icm

Representation of a finite graph by a set of intervals
on the real line

by
C. G. Lekkerkerker and J. Ch. Boland (Amsterdam)

1. Introduaction. Let there be given a finite family of sets
Ay, Agy .y An. The sets may be thought of as subsets of a given set.
For each pair of indices 1,§ (¢ ) the sets A;, 4; may overlap or may
not overlap. We wish to establish necessary and sufficient conditions
in order that the family {4} be representable by a family of intervals
Gy, -y an ON the real line, in such a way that

a;naj¢ﬁ if and onlyif A.'A_A.,'f,éG,

O denoting the empty set. It is immaterial whether we take the intervals
a; to be open or closed.

An equivalent but more transparent formulation of the problem
is obtained, if we take what is known in algebraic topology as the one-
dimensional skeleton of the merf of the family {4,}. This is a graph &
consisting of n points g, ..., as, such that, for each two indices %,j
(i #74; i,j=1,2,..,n), the two points a;, a; are joined if and only if
the corresponding sets 4;, 4; meet. Two points a;, a; which are joined
will also be called neighbouring points, or neighbours, and we shall write
a; v a;. Cleaxly, the relation » is symmetric. Our problem then takes the
following form:

ProprEM. To decide for which graphs G = {ay, dy, ..., Gs} ¥t i possible
1o assign to each point a; an interval a; on the real line, in such a way that

() a~a;#=@ if and only if a;va; (E#7; 4,7=1,.;,n).

Any graph possessing the above property will be called representable
(by intervals).

We note that it is convenient for our purposes to define the relation »
only for (certain) pairs of distinct points. More generally, one could write
a; v a; if the corresponding sets A4;, A; meet, including the case that the
indices are equal. Then, clearly, the relation » is reflexive. Now, we can
conceive a graph @ abstractly as a set on which an arbitrary binary
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relation » is defined. From this standpoint, we are dealing here exclusively
with the case that the relation » is symmetric and nonreflexive.

In this paper we shall prove two theorems each of which gives an
answer to the problem stated above (theorems 3 and 4). They are of the
following type. Let the concepts of subgraph, path, irreducible cycle,
neighbour of a path be defined as in section 2; we emphasize that we
use the concept of a subgraph in a rather restricted sense. Then we have

1. A finite graph @ is representable by intervals if and only if it
fulfills the following two conditions

(2) @ does mot contain an irreducible cycle with more than three
points,

(B) if @y, a,, a; are three points of ¢, which are mutually distinct
and no two of which are neighboiiring points, then at least one a; is
a neighbour of every path connecting the two other points.

II. A finite graph @ is representable by intervals if and only if it
does not contain a subgraph which is one of the graphs I, II, Ill,, IV,,
Va listed in fig. 5. -

In our considerations an important réle will be played by the notion
of a simplicial point of a graph (see definition 1). Such a point can be
geen as an end-point of the graph. It turned out that graphs which are
subjected to the single condition («) always contain simplicial points
(see theorems 1, 2 and lemma 6). In other words, there always exist such
points in G if ¢ is admitted to contain triangles but not irreducible cycles
of “length” greater than 3.

In the last section of this paper practical methods will be sketched
by which we can decide whether a given. graph is representable. These
methods will be based on proposition I formulated above. We shall derive
upper -bounds for the number of operations needed for the verification
of («) and (B). A remarkable fact is that in the case of the condition (a)
the larger number of operations is required. In general, this number is
of the order O(n¢), whereas, if only («) is known to hold true, the veri-
fication of (B) does not need more than O(n®) operations.

The problem formulated at the beginning of this introduetion was
put by the American biologist S. Benzer. He was concerned with the
fine-structure of genes. The problem is whether the sub-elements of genes
are linked together in a linear order. He could deal with this problem
succesfully for a certain microorganism. Of these microorganisms, there
are a standard form and mutants, the latter arising if a certain connected
portion of the genetic structure is blemished. By recombination tests,
it is possible to decide whether the blemished parts of two given mutants
overlap or not. Thus, for a large number of portions of the genetic strue-
ture, the experiments lead to data as to whether any two of these portions
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overlap or not. The problem is to decide whether these data are compatible
with a linear structure of the gene.

Professor de Groot drew our attention to Benzer’s problem. He
found the forbidden graphs with the exception of V, (n>1) and his
work was continued by the authors of this paper. The second author
found and proved theorems 3 and 4. His proofs were simplified by the
first author, who introduced in this context the notion of a sirnplicial
point. Sections 4 and 7 are entirely due to the first author.

2. Notations and definitions. In the following G will always
be a finite graph.

If a, b are two (distinet) neighbouring points of the graph @, then
we write

avh.
The relation » is symmetrie.

A subgraph of @ is a graph H such that each point of H belongs to G
and that, for two distinet points a, b ¢ H, the relation a » b is true whenever
it is true in G. In other words, if @ is conceived abstractly as a finite set
of elements, together with a certain set of non-ordered pairs (a,b), then
H is obtained from G by removing certain elements and those pairs for
which at least one constituent does not belong to H.

By the union of two subgraphs H, and H, of G that subgraph H
of @ is meant which consists of the points belonging to at least one of
H,, H,. This union depends on G if a, b are two points in H which do not
belong to the same graph H;, then the relation av b may or may not
hold in H, and this cannot be decided from the structure of H, and _Hz
alone. We therefore write H = [H; v H,]e. Only if no confusion can arise,
we shall simply write H, v H,. )

The complement of a subgraph H of G is denoted by G\H; it is the
subgraph of G consisting of the points in G which do not belong to H (*).
‘We have [H v (A\H)le = G-

The graph consisting of a single point a is denoted by {a}..

