5.3), (7.3), propositional logic, and (i), that @ < H.

Suppose finally that be(V*~VY, & =YW Y’?, W e Su(V), and
YeH Let us write c~b whenever ce(V*~V)" and ep (V*~W)
=bp(T*~W).

Suppose 8 (b)P ¢ I'. By (5.4), we have

84(5)@ = (VW 8(bD (7>~ W) ¥ .
Since W CV and by 1.3, we have
Sy(e)F = 8y(cP W) &b} (V*~W)) ¥
whenever ¢~b. Then by Axiom 5 and (i), we have
Sie)¥ eI’ -whenever ecxb.

Since ¥ ¢ H, we have

=q ¥[¢] whenever o¢~vb.

Then by (7.4), k=g B[b} V*].
Conversely suppose that =g @[b]PV*]. By (5.4), we ‘ have S,(b‘)di
=YW 84{(d} (V*~W)) ¥ It follows from (ii) that there exists a function

7e(V*~V)¥ such that
{8y BB (V*~ W) ¥ >8(b)B) e I'.
Let d =7w (b} (V* ~W)). Then by 1.3,

SAD) T = 8;() 8{pP (V*~TW)) ¥ .

i 13
Fundamenta Mathematicae, T. LII
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Also, d~b, and it follows from 7.4 that |=u ¥[d]. Since ¥e¢H ang
(@PV)MV* =d, we have Syd)¥el. But by (i) and since {(S;(d)¥-
~>8;(b)®> e I', we have 8;(b)P e I

This verifies that @ ¢ H, and completes the proof that H is the set
of all ¥V-formulas.

§ 3. The Completeness Theorem.

TEEOREM 3.1. (Completeness Theorem) If I' is a consistent set
of formulas in L, then I' is satisfiable in some structure W of type u.

Moreover, if we have

(a) lgf%én,
and
(b) for each p e P, 1 =n®,

then W may be taken to be of power n.
Proof. Let f be the initial ordinal of power 1.
) Let V'CV and V' =V ~V’, and let 7, be a one to one function on V
into V’; this can be done in view of I. Let
Iy={8(1)®| & < I'}.

Thus I, is a s'zet of V'-formulas in L. Then by the consistency of I' and the
rule of substitution, it follows that T, is consistent in I. T.et 7, be a one
to one function on V into V~V’, and let

Iy = {8(n) 0| B I}

?Ehus I is a set of V’-sentences in L. We shall show that T is consistent
in L. Suppose that there exist &y, ..., @, ¢ I, such that

L (SHT) ByA o A 81(71) Ou) > T .
Then by (5.3), we have
L8y (m) AP A . ADy) > T .
By the rule of free subsitution, it follows that
FLPiA . ADy) =T .
?3112 this contradicts the consistency of I, and hence I', is consistent
in L.
For each » ¢V’ and y < g, let us choose new symbols w,,. Let
V2=V U {wy| veV;y <B},
let I* = L(V*, u, m), and let G* be the i
set of T'-¢ : )
and Lemma 2.1, we have Fentences T 17 By ()

AN = —
2 V<n, P<n, ZV"(p)<n, and  so<n.

p<m peP
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Since T* = f—kn, we have, by the above observations and (b), that

> f’*’m < n. Then by 2.1, G* < n. We may therefore choose a function ¥
nepP
which has domain B and range G*. For each y<f, let o, T be the

function such that

0,(t) =y, for each wvel”.
Tt follows from (a) and (b) that, for each y ep, the set V(&U(a))
a<y

has power < n. Therefore there exists a one-to-one function 1e 8¢ such
that, for each y ¢, we have

V] ﬁug V(¥(y) =0.

For each y e 8, let 6(y) be the member of G* defined by the following

condition:
6(y) = Siloun)®@, H P =W,
Py, if  ¥(y) is not of the form (YW &> .
Let
L=Ty v K0y) P ()] v Bh

Thus I}, is a set of T”-sentences in I*. We shall show that I} is consistent
in I*.

