Since A can be embedded into a square which is weakly chainable by Corollary 2, we see that, unlike chainable continua, a subcontinuum of a weakly chainable continuum needs not be weakly chainable.

References

In the present note we construct a family consisting of 2^n two-dimensional AR-sets (compact) such that none of them contains a 2-dimensional closed subset homeomorphic to a subset of any other set. We also give some applications of this family to the problem of existence of universal n-dimensional AR-sets and to the theory of r-neighbours.

1. Zone of a triangulation. Let \triangle be a triangle lying in the Euclidean 3-space E^3 and let b_\triangle denote the barycentre of \triangle. For every positive ε, let us denote by $L(\triangle, \varepsilon)$ the segment perpendicular to the plane of the triangle \triangle with length 2ε and centre b_\triangle. By the ε-zone of the triangle \triangle we understand the minimal convex subset of E^3 containing the sets \triangle and $L(\triangle, \varepsilon)$. It will be denoted by $Z(\triangle, \varepsilon)$. Evidently $Z(\triangle, \varepsilon)$ is the union of two 3-dimensional simplexes having \triangle as their common base and the endpoints of the segment $L(\triangle, \varepsilon)$ — as opposite vertices. The polytope $Z(\triangle, \varepsilon)$ is a neighbourhood of every point lying in the interior of the triangle \triangle. The segment $L(\triangle, \varepsilon)$ is said to be the axis of the zone $Z(\triangle, \varepsilon)$.

Now let T be a triangulation of a polytope P. The union of all m-dimensional simplexes of T is said to be the m-skeleton of T. Evidently the polytope P is homogeneously n-dimensional if and only if it coincides with the n-skeleton of T. In this case we understand by the boundary of P the union P^* of all $(n-1)$-dimensional simplexes of T incident exactly to one n-dimensional simplex of T, and by the edge of P the set P^* of all points $x \in P$ such that no neighbourhood of x in P is homeomorphic to a subset of the Euclidean n-space E^n. Evidently P^* and P^* are unions of some simplexes of the triangulation T, but they do not depend on the choice of this triangulation.

Now let us consider a homogeneously 2-dimensional polytope $P \subset E^3$ with a triangulation T and let ε be a positive number. One easily sees that for ε sufficiently small the common part of the zones of different triangles of the triangulation T coincides with the common part of the boundaries of those triangles. A positive number ε satisfying this condition is said to be suitable for the triangulation T.
Let ε be a suitable number for the triangulation T. By the ε-zone of the triangulation T we shall understand the polytope

$$Z(T, \varepsilon) = \bigcup_{\alpha \in T} Z(\alpha, \varepsilon).$$

Evidently the polytope P is a deformation retract of the zone $Z(T, \varepsilon)$. It follows, in particular, that P is an AR-set if and only if $Z(T, \varepsilon)$ is an AR-set.

2. Some geometrical constructions. Let P be a polytope in E^p which is disk (i.e. a set homeomorphic to a triangle) and let T be a triangulation of P with the maximal diameter of simplices ≤ 1. Let us set:

$$P_T = P, \quad T_T = T,$$

ε_T a positive number suitable for the triangulation T_T.

Given a sequence $\{a_n\}$ of natural numbers ≥ 1, let us assume that for a natural k a polytope P_k, its triangulation T_k and a positive number ε_k are defined, satisfying the following conditions:

1. P_k is a homogeneously 2-dimensional polytope in E^p which is an AR-set with the boundary $P_k = P_k'$.

2. The edge P_k' of P_k is a subset of $P_k - P_k'$ and its components are rectilinear segments.

3. T_k is a triangulation of P_k with the maximal diameter of simplices $\leq 1/k$.

4. For every point $x \in P_k - P_k'$ the union of all triangles of T_k containing x is a disk.

5. ε_k is suitable for the triangulation T_k and $\varepsilon_k \leq 1/k$.

It follows by (5) that P_k is a deformation retract of the ε_k-zone $Z(T_k, \varepsilon_k)$ and consequently $Z(T_k, \varepsilon_k)$ is an AR-set. Moreover, $Z(T_k, \varepsilon_k)$ is a neighbourhood (in E^p) of all barycentres b_k of triangles $\alpha \in T_k$. We infer that there exists a positive number ε such that every point $x \in E^p$ lying at a distance $< \varepsilon$ from the barycentre b_k of a triangle $\alpha \in T_k$ belongs to $Z(T_k, \varepsilon)$.