A point a will be called a neighbour of a subgraph H of @ and we

shall write
avH,

if a¢ H and a»b for some point b e H.

‘We further use the following terms:

path: W = a0, ... az: any subgraph of @ such that a;v @
(i=1, .., k=1); it is not required that a; # a for all § # ¢

irreducible poth: 8 path aya, ... ax such that a;+ ay it is£§ and
a; v a; only if § =441;

cycle: a path of the form a,a, ... axa;

(*) Confer the previous definition of a subgraph.
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irreducible cycle: a cycle a @, .. g0y guch that a; % a4 if ¢ % § and
a;va; only if §j =441 or i(k—1);

star 8(a) =[8(a)le of @ point @ € G: the subgraph of G consisting
of a and all neighbours of a;

star S(H) = [8(H)ls of a subgraph H of G: the subgraph of G whose
points are given by the points of H and the neighbours of H (2);’

simplex: a graph @, such that a»b for every two distinet points
a,b of G

We can now define the concepts which play a central réle in our
investigations.

DeFINITION 1. Let a ¢ @. Then a is called a simplicial point of @,
if §(a) is a simplex.

DEFINITION 2. A graph @ is called acyelic, if it does not contain an
irreducible cycle with more than three points.

DEFINITION 3. A graph G is called asteroidal (%) if it containg three °

distinet points @, @y, @, and three paths Wi, W,, W, such that, for
i=1,2,3,
(i) ‘W; connects the two points a; (§ #14);

(ii) a; is not a neighbour of W; (%).

Such a triple of points a,, a,, a; is called an asteroidal triple.

DEF"INITION 4. Let G be a graph. Suppose that there exists a set I’
of open intervals on the real line such that the following properties hold:

(i) there is a one-to-one correspondence between the points a,b, ...
of & and the intervals a, 8, ... of I} :

(ii) two intervals a, f intersect if and only if the corresponding points
a, b satisfy avb.

.Then G is called representable and I’ is called a model of @. If, in
particular, the union of the intervals of I" is an interval, then I' is called
connected.

Finally, we wish to introduce the concept of duplication of a graph.
Let.H be a subgra.p}} of @. Then we form a new graph K by taking two
copies of @ and b.y identifying corresponding points of H. In particular,
# a,b are two points of K\H, then the relation a »b subsists if and only
%f a,b l?elopg to the same copy of G and a »b is true in @. We say that K
is obtained by duplication of G with respect to H.

) T.he above construction will only be carried out in the case that H
is a simplex.

(*) We could also write 8(H) = [y 8§ (a)lg.

. a€H
(*) This term was suggested by the simplest examples of graphs of the type con-

sidew}. Comparfn e.g. the diagrams I, IV,, V, (see fig. 5).
() In particular, none of the relations avay (i # §) holds.
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3. Some lemmas. ]

LevmA 1. If G is an acyclic graph and 6,4, ...axa, is a cycle in G,
with k>4, then we mecessarily have

1) a,=ay or ayvag or

(i) @ = a; or ayva; for some 1 with 4§ <1< k.

Proof. For k = 4 the lemma is true, as the cycle is not irreducible,
by definition. Now let %> 4 and suppose that for no ¢ >4 we have
a, = @; OT @y v a;. Then, since the cycle is reducible, there must be two
indices %', 4"’ with

ay =y Or ayvay, o <i'—1,4 %2,
Then we can make a shorter cycle, in which a;, a,, a; all occur and in
which @, @/ occur as one point or as successive points. Assuming the
Jjemma to be true for this cyecle, we must have a; = a3 or @, ¥ ;. Hence,
the lemma follows by induction on k.

LemmA 2. Each path a;a, ... ax, with oy 3= a,, contains an irreducible
path with the same endpownts.

Proof. Put i, = 1. Take the maximal index 4, with a;, v i, there-
after the maximal index i, with a;va;,, ete. Then the path a;a; as,...
is irreducible.

TEMMA 3. Let G be an acyclic graph. If ca @, ...axc (07 & for
i=1,2,..,k) is a cycle in G and a,a, ... G is an irreducible path, then
we have cva; for i=1,2,..,k.

Proof. By lemma 1, with ¢ instead of a,, we have ¢va; for some %
with 1 < i< k. Then cay ... a;¢ and ¢a; ... ;¢ are cycles of the same type
as the given one. The lemma now follows by induction.

TEMMA 4. Let G be an acyclic graph, and let SCG be a simplex.
Further, let K be the graph obtained by duplicating @ with respect to S.
Then K is acyclic. Furthermore, each point @ e S which has a neighbour
in G\S, s not a simplicial point of K.

“Proof. A cyele ¢ in K which has a point in each of the two copies
of @ is clearly not irreducible. From this the first assertion follows. The
second assertion is also clear.

4. Existence of simplicial points. We begin by proving the
following fundamental

TaEorEM 1. Bach (finite) acyclic graph contains & simplicial point (%).

Proof. We use induction on the number of points. Let & be an acyclic
graph with n > 1 points, and suppose that the theorem is true for graphs
with less than n points. Then we shall prove that & has 2 simplicial point.

() The theorem is no longer true for infinite graphs, as is seen from the example
@ = (@)™, with neighbour relations axvae+: k=10, £1, +2,..).