First of all, it follows from Lemma 2.2 that, since I7 is consistent
in L, I is also consistent in L*.

Now suppose Iui—z-f. Then there exist @,,...,Pnel, such that

Fre(Pree ADn) > T
but every proper subset of {@; ..., Pu} is consistent in L*. We eannot
have @, ..., Pn € Iy because I; is congistent in L*. It follows that n >0
and that
2 DA e ADp1) > (TTDu)> -

Let & = (PyA...AD,_y); thus @ is consistent in L*. Let a be the greatest
ordinal y e § such that

B =P () e { Dy ey Puls
such an ordinal clearly exists. We may assume
& = B(a)>¥(a)> .

We must have 6(a) 5 ¥(a), for otherwise |-z« @, and hence we would
have —z+{®—>f», contradicting our assumption. For some W e Sn(V')
and some V'-formula ¥, in L*, we have

Y(a) =<V ¥> and  0(a) =Sosa) ¥o-
13*
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By propositional logie,
F2x{(T1Pn) > 0(a)> .
(D) > 0(a)> .
Since V' ~ V4(®P) = 0, we have, by (5.3),
{@—~>6(a)> = 8i(oyw) (P —+¥p) .

In view of the fact that (V(®) v V($n)) ~ 0x[V'] = 0, and hence that
.17,((Q5—>!P0>) n Gyl V'] = 0, it follows that the function oy, V(<@ W)
i3 one to one. Then by the rule of free substitution,

Then

By generalization, we have B
VWD ->¥5> .
Since V'~ V{(®) =0 and W C V', we have, by Axiom 4 and modus ponens,
F1l@=>¥(a)) .

Then by propositional logic,
! ]— L*<@ -—>¢n> .
But.now, since {Dy, ..., Pn} is inconsistent, {@:; ..., §p_y} must be in-
consistent, which contradicts our assumption.
‘We conclude that I, is consistent in I*. By Lemma 2.3, there is
& maximal consistent set I, of V'-sentences in I* which inciuded T5.
Let us consider the structure A = A(I, V') of the type u. We ha;e
4 =TV*~V’, and thus 4 =n+V. By Lemma 2.4, it follows that for
each funetion b ¢ 4” and each V'-formula & in I*, we have
=2 ®BPV*] i and only it Sb)P eIy .

Recall that 7, € (V~V")" (50 1, A", that T is a set of V'-formulas

in L, that for any Dy e Iy we have Sir,)D, e T
@, e I';. Then ’ ()P e I, and that Iy C I'. Let

=u Oyfz, V1.
Then, with respect to I, we have
=u Dfn M)
Let & =7;07; thus ae.d”. Lot G eI Then 8(z,) € Iy, and thus
Fﬂ S(To)¢[T1PV] .
By Theorem 1.6 (ii), and because ¢ — (t:PV)or,, we have
T=u ®la].
. Therefore I is satisfied in o by a.
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It u¢ {0}, then since ZI,’) V*® <, we have V< n. Therefore
pE

A=n+V =n, so A is of power n.

Suppose p e {0} then for each p € P, we have either B, = 4° = {0}
or R, =0. It follows that for any non-erapty set B and any b e B”, I' is
satisfied in the structure (B, R,)per by b. Thus if we choose B to be a seb
of power n, then I' is satisfiable in the structure (B, Rp),cp of power n.

Our proof is complete.

CoROLLARY 3.2. 4 set of formulas in L is satisfiable if and only if it
1s consistent. Moreover, a formula in I is valid if and only if it is provable.

Proof. By 1.5 (ii), (v), (vi), and by 3.1.

THEOREM 3.3. Theorem 3.1 remains true when condition (a) is re-

placed by
(a") S+l <n.
Proof. For each @ ¢ F, define &, recursively as follows:
{pxo = {px);
fo=1;

Wb =<¥—>0;

NWYE = NNWAT ()Y, .
It is easily seen that (¥P«—®,) is valid. For each @ ¢ F, define P(D) re-
cursively by: ’

P(pr:) ={ph
P(f) =0;
P((F-0>) = P(¥) U P(6);
P(NW ) =P(¥).