Now let us consider, for each triangle $\alpha \in T_k$, a system consisting of $3a_k$ triangles $\alpha_i, \ldots, \alpha_{3a_k}$ lying in the interior of the triangle α and such that α_i is their common vertex and that $\alpha_i \cap \alpha_j = (b_k)$ for $i \neq j$. Let α_{3a_k} be one of the endpoints of the axis $L(\alpha, \varepsilon)$ of the zone $Z(\alpha, \varepsilon)$. Consider the system of $3a_k$ triangles $\alpha_i, \ldots, \alpha_{3a_k}$ for which α_i is one of the vertices and the other two are vertices of one of the triangles $\alpha_1, \ldots, \alpha_{3a_k}$. One easily sees that the polytope

$$R_k = (\alpha - \bigcup_{i=1}^{3a_k} \alpha_i) \cup \bigcup_{j=1}^{3a_k} \alpha_j$$

is a homogeneously 2-dimensional polytope which is a deformation retract of the zone $Z(\alpha, \varepsilon_k)$. Setting

$$P_{k+1} = \bigcup_{\alpha \in T_k} R_k,$$

we get a homogeneously 2-dimensional polytope which is a deformation retract of the zone $Z(T_k, \varepsilon_k)$. Since P_k is an AR-set, we infer that P_{k+1} is also an AR-set. Moreover, it is easy to see that P_{k+1} contains the 1-dimensional skeleton of T_k, the boundary P_{k+1}', coincides with the boundary $P_k' = P_k'$, and the edge P_{k+1}' coincides with the union of the edge P_k' and of all segments $b_k \alpha_i$, with $\alpha_i \in T_k$. Since these segments are disjoint from one another, and also disjoint from P_k', we infer that the polytope P_{k+1} satisfies the conditions (1) and (2) which we get from conditions (1a) and (2a) replacing k by $k+1$. Moreover, one easily sees that every triangulation T_{k+1} of P_{k+1} with diameters of simplices sufficiently small, satisfies conditions (3) and (4). We can find this triangulation in such a manner that every 1-dimensional simplex belonging to T_k is the union of some simplices of T_{k+1}. Consequently the 1-skeleton of T_k is a subset of the 1-skeleton of T_{k+1}. Evidently the zone $Z(T_k, \varepsilon_k)$ is a neighbourhood for all barycentres b_k of triangles $\alpha \in T_{k+1}$. It follows that, if we fix the triangulation T_{k+1}, we can find a positive number ε_{k+1} such that condition (5) is satisfied and such that

$$Z(T_{k+1}, \varepsilon_{k+1}) \neq Z(T_k, \varepsilon_k)$$

for $k = 1, 2, \ldots$ i.e. the sequence of polytopes $\{Z(T_k, \varepsilon_k)\}$ is decreasing.

Moreover, our construction implies that for every $m = 1, 2, \ldots$ the components of the edge P_k' coincide with the segments $a_k b_k$, where α is a triangle of a triangulation T_k with $k < m$. Since $x_k b_k$ is the common part of exactly $2a_k$ triangulations among the triangles α, $a_k b_k$, we shall say that it is a segment of ramification of order $2a_k$.

Finally let us observe that if α is a triangle of T_k and if $\hat{\alpha}$ denotes the system of all simplices of T_{k+1} lying in $Z(\alpha, \varepsilon_k)$, then

$$Z(\hat{\alpha}, \varepsilon_{k+1}) = Z(\alpha, \varepsilon_k)$$

for every triangle $\alpha \in T_k$ the boundary $\hat{\alpha}'$ of $\hat{\alpha}$ is a retract of $Z(\hat{\alpha}, \varepsilon_{k+1}) = Z(\alpha, \varepsilon_k)$.
3. Membranes. Every space X homeomorphic to the set

$$P(\{m\}) = \bigcap_{k=1}^{\infty} Z(T_k, e_k)$$

will be said to be a membrane on P corresponding to the sequence $\{m\}$. Since $Z(T_k, e_k) = \bigcup Z(\Delta, e_k)$ and the diameters of the zones $Z(\Delta, e_k)$ are $\leq 2/k$, and since for different triangles $\Delta_1, \Delta_2 \in T_2$

$$Z(\Delta_1, e_k) \cap Z(\Delta_2, e_k) \subset \Delta_1 \cap \Delta_2,$$

we infer that

$$Z(\Delta_1, e_k) \cap Z(\Delta_2, e_k) \subset \Delta_1 \cap \Delta_2,$$

we infer that

(10) Every membrane is a compactum of dimension ≤ 2.