Fundamenta Mathematicae, T. LI 4
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Tet b be an arbitrary point of @ and let ¢ be a simplicial point of
@A\[b}. Put G = G\{b} and 8i(a) =[8(a)]e,-

TFirst, we dispose of some trivial cases. If we do not have v, then a
is also a simplicial point of @. More generally, if some point ¢« 8,(a) has
no neighbour in G\Sy(a), then 8(¢) = 8,(a), and so ¢ is a simplicial point
of G If, on the other hand, bvc¢ for each point c¢eSi(a), then §(a)
= 8y(a) w {b} is a simplex, so that @ is a simplicial point of G. Henceforth,
we may restrict ourselves to the case that the following three properties
hold:

@) avb;

(ii) each point ¢ 5 a of Sy(a) has at least one neighbour in G\8y(a);

(iii) there is a point ¢, # @ in 8)(a), such that not b»¢.

‘We now consider the graph G\S,(a). It need not be counnected. We
denote by O, the component of G\S(a) which contains the point b, and
put O, = G\(8y(a) v C)). We shall prove that ce8Sy(a), ¢vCy implies
that o b.

Let ¢ be a point in 8;(a), with ¢» C;, and let d, be a neighbour of ¢
in .. If ¢ = a or d, = b, then there is nothing to prove. Hence we may
suppose that ¢ # @ and d, + b. Then, since d;, b € 0, and 0, is connected,
there is 2 path d; ... dxd in Oy, with b = d; for i=1, ...,k (k> 1). Now
baed, ... dzb i a cycle. Further, we do not have a = d;, nor avd;, for
any ¢=1,2, ..,k as the only neighbours of ¢ are given by b and the
points # a of §y(a). Then lemma 1, with {a,, ay, a5} = {b, @, ¢}, learns
that c» b (see fig. 1).

It follows now from (iii) that there is a point ¢, € §y(a), which is not
a neighbour of C;. Then, by (ii), this point has a neighbour in 0,. This
implies that C, is not empty. Now define

8, = graph of the points ¢; e S(¢) with ¢ v, but not ¢, v 0,
8, =.graph of the points c,e8y(a) with ¢v Gy, ¢v Cs,
8, = graph of the points ¢y ¢ 8, (a) with ¢ vy, but not ¢v C;.

Then, by (ii), 8; v 8, v §; = 8y(a). Further, the subsimplices §; and 8,
are not empty, as a € 8, and ¢, ¢ S;. The subsimplex S, may be empty.

Next, we wish to duplicate a suitable part of the graph & (see fig. 2,
where each §;is represented by a single point). The subgraphs €, and
Cgu. S; are disjoint and are separated by the simplex Sy v §,. More
precisely, each point of 8, u S, has a neighbour in 0, by the definition
?f 8, _amd 8,, and also a neighbour in C, U S, because §; U 8, v §; = 8;(a)
isa snnplex. Similarly, the subgraphs C; w 8, and O, are disjoint, whereas
each point of 8, U §; has a neighbour in both of them.

Note that, by what we have proved above, in both cases the two
subgraphs and the separating simplex are non-empty.
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In at least one case the two subgraphs considered do not have the
same number of points. Call them H, and H, and let H, have the smaller
pumber of points. Denote by § the separating simplex. Now we duplicate
H, v 8 with respect to S. This gives a new graph K.

By lemma 4, K is acyclic, because H, v 8 C @ is acyclic. Further,
K has less than n points. Hence, by our induction hypothesis, K has
a gimplicial point s. By the last clause of lemma 4, gince each point of §
has a neighbour in H,, the point s does not belong to 8. Then [S8(s)l=
= [8(8)]mus = [8(s)]e. Consequently, s is a simplicial point of @.

The case # = 1 is trivial. So the theorem has been proved.

e mmm e e
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Fig. 2

‘We shall now investigate whether there are more simplicial points
in a given acyclic graph G. :

A simple consequence of definition 1 is the following

Lewmma 5. Let G be a graph. If 8 is a connected subgraph of @ and
each point of 8 is a simplicial point of G, then 8 is o simplex. All points
of 8 have the same star.

Proof. Let a, b, ¢ be three different points of § with av b, bve.
Then, since b is simplicial, we necessarily have a» ¢, and so {a,b,c} is
a simplex. Tt is clear that, by a repetition of the argument, we find that 8
is a simplex.!

Next, let a,b be two distinct points of 8. If ¢va and ¢ # b, then
¢v b, as o is simplicial. It follows that any two points of § have the
game star.

TUsing the principle of duplication one eagily deduces from theorem 1
that an acyclic graph with more than one point must have at least two

4#
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gimplicial points. More generally, this principle leads to a proof of the
following

LevmmA 6. Let G be an acyclic graph, which is not a simplex. Then @
contains two non-neighbouring simplicial points.

Proof. We may, clearly, suppose that G is connected. Let a be
a simplicial point of &, and let 8’ denote the subsimplex of points ¢ € §(a),
which have no neighbour in G\§(a). These points ¢ are just the points
of S(a) which are simplicial points of G.

We have 8’ %@, as ae8, and 8’ # S(a), as otherwise we should
have @ = S(a). Now we duplicate G with respect to 8. In virtue of
lemma 4 and by the choice of §, we then get a graph K which is acyclic
and which has no simplicial point in §’. Then K has a simplicial point

outside §'. This point corresponds

with a simplicial point b ¢ 8 of G.

Then, by the choice of §’, b¢ S(a).
: This proves the lemma.

Fig. 3 There are various examples of
acyclic graphs with exactly two
simplicial points. For example the graphs which can be represented by
a diagram of one of the following types:

1. a broken line (= an irreducible path);

2. a polygon with all diagonals through ome given vertex;

3. a polygon with all diagonals except one;

4. figures like fig. 3.