Let Iy = {@] D I}, let Py =[P (D) Pe T}, and let Vo= {V(y)| BelD.
Let m, be the smallest infinite cardinal p such that, for each p € Py,
u(p) <p. Let Ly=L(V,ulP,,my), and let F, be the set of formulas
in Ly. Then I, CF,. Since P(P,) is finite for each &y e [, we have
T (D) < m, for each @, ely. It follows from hypothesis (b) of Theorem 3.1
that Y w* =n; therefore my < n, V,<n, and Y 7)< n. Moreover, we

p<im _ p<nig .
have Py <8+ < m. Hence by Lemma 2.1 and (b), F, <. _

By Theorem 3.1, there is a structure % = (A, Ry),ep (say of power FF )
in which I" is satisfiable. Then I, is satisfiable in (4, Rp)per. By Theo-
rem 1.3, I', is consistent in Z,, and hence, by Theorem 3.1, I is satisfiable
in a structure B = (B, S,)pep, of type ul Py and power 1. Finally, if we
put 8, = 0 for p e P~P,, then I is satisfiable in the structure (B, 8y)per
of type p and power n. This completes the proof.
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COROLLARY 3.4. (Compactness Theovem). Suppose that I'CF
and every finite subset of I' is satisfiable. Then I' is satisfiable.

Proof. By Theorem 1.5, every finite subset of I' is consistent. It
follows that I" is consistent. Therefore, by Theorem 3.1, I" is satisfiable.

The statement of the Compactness Theorem is purely semantical
in nature, i.e. it does not refer to the axioms and rules of inference of L.
As in the case of the usual first order predicate logic, it is possible to give
a direct semantical proof of the compactness theorem which is much
shorter than the above syntactical proof. For example, one can prove
the Compactness Theorem by a perfectly straightforward modification
of the proof using ultraproducts outlined in [18].

COROLLARY 3.5. Suppose that I'CF, I' is satisfiable, and n satisfies
conditions (a') of 3.3 and (b) of 3.1. Then I' is satisfiable in a structure
of power m.

Proof. By Theorem 1.6, I" is eonsmtent The conclusion follows by
Theorem 3.3.

Corollary 3.5 is the analogue of the Lowenheim-Skolem Theorem (1)
for ordinary first order predicate logic. Like Corollary 3.4, it is purely
semantical in nature. A direct semantical proof of Corollary 3.5 is also
easy to construct by considering known proofs in ordinary logic. For
example, one may give a proof using “Skolem functions” based on the
argument in [29], Theorem 2.1.

§ 4. Complementary examples. In this section, we ghall some-
times write (a, b) for the two-termed sequence {0, a)>, <1, b>}. It is well
known from ordinary first order predicate logic that Theorem 3.1 is no
longer true if condition (a) is removed. In faect, for each cardinal n we
can easily give a consistent set I" of n* formulag, in a logic I with V =
and a single binary predicate symbol, which is not satisfied in any structure
of power 1. Obviously, condition (a’) cannot be removed from Theorem 3.3
for the same reason. In the examples below, think of ¢ as “equals”.

ExampLE 4.1. This shows that in Theorem 3.3, hypothesis (b) cannot
be removed. I' will imply there is & one-one function with domain 2°.

Let 8 be any infinite ordinal. Let V =f+§, and m = p+. Let

P ={p,q}, ulp)=4p, and u(g) = 2. Finally, let I" be the following set
of formulas (0m1t1:mg outer brackets):

q{0,1} (T1g(0,1));
VB~1{0}(T{03<p O] BD)>;

(%) For references concerning the Lowenheim-Skolem Theorem, see [29]. For

“generalizations to the infinitary system in [27], see 8]
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for each y e f~{0}, the formula

VB+B{Kp 0Py A <pyo) > <{a(ys 102>

where y, =0 if ¢ =0, and Ja—'ﬁ—'—a if 0 <a<p.