It follows by the construction given in No. 2, that the simplexes Δ of the triangulation T_{k+1} contained in $Z(\Delta, e_k)$ constitute a triangulation T_{k+1} of the polytope R_3 which is an AR-set. Since R_3 is a deformation retract of $Z(T_{k+1}, e_{k+1})$, we infer that the polytope $Z(T_{k+1}, e_{k+1})$ is an AR-set. Consequently there exists a retract r_2 of $Z(\Delta, e_k)$ to $Z(T_{k+1}, e_{k+1})$. By virtue of the inclusion $\Delta \subset R_3 \subset Z(T_{k+1}, e_{k+1})$, we infer that

(11) $r_2(x) = e$ for every $x \in \Delta$. Setting

$$r_2(x) = r_2(\alpha) \text{ for every } x \in Z(\Delta, e_k) \text{ where } \Delta \in T_k,$$

we infer by (10) and (11) that r_2 is a retract of $Z(T_k, e_k)$ to $Z(T_{k+1}, e_{k+1})$ satisfying the condition

(12) $r_2[Z(\Delta, e_k)] = Z(T_{k+1}, e_{k+1})$ for every triangle $\Delta \in T_k$.

Now let us set

(13) $r_2(x) = r_{2+1} \cdots r_{2+k}(x)$ for every $x \in Z(T_k, e_k)$.

Applying (13), we easily see that r_2 is a retract of the zone $Z(T_k, e_k)$ to the zone $Z(T_{k+1}, e_{k+1})$. Moreover, we infer by (13), (14) and (6) that, if $x \in Z(T_k, e_k)$ and if Δ is a triangle of the triangulation T_{k+1} such that $r_2(x) \in Z(\Delta, e_{k+1})$, then each of the points $r_{k+1}(x) = r_{2+1}r_2(x), \ldots, r_{k+1}(x) = r_{2+k}(x)$ belongs to $Z(\Delta, e_{k+1})$.

Since the diameter of the zone $Z(\Delta, e_{k+1})$ is $\leq 2/(k+1)$, we conclude that $d(r_2(x), r_{k+1}(x)) \leq 2/(k+1)$ for every point $x \in Z(T_k, e_k)$ and every $k = 1, 2, \ldots$. It follows that the sequence $(r_2(x))$ converges uniformly to a map r of $Z(T_k, e_k)$ into $P(m)$. Since for every point $x \in P(m)$ we have $x \in Z(T_{k+1}, e_{k+1})$ and consequently $r_2(x) = x$ for every $k = 1, 2, \ldots$, we infer that r is a retract of $Z(T_k, e_k)$ to $P(m)$.

Thus we have shown that

(15) Every membrane is an AR-set.

The construction of the triangulation T_{k+1} implies that the 1-skeleton of T_k is included in the 1-skeleton of T_{k+1}. We infer by (9) that $P(sk)$ contains the 1-skeleton of T_2 for every $k = 1, 2, \ldots$. In particular, the boundaries P_k of all polytopes P_k and also their edges P'_k are all included in $P(m)$. In particular, the boundary of the disk $P = P$ is a subset of $P(m)$. By virtue of (11) and (15), we infer that

(16) Every membrane is a 2-dimensional AR-set.

If h maps $P(m)$ homeomorphically onto a membrane X, then the simple closed curve $h(P) \subset X$ will be said to be the boundary of the membrane X and will be denoted by X.

As we have seen at the end of No. 2, the components of the edge P'_k coincide with the segments Σe_Δ of ramification for triangles $\Delta \in T_k$ with $k \leq m$. Since $P'_k \subset P(m)$, the homeomorphism h maps Σe_Δ into a simple arc lying in X. This arc $h(\Sigma e_\Delta)$ will be said to be an arc of ramification of order $2n_2$.

Since, for every triangle $\Delta \in T_k$, the segment Σe_Δ is a subset of the order $2n_2$.