Such examples, as well as lemma 6 and its proof, suggest that the
simplicial points are to be sought at the “‘extremities” of the graph (cf.
also lemma 7 in section 5). We can give a more precigse meaning to this
statement by proving the following theorem 2 (which is eagily seen to
be a generalization of lemma 6).

THEOREM 2. Let G be an acyclic graph. Let H be a connected subgraph
of G and suppose that G\ S (H) is not empty. Then G\S(H) contains a point s
which is a simplicial point of .

Proof. Let m be the number of points of A\S(H). We shall prove
the theorem by induction on m.

First, let m = 1. Then G\S(H) consists of one point, a say. Let by, b,
be two distinet neighbours of a. Then thege points belong to §(H), but

not to H, as a¢ §(H). Hence, there exists g path W=c¢, .05 (k=1)
in H, such that

bli’oj.y bgi’Ok.

N‘ow consider the cycle abyg, ... cxba. Since a is not a neighbour
f’f w, _1t follows from lemma 1 that we must have by v b,. It follows that 8 (a)
18 a simplex, ie. that o is a simplicial point of @G.
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Now, let m > 1, and suppose that the theorem holds true if AS(H)

has less than m points.

Tet b be an arbitrary point of A\S(H) and put G = G\{b}, Si(a)
=[8(a)]a,. Let a be a simplicial point of Gy in G\S(H). If not avb,
then @ is & simplicial point of G. Hence we may suppose

avh.

We consider the components of G\Sya). Let O, be a cqmponent
containing some point of H. Now H is connected and H A.Sl(a,) is emp‘ty,.
as a ¢ S(H). Hence C, contains the whole graph H. Then it algo contains
S(H)\S8y(a). We now distinguish two cases.

Gy,
- fE N
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Fig. 4

Case 1. A\Sy(a) is connected, i.e. F\Sy(a) = ;. In pa,rticula.r.b € ql.
Then, as in the proof of theorem 1, it is true that ¢ e 8,(a), ¢ v C, implies
¢»b. There are two possibilities. o -

Case 1a. ¢» O, for each point ¢ € §;(a). Then a is a simplicial point
" h that not C

Case 1b. There iy a point ¢ 5= @ in Sy(a), suc at not ¢ v ;.
Then, a fortiors, ¢, is not a neighbour of H, and so 6 ¢ S(H). Further,
8(c,) = 8,(a). Hence ¢, is a simplicial point of G.

Case 2. A\Sy(a) is not connected. Let C, be a second component
of A\S8i(a) and let D = C; v 8y(a). ) )

f\[‘hia subgraph D is either a simplex not contained in S:.(fl) or else,
by lemma 6, it has two non-neighbouring gimplicial pon}ts, ‘Whlc].l ca.n‘n.ot
both belong to Sy(a). Hence, there is a point s € 0, which is a simplicial
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point of D. It does not belong to S(H), because S(H) is contained
in 0, v 8ya). Further, [8(s)lp = [S(s)les and 8o s is a simplicial
point of @.

So, in all cages there is a simplicial point of @ in G\S(H). This proves
the theorem.

5. Representability of graphs. In this section we wish to
derive a criterion for representability. Here the notion of asteroidal graph
will come in. We shall further have to consider two types of simplicial
points. Therefore, we define

DEFINITION 5. A simplicial point ¢ of a graph G is called strongly
simplicial it G\S(a) is connected, and weakly simplicial if A\ 8(a) is not
connected. Further, an acyelic graph & is called extremal if it is con-
nected and if all its simplicial points are strongly simplicial.

If a graph G formed by points a, b, ... is representable, then we shall
denote the corresponding intervals in a model I' by corresponding Greek
letters a, B, ... The left-hand and right-hand end points of an interval a
will be denoted by l(a),”(a) respectively. Then, by an end-inferval of
a model I' we shall mean an interval « e I' such that either

(i) 7(B) > Il(a) for each interval eI, or

(i) U(B) < r(a) for each interval feI.

In these cases, «is a left-hand or a right-hand endinterval respectively.

LeMMA 7. If G is representable and a is a strongly simplicial point of
@, then, in each model I' of @, a i3 an endinterval.

Proof. First observe that any model of a connected graph is con-
nected. Now consider the simplex S(a). If G = S(a), then the assertion
is trivial. If not, then take in I' the submodel of G\S(a). It is connected,
and no interval meets a. From this and the definition of S(a) it follows
that o is an enditerval.

We now come to the main result of this section:

THEOREM 3. A graph G is representable if and only if it is acyclic
and not asteroidal.

Proof. The proof of the “only if” part ig easy. Indeed, let there
be a model I' of & First, suppose that & containg an irreducible cycle
Oyl .. 030y, with k > 4. Then, in I, the intervals a,, a; are disjoint. The
‘interval «, meets both ¢, and «;, but no interval o5, with j > 3, while
these infervals a; connect «, and o,. This is impossible. Hence, G is
acyeclic. s

.Next, suppose that & contains an asteroidal triple (a,, as, a;). In I
-the intervals a;, a,, oy are mutually disjoint. So, without loss of generality,
'We may suppose that a, separates @, and oy. Then «, meets the image
in I" of each path W, connecting a, and ay, and so a, » W, for each choice
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of W,. This contradicts the definition of asteroidal triple. Hence, & i8
not asteroidal.

Conversely, let G be an acyclic graph which is not asteroidal. Then
we shall prove, by using theorem 1, that @ is representable. We distinguish
two cases.

Case 1. @is extremal (this implies that G is connected). By theorem 1,
it has a simplicial point. By lemma 6, if @ is not a simplex, it even has
two non-neighbouring simplicial points. But it cannot have three simplicial '
points @y, 4;, a5, no two of which are non-neighbouring points. For, by
hypothesis, these points would be strongly simplicial, and so a;, az could
be connected by a path not meeting S(a;) ((¢,7, k) any permutation of
(1,2, 3)), so that G would be asteroidal, against hypothesis.