It is then clear that I'=§. However, § < ", so (b) fails with
1 = p. Moreover, I' is satistiable in a structure of power 27 but in no
smaller structure. In fact, if % = (4, Ry, R,) is a structure in which I’
is satisfied, a, b € 4, and (a, b) ¢ Ry, then there is a one-to-one function f
on {a, b}’?”m’ into A such tha f(z) =¢ implies 2w {0, ) e Ry, so L > 25,

EXAMPLE 4.2. This example shows that in Theorem 3.1, hypothesis (b)
cannot be removed. Here the function will have domain n°.
Let 1, be infinite and, for each # < o, let 1 = 2 Lebt 1 =3 nx.

_ n<e
Let V=w+tow, and m =x,. Let f=n, P={p,q,1, |-y <p} ulp) =0,

u(g) =2, and, for each y < B, u(r,) —LIt follows from Lemma 2.1

that F =n. Notice, however, that n < 1*®, so (b) fails. Let I"" be the
following set of formulas: for each y ¢ g, the formula

H{0}<r,(0));
for each distinet 3,y € g, the formula

V{0, 13¢[rA0) (1) > (a0, 1) 5

Yo~ {0HH{0}{p O o));

for each 7 e w~{0}, the formula
Yo ol({p 0T oA {pyr) =g, yn)i>,

where ¥ =0 if m =0, and ym =o0+m if 0 <m < .

Then I is satisfiable in a structure of power n¥o, but in no smaller
structure. Since n < n%, I is not satisfiable in any model of power 1.
Thus the conclusion of 3.1 does not hold.

§ 5. A formal system with infinitary functions. In this
section we shall see that the Completeness Theorem can be generalized
to apply to formal systems which have infinitary functions as well as
infinitary predicates. We shall state the relevant definitions and, since
all the theorems may be proved by a straightforward generalization
of the proofs of corresponding results for the system L, we shall omit
all proofs.

Let Q be a set of symbols which is disjoint from the sets V, P, and
{—, f, ¥}, and let » be a function whose domain is @ and whose range
is a set of ordinals.
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In addition to the assumptions I, IT, III of § 1, we shall also
agsume:

IV. for each qe@, (@ <7V.

We construct the logie L¥(V, u,»,m), or more briefly ¥, as follows.
The symbols of I# include the symbols of I and, in addition, the function
symbols qe@.

By the set T' of terms in I¥ we mean the least set U such that each
of the following hold:

(#1.1) VCuU;

(#1.2) if geQ and z TP, then the ordered pair {gad eU.

By an atomic formula in L we mean an ordered pair (pz} where
peP and ze TP,

The notion of a formula @ in L# and of a formation of @ in L#, is
defined exactly as in the case of I, except that we begin with atomic
formulas in ¥, In the definition of a formula in I given in § 1, we need
only replace I everywhere by L¥ (cf. conditions (1.1)-(1.4)). The set of
all formulag in ¥ is denoted by F¥.

Lemwma 5.1. Zemma 1.1 (the induction principle) remains true if we
replace L, F everywhere by LY, F™ respectively.

The set V(i) of variables of a term teT is defined recursively by
(#2.1) if £V, then V(I) = {t};
(#2.2) if © = {gw), then V(i) = ELVJ“)T/'(m.,).

Let X C V. We define the set T(X) of terms in X by:
T(X)={t]| teT, V(t)C X}.

Thus we have T = T(V).
The set Vi(®) of free variables of a formula @ ¢ F¥ ig defined in exactly

the same way as for formulas in I except that condition (2.1) is
replaced by

(217) if @ s an atomic formula {px), then Vy(P) = U V(mn

aeu(p)
conditions (2.2)-(2.4) remain unchanged.
The set V3(®) of bound variables of a formula @ ¥ ig defined exactly
as for formulas in T, by the conditions (3.1)-(3. 4).