Let X be a membrane corresponding to a sequence $\{m\}$, and let $\{m\}$ be a subsequence of $\{m\}$. Then the union of all arcs of ramification of orders n_2 is dense in X.

Let us point out, however, that the definition of the boundary and of the area of ramification of the membrane $X = h(P(m))$ given here depends on the geometrical construction of $P(m)$ and also on the choice of the homeomorphism h.

4. Bits of a membrane. By a bit of a membrane $X = P(m)$ we understand a membrane Y (corresponding to an arbitrary sequence $\{m\}$ of naturals ≥ 2) such that $Y \subset X$ and that $Y \sim X$. In particular, if Q is a disk which is the union of some triangles of the triangulation Q_0 of P_0 and if T denotes the triangulation of Q included in T_0, then by the same construction as in No. 2, but applied only to simplexes of the triangulations T_0, \ldots, T_k, lying in $Z(T, e_0), \ldots, Z(T, e_k)$, we get the set

$$X_0 = P(\{m\}) \subset Z(T, e_0),$$

which is a membrane on Q corresponding to the sequence $\{m_0, \ldots, m_d\}$. Evidently the boundary X_0 of X_0 coincides with Q' and we have

$$X_0 \sim X - X_0 \subset Q'.

Thus X_0 is a bit of X. In particular, if $Q = \Delta$ is a triangle of the triangulation T_0, then $X_0 = X_0 \subset Z(\Delta, e_0)$ and, since the diameter of $Z(\Delta, e_0)$ is $\leq 2/m_0$, we have

(18) $d(X_0) \leq 2/m_0$ for every $\Delta \in T_0$.
Moreover,
\[X = \bigcup_{m \geq 1} \{X_m\} \text{ for every } m = 1, 2, \ldots \]
(19)

Using the notion of bit, let us prove the following

Lemma 1. If \(Y \) is a closed proper subset of a membrane \(X \), then the boundary \(\partial X \) of \(X \) is a retract of the set \(X \setminus Y \).

Proof. We can assume that \(X = P\left(\{x_k\}\right) \) and that \(X^* = P^* \). By virtue of (18) and (19), there exists in the triangulation \(T_m \), for \(m \) sufficiently large, a triangle \(\Delta \) such that the bit \(X_\Delta \) lies in \(X \setminus Y \). In order to prove our lemma, it suffices to show that \(X_\Delta \) is a retract of the set \((X_\Delta - X_\Delta) \cup \Delta' \). We shall do it by induction.

If \(m = 1 \), then \(\Delta \) is one of the triangles of the triangulation \(T_1 \) of the disk \(D_1 \), and we see at once that the set \((X - X_\Delta) \) is a subset of the union \(\bigcup_{\Delta \in T_1} X_\Delta \) with \(\Delta' \in T_1 - \{\Delta\} \) and that \(P^* \) is a retract of \(W \cap \Delta' \). Now we assume that the statement holds for some \(m \geq 1 \) and that \(\Delta \in T_m \). Evidently there exists a retraction \(r_m' \) of the set \((X_\Delta - X_\Delta) \cup \Delta' \) to \(P^* \). Moreover, we infer by (8), No. 2, that, if \(\hat{P} \) denotes the system of all triangles of \(T_{m+1} \) lying in \((X_\Delta - X_\Delta) \cup \Delta' \), then \(\Delta'' \) is a retract of the set \(\hat{P} \).

Since \((X_\Delta - X_\Delta) \cup \Delta' \) contains \(\Delta'' \) and it is a subset of \(\hat{P} \), we infer that there exists a retraction \(r'' \) of the set \((X_\Delta - X_\Delta) \cup \Delta' \) to \(\Delta'' \).

Setting \(r'''(x) = \frac{r''(x)}{x} \) for \(x \in (X_\Delta - X_\Delta) \cup \Delta' \),

we get a retraction \(r''' \) of the set \((X - X_\Delta) \cup \Delta' \) to the set \((X - X_\Delta) \cup \Delta'' \).

Setting \(r(x) = x \) for every \(x \in (X - X_\Delta) \cup \Delta' \),

we get the demanded retraction of the set \((X - X_\Delta) \cup \Delta' \) to \(P^* \).