Consequently, it suffices to prove the following

ASSERTION. A graph G which is acyclic and exiremal and which does
not contain three non-nesghbouring simplicial points, is represeniable.

We shall do this by using induction on the number of points, say =.
If » = 1, then the assertion is trivially true. Now take n > 1 and suppose
that the assertion holds for graphs with less than » points.

Let a be simplicial point of @ and let §; be the subsimplex consisting
of those points of §(a) which are simplicial points of G.

ut
8, =8(a\8, G=G8, 6= A\S(a) = G\S. -

Then @, = @, v 8, is connected and acyclic. We investigate its simplieial
points. First, let b € G, be a simplicial point of G,. Then, since not by 8y,
[8(b)l¢ = [S(b)]s,. Consequently, b is a simplicial point of @. Now take
two arbitrary points ¢, ¢, in G\S(p). Since b is a strongly simplicial
point of @, there exists a path W in G\S8(b) connecting the points ¢, 6.
By lemma 2, there is an irreducible path W’ which is a subgraph of W
and which connects ¢, ¢,. This path cannot contain a point of 8.

Hence, it is contained in G\S(b). It follows that b is a strongly
simplicial point of G;.

On the other hand, a simplicial point of @ which belongs to & is
also a simplicial point of Gy. .

Next, let a point deS, be a simplicial point of G,. Write Sy(d)
= [8(d)]g,- Let G1\S,(d) have k components Ci, ..., O (k= 0). For each 1,
the graph C; v 8,(d) is not a simplex (because of C; @) and so, by
lemma 6, C; v Sy(d) has a simplicial point e; ¢ 8i(d). Then e;¢ 8,. It is
easy to see that

[8(e)lorom@ = [8(:)le, = [Se)la -

Hence, e; is a simplicial point of & (i =1,2, ..., k). Then, by our hypo-
theses, we must have k = 0 or 1, i.e. d is a strongly simplicial point of Gy
(note that it may happen that k = 0, i.e. Gy = 8y(d)).


GUEST


56 C. 6. Lekkerkerker and J. Ch. Boland

Combining the results obtained so far, we see that G, is extremal.
It is also acyclic. Further, it has simplicial points outside 8,; moreover
the simplicial points of G, belonging to G\S, form a simplex. Tt fo]low;;
from lemma 6 that Gy has a simplicial point d e S, (°). Also, by our in-
duction hypothesis, there is a model I3 of &;. In this model, & is repre-
sented by an endinterval 4, on account of lemma 7. Let it be a left-hand
enditerval. Since 8, is contained in §,(d) and §,(d) is a simplex, we can
produce to the left, in I, the intervals corresponding with §,; this does
not give rise to new overlappings. We can do this and add an interval
in such a way that o meets exactly the intervals of §;. Representing
every point of §; by such an interval o we get a model of @.

Case 2. @ is not extremal. We may suppose that each proper sub-
graph of @ is representable. Let @ be a weakly simplicial point of &. Put
8 = 8(a)\{e} and denote the components of G\§(a) by C., ..., Oy (k >2).
It is convenient to call & point ¢ e G\S(a) & full neighbour of § and to
write ¢ 8, if we have ¢» b for each point b e 8.

‘We shall apply the induction hypothesis in two different ways.

‘We first consider some trivial cases. Let I3 be a model of G\{a} and
let ¢ be the intersection of the intervals corresponding with points of S
If no 0; contains a point ¢ with ¢¥ 8, then & is not met by other intervals
and so a model I' is obtained by adding to I', an interval a = §. If on’
the other hand, there is an index 4, such that each point ¢ ¢ C; is a,’full
neighbour of §, then we argue as follows. '

In I, each interval y of O; meets 8. Further, these intervals form
a connectgd model, and they do not intersect other intervals of G\S(a).
We can diminish arbitrarily the dimensions of the submodel of C; in I3.
We can do this and add an interval « to I} in such a way that we obtain
a model of G.

It follows that we may restrict ourselves to the cage that there is

an index 4, such that some points of O; are full neighb
points are not. We put ‘ ! GiRosss of £ nd soms

G=G6\(a}, G=28aoy .

By induction, there are models I', I}, of @, @, respectively. First
consider I},. Smce a i8 a strongly simplicial point ;% Gz, a iIs) an eng;ntervai
of I, say a right-hand epdjnterval. There is an interval y in I which
does not meet 8 as there is a point in ¢ which is not a full neighboin‘ of 8
we.choose one for which #(y) is minimal. Let 2, be the get of intervalé
which correspond with points of 8 and which meet y (2, may be empty)
and let X(a) be the submodel of (@) in I,. Then each interval set I‘:;,i

() Note that, b . ’
Jeast two potnts. » by our hypotheses, G\3(a) = G;\§ is not empty, so that @ hag at
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obtained from I', by producing arbitrarily te the left one or more intervals
of X, and arbitrarily to the right one or more intervals of X(a), is again
a model of @,. For this does not cause new overlappings, because y and «
are endintervals.

Next, consider I'. It contains some model of Gy\{a}; let »’, 8" be
the intervals in I', corresponding with the intervals y, d, respectively, '
in T},. Then 9/, 8’ do not meet; without loss of generality we may suppose
that r(y’) < 1(8"). On the real line, where I is situated, we choose an
interval & such that each interval of O; is wholly contained in § and that
each interval of each C; (j # 4) falls outside £ Then 7(£) and (&) only
belong to intervals of S(a), and each interval of § intersects £, as there
is a point in C; which is a full neighbour of §. We prove that I(£) can only
belong to intervals of S, (corresponding with ).