For each 7¢ 7", we define 7 « 77 recursively by:
(#4.1)

7C7;

(#4.2) if qeQ and x¢ T"D, then T(<gm)) =g Tox).

icm®
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For each 7 e V" and & ¢ F¥, the formula 8(z)® is defined in exactly
the same way as for formulas in I, except that the condition (4.1) is
replaced by:

(4.1") if @ is an atomic formula {pxd, then
SE)D =<{pTox);
conditions (4.2)-(4.4) remain unchanged.
For each 7 ¢ T” and & eF#, the formula Sy(r)® is defined recursively

- by the condition:

(8.1) if @ is an atomic formula {pxd, then
S8H7)D =<{pToxy;
and by conditions (5.2), (5.3), (5.4), which remain unchanged.

The rules of inference for L are exactly the same as the rules of
inference for L, i.e. Rules 1-4 given in § 1 with F* everywhere replacing F.

The axiom schemata for L¥ are the following:

AXIOMS 1-4 as stated in § 1, with F™ everywhere replacing F;

AxIOM FH5. KYW &) - 84(7) P>, whenever

NW D e F¥  and 7 T(V~Vy(®)”

The notions of proof in L¥ and theorem in L* are defined exactly
as we did for L in §1, by means of (6.1)-(6.5), with # everywhere re-
placing L. )

We write -5 ® in case @ is a theorem in *

THEOREM 5.2. Suppose m <V and, for each atomic formula @ in L¥F,
V(D) < V. Then any theorem in I* has a proof which does not use Rule 4.

In case m == 0, the system L*is esgentially the same as the system
without quantifiers and without identity considered by Stominski in [23].
The notation I't- ¥ has the same meaning as in §1, and I' is

inconsistent in L% if I'i- s 1.
By a structure of type (u,») we mean a system A = (4, Ry, Ry)per,qco
such that (4, Rp)yep is a structure of type x and, for each ge@, Bye A4™.
Let a e A”. We define the function @ e AT recursively as follows:
(3#7.1)
(37.2) if q<Q and z e TP, then a({gzd) =
The notion of a formula & e F* being satisfied by a in %, in sym-
bols =g @la], is defined recursively in the same way as in § 1, excepb
that condition (7.1) is replaced by:
(1.1%) if @ is an atomic formula {pz) in L¥, then |=g Ola] if Gox e By;
conditions (7.2)-(7.4) remain the same.

aCa;

Ry(@ o).
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The notions of satisfiability and validity of formulas in I* ave defined
exactly as in §1.

THEOREM 5.3. Suppose that @, YT, I'C F¥ 9 is a structure of
type (u,»), and aeA”. Then conditions (1)-(ix) of Theorem 1.6 remain
ealid with I¥ everywhere replacing L. Moreover, we have:

(i) if 7eT(V~Vu(B) ", then

=y S{(r)®B[a] if and only if |FuO[@o(=PV)].

THEOREA 5.4 (Completeness Theorem). If I' 45 a consisient set
of formulas in L¥, then T" is satisfiable in some structure % of type (u,»).
Moreover, if we have

(#a) <,

{3Db) for each p e P, 1 =D,
and

{Fc) for each ge@Q, 1 =110,

then A may be taken to be of power m.

The proof of Theorem 5.4 is an obvious modification of our proof
of Theorem 3.1.

In the special case that m =0, and thus I* has no quantifiers,
Theorem 5.4 reduces to the Completeness Theorem obtained by Stominski
in [287, (3.1). In fact, it is possible to give an alternative proof of Theorem
5.4 in general by applying the theorem of Slominski and a suitable gener-
alization of the Skolem Normal Form Theorem (cf. [1]). Such a proof
of the Completeness Theorem would be somewhat more along the lines
of Godel’s original proof in [5] than the proof we have given is.

Appendix. Relation to polyadic algebras. For the terminology
and notation concerning polyadic algebras, we refer to the immediately
preceding paper [3]. The results which follow show the relationship be-
tween the Completeness Theorem in this paper and the Representation
Theorem in [3].

There is a natural correspondence between polyadic algebras and
sets of sentences in the formal systems L (u, V, m). This correspondence
depends on Lemmas A.1-A.4 below which we shall state without proofs;
the proofs are straightforward but tedious.

Let ¥V, be a set of symbols which is disjoint from P and V, which
does not contain -, f, or V, and such that V, = V. Let V* =V u V.
Let 7, be a one-to-one function of V* into V,. Let G be the set of all sen-

tences of L*, and let H be the set of all formulas @ in L* such that
V(@) CV.

icm

A complete first-order logic with infinitary predicates 197

Let I'C @. For each formula & ¢ H, we define

OI' ={¥| ¥eH, I'1+(P—D)}.

Clearly, for any @, ¥ < H, the sets @/I', ¥|I' are either equal or
disjoint.

We shall write

Hy ={®/I'| DeH}.
For any @, ¥ < H, we define
(@) +r(¥II") = (v ¥)II,

(BIT)-p(PI) = (D AP,
and
—r (D) =(M1P)/T.

Leamya A, If I is consisient in L*, then Hp = (Hr, +r, ‘r;—r)
is a Boolean algebra ().

Following [6] and [3], we assume that “Boolean algebra” is defined
in such a way that every Boolean algebra has at least two elements.
Thus Hp is not a Boolean algebra if I' is inconsistent in IL*.

We shall denote by 1, the unit element of the Boolean algebra Hr.
Note that

Ir={@ OeH, I'—1+D}.

Thus I' is consistent in L* if and only if 1, # Hr.
For each W e Su(V) and @ ¢ F, we shall define

A WWRIT) = (AW D)I".
Finally, for each 7 ¢TY and @ <« H, we define
Sr()@IT) = (84(7)Sy(ws ") S (o) B)/T.
Leyva A2, (i) If @ 4s atomic and rsVTi, then
Sr(e) (@) = (84(7)D)/ T = (S (x)P)/T".
(ii) If v e (V~Tp(®))", then
Sr{(r)(PIT) = (S(x))II".
(iii) If 7« 77 is one to one, then

Sple) (@) = (S (1) D)/T".

(1) Hr is essentially the Lindenbaum algebra (cf. [26], p. 348).
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LEsara A3, If m = V+ and I 4s consistent in L*, then the quadruple
(HI‘) = (Hl") V: SI‘: HI‘)

is a polyadic algebra of degree V ().
We shall denote by (X’) the O-valued functional polyadic algebra
(F(x%,0),1,8,%).
If I is satisfiable in the structure U of type u, we shall denote by
hry the function & on Hy into F(AV, 0) defined by the condition:
RPIT) (D) =1 =a B[P V*],
whenever @ e H and b e 4.

if and only if

Levua A4, Suppose that m = V+ and I' is satisfiable in the structure %
of type u. Then hry is a polyadic homomorphism of (Hr) into (A”).

LemmA A.5. Let (B) = (B,1,8,H) be a polyadic algebra of infinite
degree . Let V—b P = B m =d* and u(p) =d for each p e P. Then
there exists a set of semiences I' C G such that (Hy) is isomorphic to (B).

In Lemma A.5, let us suppose for convenience that I =V, B = P,
and u(p) is the same for each p ¢ P. Let « be a one to one function on
#(P) onto V. We may take for I'" the following set of sentences, where
P,q range over P, ranges over V'; and W ranges over Sm(V):

YV ((pryes (] {pw)));
{p+ gz = ({pad v {gm)));

vr(
YV (<p- gy (<pmda {gm)));
YV (<8 (x) pwy o 8(x) (pa))
YV (<A (W) pay e (AW (paz))).

The required isomorphism of (B) onto (Hy) is then given by the function g
defined by the condition
9(p) = {px>[T

for each p ¢ P. The proof that g is an isomorphism consists of a series
of computations which amount to showing that the axioms and rules
of inferences of I*, and the axioms of polyadic algebras, “say the same
things” under the proper interpretation.