Let b eS(a)\S, and let B, 8’ be the corresponding intervals in I, I}
respectively. Then § does not meet y. Hence, ' does not meet y'. But
it meets 6'. Hence, we have (8') =>r(y") and so I(§)¢ §'.

We can now construct a model of @ in the following way. Take I7,
remove the part I ~ & and then insert the model I';; produce to the
left those intervals of X, which in I contain I(£) and to the right those
intervals of X(a) which in I contain r(£).

This proves the assertion and thus completes the proof of the theorem.

6. Structure of non-representable graphs. In this section
we follow the original idea of Professor de Groot of determining a minimal
set of graphs with the property that any graph is representable if and
only if it does not contain a graph of this set. It turned out that a complete
set with this property is given by figure 5; there, in each diagram,
except IIT,, we have indicated the three points which constitute an
agteroidal triple.

In other words, we have the following

THEOREM 4. A graph G is represemtable, if and only if it does not
contain a subgraph which is one of the graphs I, II, IIl,, IVs, Va ().

Theorem 4 gives a less elegant characterization of representable
graphs than theorem 3. But it lies deeper, as in this theorem the various
types of non-representable graphs are analysed. Actually, the proof of
theorem 4 will be based on theorem 3.

Proof of theorem 4. We leave it to the reader to check that the
graphs I, II, IV,, V, are all asteroidal (), and hence also, that the con-
dition is necessary. It remains to show that if G is not representable,

(") Of course, it is understood that no junctions are present which are indicated
in the diagrams.
(¢) The cyele IIIx is asteroidal for n > 6.
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then G contains one of the subgraphs listed above. So by theorem 3 the
proof of the theorem will be completed if we can deduce the following
AsseErTION. Let G be a graph with the following properties:
(1) @ is acyclic;
(2) G is asteroidal;
(8) @ is minimal, i.e. no proper subgraph is asteroidal.
Then @ is one of the graph I, XL, IV,, V,.

LA

I, (n points; n24)

Wy (n+4 points; n22) 1 (5 points; n=1)
Fig. 5

Let & have the properties (1)-(3). Let (ay, ay, @;) be an asteroidal
triple and let Wy, W,, W, be three paths such that

(«) W; conmects the two points a; (j £ 4) ) ,.

(8) a; is not a neighbour of W; } (=1,2,3).
In virtue of lemma 2, we may suppose that the paths W; are irreducible.
Further, it follows from (3) that we have

WioW,oW,=@G.

If i 5% j, then W; contains only one point = a; of S(a;), ag W, is
irreducible. Hence, J(a;) contains at most two points s a;. If there are
two, say a; and a}, then we must have ajv af. For the three paths W;
constitute a cycle, in which af, a,v, ay are successive points, a} = af and a;

has no other neighbours than af, af. Then an application of lemma 1
learns that ajv af.

‘We now distinguish some cases.
Case 1. Each & has two neighbours. Let the W; be given by
Wi=aby..oa,, W,= agdy ... 18ty y Wy = ab, ... 0,0, .
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We do not exclude that b, = ¢; or by = ¢, or b, = ¢,. If this occurs
then the corresponding path W; is called short.

We cannot have b, = ¢, as otherwise the third point of S(a;) would
not oecur in any W;. Hence, b; 5 ¢;. Similarly, b, # ¢, by % ¢5. Further,
the points b; are mutually distinct, and also the points ¢;, because of
by ci¢ Wi (i=1,2,3). So we have the situation of figure 6. Note that
the paths W; may have interior points in common.

ay

Fig. 6 Fig. 7

‘We now prove that at least two paths W are short. Suppose that e.g.
W, and W, are not short, and consider the point ¢,. It is a point of
the cycle 6, ... G ... &by ...¢;. If ¢3¢, then we may replace W, by
Wi = a,6,0,0,. If ¢, v d for some interior point d +#¢;, b, of W, or Wy,
then we may replace W, by Wi = axt,d ... a5.
In both cases, @ would not be minimal. Similarly, if b, » e for some
interior point e % ¢, of W, or W,, @ would not be minimal.
Hence,
8(c2) N (Wy v Wy) = by
and
B(bs) N (Wyw Wa) =65

It is now easily verified that in the cycle ¢ub, ... ¢bg ... G}, ... ¢, none of
the implications of lemma 1 holds. This con’m‘a.d.lctmn proves that at ~
least two paths are short.

So we may suppose that W, and W, are both short (fig. 7). Suppose
that we do not have b, v ¢;. Then ¢; 5 b,, and then (a,, a,, ¢;) is an astero-
idal triple in G\ {a,}. Hence, by (3), we must have b, » ¢;. Then, by lemma 3,
we have b, v ¢; for each point ¢ of the irreducible path b, ... ¢;. Similarly,
byv¢ for each such point c.

Then @& is of the form V, (the case n =1 occurs if b, = ¢;).

Case 2. One of the points a; has only one neighbour. Let a, be such
a point and let b be its neighbour. Then W, and W, necessarily contain
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the point b. If not by Wy, then (b, a,, a,) is an asteroidal triple of A\ fay).
So we have b» W,. We now have to distinguish some gubcages.

Case 2.1. b has k > 2 neighbours on W,. Let ¢, ¢’ be the firgt and
the last neighbour respectively. To b and the part ¢... ¢’ of the (irreducible)
path W, we can apply lemma 3. We can also say that a,, a; are not neigh-
bours of b. It follows that @ contains a graph IV,. Hence, G is actually
of the form IV,.