(*) A more natural procedure up to this point would have been to work with
the original system L instead of passing to I*, and to consider the set F of formulas
and a set I” of sentences in L. However, in case there are formulas @ in F such that
V(@) =V, this simpler procedure would leave us at a loss to define the substitution
operator Sr so as to satisfy the axioms of polyadic algebra. Evidently, we need the
extra variables in ¥*~V in order to avoid collisions of free and bound variables.
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If X is a set of elements of a complete Boolean algebra 4, the greatest
lower bound of X is denoted by [] X. Thus the zero element of Ais [] 4.

TEEOREM A.6 (Representation Theorem). Let (B) be a polyadic
algebra of infinite degree d and cardinality c. Then there exists a polyadic
homomorphism h of (B) into an O-valued functional algebra (AY) of degree d
whose domain A has power d®+c.

Moreover, if D is a proper (not necessarily polyadic) dual ideal in
the Boolean algebra B, then h may be chosen so that [] h[D] == ] (4¥) ().

Proof. By A.5 we have an 1som0rphlsm g of (B) onto an algebra
of the form (Hy), and where V =b, P = ¢, and m =»b*. We must have
¢>1, and therefore 1r # H. Let I} = g[D]. Then I'C I, and I is con-
sistent in Z*. By the Completeness Theorem and 2.1, I} is satisfiable
in a structure U of power 2°+c. By A4, Arg is a polyadiec homomorphism
of (Hy) into (A”). There exists b e A" such that |=¢ @[6]V*] holds for
each @ eI, and thus we have Ry u(®/I)(d) =1 for each ®el,. Let
b = (hrg)og. Then ([JA[D])(b) =1, and our proof is complete.

Using Theorem 3.3, we may improve the cardinality condition in
Theorem A.6, using the notion of local degree.

Lemuma A.5'. Let (B) = (B, I, 8, ) be a polyadic algebra with infinite
degree b, local degree d', and cardinality c. Then for some formal system
L(p, V,m) such that V =b, m =b*, P = B, and d p u{p) < b for each p ¢ P,
there exists a set of sentences I'C G such that = c+ S’ o and (Hp) is
isomorphic to (B). ,

The proof of A.5’ iz a modification of the proof of A.5. For each
p € P, we may choose a one to one function «, on u(p) onto a subset of
V which supports p. We now take for I" the following set of sentences,
where p,, p;, range over P, r ranges over the set

{o] 6V, (v] vV, 0(v) #0)~ <},
and W ranges over the set Sy(V):
YV (<Bapy > (T <pa0)) 5
VV((P + @Zpig> > (P2 V <qmq>)) H
VV (<0 " @pg) > ((PBRYALGZD)) 5
YV (<8 () ptsed + 84(7) 0mp) 5
YV (A(W)pzagrpy — (AW <pap))) -

(*) A form of the Representation Theorem corresponding to the first paragraph
of A.6 was announced independently both in [2] and in [14]; in the former, the cardi-
nality condition was not acctually stated, but was implicit in the proof which was
outlined. The first paragraph of A.8 may be proved using the Completeness Theorem
only in the special case that I' is a set of sentences, while the second paragraph of A.6
uses the Completeness Theorem in general.
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It is then easily seen that F=c¢+ 3 t*. The required isomorphism %

is now defined by »<w
h(p) = <pay| T’
for each p e P.

TuroreM A.6'. Tet (B) be a polyadic algebra of infinite degree b, local
degree d' and cardinality ¢, and let w be cardinal such that n>c and
D =n. Then there exists a polyadic homomorphism h of (B) into an
<vf
i) valued functional algebra ( (AY) of degree d whose domain A has power n.

Moreover, if D is a proper dual ideal in B, then h may be chosen so
that [TRID] # [1(47) (4).

Proof. If ¢ <D, then (by Theorem 3.12 in [3]) (B) is degenerate,
and the result is a trivial consequence of the Representation Theorem
for Boolean Algebras (cf. [24]).

Suppose ¢>d. By A.5’, there is a formal system L(u,V,m) and
a set I'C @ which satisfy the conclusions of A.5". Let ¢ be an isomorphism
of (B) onto (Hy), and let Iy = = g[D]. Clearly I'C T. Since b < ¢, it follows
that T’ < 1. Also, we have n = w® for each p ¢ P. Since ¢ > 1, I, is con-
gistent in I*.