Case 2.2. b has only one neighbour ¢ =£a,. Then ¢ e W;. Algo,
necessarily, ¢ € Wy, ¢ ¢ Wy. Then we do not have ay,»¢ or azve. It follows
that G iz of the form I.

Case 2.3. b has exactly one neighbour ¢, ¢ W, and at least one
neighbour 4, ¢ W, v {a,}. We write W, = c_y... G- 0, Where c¢_; = a,,
G=ag, k>1, 1>1. We may suppose that dy e W,

W, have the form W, = abd, ... C-pCp-1 ... C—, Where the point
preceding ¢_, is the last point of W, not belonging to W,. Then p > 0,
as W, = a;bd, ... is irreducible and so Co ¢ Wy (see fig. 8).

a,

N.ext, we show that W, does not contain a point d with d» ¢ for
some ¢ > 0 (then W, does not contain a boint ¢, 4> 0, either). Suppose
that there was such an index 4. Then d # b. Then, replacing W,, W,
successively by v

Wi=c¢p.Oep.. degiyy ... 0,
Wi =ab ... decsys ... 0 (which do not contain ) »

we see that (a,, a,, a;) would be i iple i i
s a5 (i ui:,e nl;)ent 5. an asteroidal triple in G\ {g,}. This con-
Having reached thig point, let us consider the case that the part
G of W, has no neighbour ¢ ¢ W,. If 1> 2, then we have case 2.2
with a, replaced l?y a3. If 1=1, then we apply lemma 1 to the cyclé
Gobd, ... O~ - Co. Smge not b =¢_, or bre—; (§>0) and ¢o has no neigh-
bour ¢;, ¢ < —1, we find that 0o has at least two neighbours b and d, on W,
Then we have cage 2.1, with g, replaced by a,. ' N
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Consequently, we may suppose that some ¢, ¢ > 0, has a neighbour
¢¢ Wy. Then e¢ W;. Hence e¢e W,. Then c,¢ W,, as otherwise G\{e}
should be asteroidal. Then W, has the form W, = ade ... ¢equ1 ... G
and it does contain neither a point ¢;, with ¢ < 0, nor a neighbour of
such & point. Further, we do not have d'=e¢’ or d've’ if @' e W,, e’ ¢ W,
and d', ¢’ # a;, b (in the contrary case, G\{c,} would be asteroidal).

We now apply lemma 1 to the cycles ¢bd;...c_p...¢, and ¢ybe, ... ¢,
... 6. The consequence is that ¢,»d, and ¢, e, whence, on aceount of (3),
G must be of the form II.

This proves the assertion and so completes the proof of theorem 4.

A simple consequence of theorem 4 is the following

COROLLARY. An acyclic graph with not more than five points is always
representable.

7. Numerical devices. In our final section we shall deal with
a practical method by which we can decide whether a given graph G
is representable. This method will be based on theorem 3. The treatment
naturally splits up into two parts: we have to decide whether or not there
are irreducible cycles in & and whether or not there are asteroidal triples
in G-

A. Examination of cycles. We begin with a definition and
a theorem. '

DEFINITION 6. Let G be a graph and let a e @ be arbitrary. Let
0y Cay ooy Or (k= k(a)>1) be the components of G\S(a). Then, for
each 0y, we denote by Sia) the graph of points b with

b#a, beS(a), brC(;,

and call S;(a) a substar of S(a).

THEOREM 5. 4 graph G is acyclic if and only if for each point a G
all substars Si(a) are simplices.

Proof. First suppose that @ is acyclic. Take any substar Sia), and
let by, b, be two distinet points of S;(a). Then there are points ¢, ¢, € C;
with ¢, v by, ¢, » b,. Further, there is a path W in C; connecting ¢;, ¢,. Then,
by the definition of S(a), we do not have a» W. Applying lemma 1 to
the cycle abo; ... csb,a we find that b, » b,. It follows that Si(a) is a simplex.

Conversely, suppose that there is an irreducible cycle oq, ... cxe,
(k > 4) in @. Put a = ¢, and let C; be the component of G\S(a) containing
the point ¢;. Then S;{a) contains ¢, ¢z and so it is not a simplex.

Below we shall apply the following slightly different and less elegant
proposition, the proof of which offers no difficulties.

PROPOSITION. A graph @ is acyclic if, for some point a <@, the sub-
stars Si(a) are simplices and the graph G\{a} is acyclic.
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Tn order to find out whether @ is acyclic, one could now proceed
along the following lines.

a) Choose arbitrarily a ¢ ¢ and determine the mneighbours of a.

b) Determine the components Ci, ..., U in the foﬂo@g way. Take
any point ¢ e G\S(a). Determine the neighbours of ¢ in G\S(a), say
Gay oy Gy Then take the neighbours of ¢, in @\S(a) which do not belong
0 the 5eb {61y -5 On}y SBY Ctyt1y -ory Cky» Then take ¢, and repeat the process
until no new points are found. Then one component C; has been found.
Tf @\8(a) contains a point ¢ ¢ 0y, then determine in the same way a s.eeond
component C, of G\S(a) containing c. Repeat this until \S(a) is ex-
hausted.

¢) For each component O; determine the substar Sia) by taking
the points b e S(a) which have at least one neighbour in C;.

d) Check whether S(a) is a simplex.

e) Omit ¢ and examine in the same way G\{a}. Etec.