It now follows from Theorem 3.3 that I is satisfiable in a structure %
of power n. Let h = (brg)og. As in A6, we see that % is the desired
homomorphism of (B) into (AV).

Using Theorem 4.4 in [3], we obtain the Representation Theorem
in the form stated in [3], Theorem 6.4.

THEOREM A.6". Let (B) be a polyadic algebra of infinite degree b,
eﬁectiw cardinality ¢’, and local degree d’, and let n be a cardinal such that
n>¢ and Z w=mn. Then there exists a homomorphism of (B) into an

<
O-valued fzmctwml algebra whose domain A has power m (13).

Proof. Let J C I and let J be the effective degree of (B). Then the
faithful compression (B); of (B) has power ¢, degree J, and local degree d’.

If (B) is degenerate, then, as in A.6, the result is trivial.

Suppose (B) is not degenerate. Then it is easily seen that J is infinite.

By A.6', there is a homomorphism of (B); into an O-valued functional
algebra of degree J whose domain 4 is of power 1. It follows from Theorem
4.4 of [3] that there is a homomorphism of (B) into an O-valued functional
algebra of degree b and with domain A. This completes the proof.

In the other direction, it is also possible to prove the Completeness
Theorem by applying the Representation Theorem. It is most con-

(**) The improved cardinality condition in A.6’ was suggested to the author by
the results in [8].

(**) Theorem A.6 is, because of the cardinality condition, stronger than the first

paragraph of A.6 and of A.6". The result A.6” is originally due to Daigneault and Monk
and is the same as Theorem 6.4 in [3].
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venient to apply the version of the latter stated in A.6". We shall give
an outline of such a proof.

Lemra A.7. Suppose that b is a polyadic homomorphism from the
polyadic algebra (Hp), where I'C G and I' is consistent in L*, info an
0-valued functional algebra (A7) with non-empty domain A. Then there
erists a structure W = (4, Ry),ep of type p such that I' is satisfiable in A
and b = hrg.

In fact, the structure A of Lemma A.7 may be defined in the following
way: for each p e P, let z e V*® be one to one, and let

= {a,om[ a E_A.V, h({px;[T){a) =1}.

Note that the relation R, does not depend on our choice of the one to
one function z.
We now outline a second proof of the Completeness Theorem.
Suppose that I" is a consistent set of formulas in L and that

(a” F<n,
(") 2P =mn,
p<m
(e”) ulp)<m jor each peP.

We wish to show that I' is satisfiable in a structure of power m.

Let 7* be a set of symbols disjoint from P and nof containing -,
f, V, such that VC V* and ¥V = (V*~V)~. Then I'C H. By Lemma 2.2
of this paper, I' is also consistent in I*. Since each formula & ¢ H has
fewer than m free variables, we may define H, on H, in the obvious way,
where 0 is the empty set of formulas, so that the quadruple (H,) is a polyadie
algebra. The set D = {@]0] @ ¢ I'} is a proper dual ideal in H,. (H,) has
local degree m and cardinality <7. By the Representation Theorem A.6’,
and by (a”), (b"), (¢”), there exists a homomorphism % from (H,) into
an 0-valued funetmnal algebra (A } whose domain 4 has power 1, and
such that []k[D]== [] (47). Choose an element b ¢ A” such that (k(x))(b)
=1 for all z ¢ D. By Lemma A.7, there exists a structure U of type u
such that h = hox. Then it follows that |=q @[b}V*] for each D el
and I" is satisfiable in %.

The hypothesis (¢’’) used above was not assumed in Theorem 3.1;
however, this hypothesis may easily be removed by syntactical me-
thods.

A proof of the Completeness Theorem in the special case that I”
is a seb of sentences may be given, along the same lines as the above
argument, using only the first paragraph of A.6', or else using A6,
In such a proof we consider (Hy) instead of (H,).
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