" Let @, 8(a) and the C; have n, m, n; points respectively (i = 1, ..., k).
Then the points a)-d) require at most n, D ng(n—m), S (m—1)ng, 3m?k
operations successively. The sum of these numbers i8 <

-+ (m—m)tm(n—m)+mA(n—m) < Frnt+ 02+ 0(n),

the expression on the left attaining its maximum for m~ §n—1. So the.
examination requires in the aggregate not more than about - (n*+10n?)
operations.

B. Examination of triples. First, we prove

TeEOREM 6. If G is acyclic and asteroidal, then it contains an asteroidal
triple of simplicial points.

Proof. Let (ay, a,, a;) be an asteroidal triple and let W; be a path
in A\8(a;) connecting a, and a,. We shall apply theorem 2, with H = W,.
‘We have a; ¢ S(H), s0 that G\S(H) is not empty. Let ¢ be the component
of A\ S(H) which contains the point a,.

By theorem 2, ( contains a point a; which is a simplicial point of
Cu S(H). It also is a simplicial point of @ (confer the end of the proof
of theorem 2). Further, a3 ¢ S(H) = S(W,), and a,, a; can be connected
by a path which does not meet S(a,) or S(a,). Hence, (a;, a,, ag) is an
asteroidal triple in G.

Repeating this procedure two times, we get an asteroidal triple
(a1, 02, a;) of simplicial points. .

Let now @ be an acyclic graph. Let X’ be the get of its simplicial
points. They form a certain number of non-neighbouring simplices in &
(ie. no simplex contains a neighbour of another simplex). From each

icm
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simplex we select arbitrarily one point. Let X be the set of selected simpli-
cial points.

Our method for deciding whether G is asteroidal or not now consists
of the following stages.

a) For each point 4 ¢ ¢ examine whether S(a) is a simplex.

b) Determine the simplices of which the set of simplicial points
consists, in the following way. Take any simplicial point s, and determine
its neighbours, say s,, ..., 8,, among the other simplicial points. Repeat
this process with a simplicial point s 5% s,, ..., sz,. Then select a simplicial
point in each component thus found; this gives a set .

¢) Construet a matrix i(a, b) (a,de Z; i(a, b) a suitable positive
integer) as follows. Take g ¢ X arbitrarily. Determine the components
Oy, ..y Ox () of G\S(a) as in A, b). For each eomponent (', put i(a,b) = j
for all be X~ 0.

d) Check whether for each triple (a, b, ¢) in X the following equa-
tions hold true:

i(a,b) =i(a,c), i(d,c)=14(b,a), i(c,a)=1i(c,b)
(the graph @ is asteroidal if and only if there is a triple (a, b, ¢) in X, such
that the above equations hold).

Let @ and X consist of » and s points respectively. Then the total
number of operations needed for the steps a)-d) is <

nogn+3n?4s(n2+on)+ 188 < 3nd40(n2) .

Finally, we make the following remarks. In part B the restriction
to the set Z—with the proviso that we know already that @ is acyclic—
enables us to suppress the dimensions of the matrix i(a, b) to be con-
structed. Further, in part A we can begin by omitting the points of X’

- (which have to be determined in B); for & is acyelic if G\ 2’ iy acyclic.

Then the various stages have to be performed in the following order:
B, a); A; B, b)-d). Then, apart from a term of order O (n?), the total number
of operations needed can be estimated by

Fr(n—8)l+Fr(n—s)+ind+sn?+sPn+ 188,
which i8 not larger than ;i n*+ 4Ln® (note that the derivative with
respect to s is negative if n—s > 4n?8),

‘We have the impression that in general the method exhibited here
cannot be improved essentially.

(*) The numbering of the components O, is immaterial.
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Sur Penfilage et la fixation des ensembles compacts

par
D. Zaremba (Wroctaw)

§ 1. Relations générales. F étant un espace métrique, un en-
semble X CE sera dit fizable dans E (*) lorsque, pour tout &> 0, il
existe dans F une somme finie F,=F, v F,u ...u Fi, d’ensembles
fermés tels que 6(F;)<e pour i =1,2,...,k(e), F;nF; =0 pour ¢+#J
et ., ~ C # @ pour toute composante ¢ de X.

De plus, si pour &, 0, c’est-a-dire pour toute suite {e,} déeroissante
et convergente vers 0, les F,, qui fixent X peuvent é&tre choisis de maniére
qu’ils forment une suite descendante, j’appelle la fixation de X monotone.

Knaster appelle un ensemble X C B enfilable dans E lorsque ¥ con-
tient un arc L ‘tel que L ~ C # @ pour toute composante C de X.

J’appelle réduit de X tout ensemble RC X tel que R ~ C # @ pour
toute composante O de X. En outre, j’appelle I'adduit de X ’ensemble 4
de tous les points p de F tels que (p) = ?Jm C; pour une suite {C;} de

composantes de X. Ainsi défini, 4 est done ’ensemble de tous les points
de F qui sont des points-limites des suites de points appartenant & des
composantes O; de X telles que §(C;) tend & 0. On voit aussitét qu'un
adduit est toujours fermé, done compact, pour des X compacts.
¢" désignera constamment 1’espace euclidien de dimension n >1:
THEOREME 1. Les irois propriétés suivantes sont équivalentes pour
les X compacts dans E™:

(1)
(2)
(3)

Vexistence d’une fization monotone de X,
Vexistence dans X d'un réduit B compact de dimension 0,
Dexistence d’un enfilage de X.
La démonstration de ce théoréme se trouve dans mon trava,ii [8],
p. 14.

THEOREME 2. Si wn X (compact ow mom) est fizable dans E, son
adduit A est vide ou de dimension 0.

() ¢f. Knaster [2], ol 'on trouve une définition équivalente de cefte notion
par des ensembles ouverts.
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