Lemma 2. A closed subset \(Y \) of a membrane \(X \) is 2-dimensional if and only if \(X \) contains at least one bit of \(Y \).

Proof. If \(Y \) contains a bit \(X_\Delta \) of \(X \) then by (16) we have \(2 = \dim X_\Delta \leq \dim Y \leq \dim X = 2 \),

and consequently \(\dim Y = 2 \).

Now let us assume that \(Y \) does not contain any bit of the membrane \(X \). We can assume that \(X = P\left(\{x_k\}\right) \). Given a positive \(\varepsilon \), let us consider a natural \(m \) such that \(2/m < \varepsilon \). Then

\[X = \bigcup_{\Delta \in T_m} X_\Delta, \]

where the diameter of \(X_\Delta \) is \(< \varepsilon \) for every triangle \(\Delta \in T_m \), and there exists a point \(x \in X_\Delta \). Applying lemma 1 we infer that there exists a retraction \(r_\Delta \) of the set \((X_\Delta - X_\Delta) \cup \Delta' \) to \(\Delta' \). Setting

\[f(y) = r_\Delta(y) \text{ for every } y \in Y, \]

we get a continuous map \(f \) of \(Y \) into the 1-skeleton of \(T_m \) and this map satisfies the condition

\[e(f(y), y) < \varepsilon \text{ for every } y \in Y. \]

But this implies that \(\dim Y < 2 \).

5. Boundary of a Membrane. Let us prove the following

Lemma 3. A point \(x \in X = P\left(\{x_k\}\right) \) belongs to \(X \) if and only if there exists for every \(\varepsilon > 0 \) an open neighborhood \(U \) of \(x \) in \(X \) with diameter \(< \varepsilon \) and such that \(X - U \) is a retract of \(X \).

Proof. If \(x \in X \) then let us consider an index \(k \) such that \(1/k < \varepsilon/2 \). By (3a), (3b) and (4b), the union of all triangles of the triangulation \(T_k \) containing \(x \) is a disk \(Q \) with diameter \(< \varepsilon \). Evidently

\[X_\Delta \cap X \setminus X_\Delta \subset X_\Delta = Q, \]

and there exists a simple arc \(L \) such that

\[X_\Delta \cap X \setminus X_\Delta \subset L \subset X - (x). \]

Setting \(U = X_\Delta \setminus L \), we get an open neighbourhood \(U \) of \(x \) with diameter \(< \varepsilon \). Let \(r_L \) be a retraction of \(X_\Delta \) to \(L \). Setting

\[r(x) = \begin{cases} r_L(x) & \text{for every } x \in X_\Delta, \\ x & \text{for every } x \in X - X_\Delta, \end{cases} \]

we get a retraction \(r \) of \(X \) to \(X - U \).

On the other hand, if \(x \in X \setminus X_\Delta \) then \(\varepsilon = \varphi(x, X_\Delta) > 0 \) and, if \(U \) is an open neighbourhood of \(x \) with diameter \(< \varepsilon \), then \(X_\Delta \subset X - U \). It follows, by lemma 1, that the simple closed curve \(X_\Delta \) is a retract of \(X - U \). Since \(X \) is an AR-set, we infer that \(X - U \) is not a retract of \(X \).

Let us observe that lemma 3 implies that the notion of the boundary \(Y \) of a membrane is topological.
6. \textit{\(n\)-membranes}. Let \(n\) be a natural number \(\geq 2\). By an \(n\)-membrane we shall understand a set \(Y\) which is the union of \(n\) membranes \(X_1, X_2, \ldots, X_n\) such that there exists an arc \(L\) satisfying the conditions:

\[X_i \cap X_j = X_i^* \cap X_j^* = L \quad \text{for} \quad i \neq j. \]

The arc \(L\) will be said to be the edge of the \(n\)-membrane \(Y\) and it will be denoted by \(Y^*\). By \(Y^*\) we shall denote the interior of the edge \(Y^*\).

The membranes \(X_1, X_2, \ldots, X_n\) will be called the wings of the \(n\)-membrane \(X\). By the boundary \(Y^*\) of the \(n\)-membrane \(Y\) we understand the union of \(n\) simple arcs \(X_i^* - Y^*\) with common endpoints. It is clear that \(n\)-membrane \(Y\) is an \(\mathcal{A}^n\)-set, but its boundary \(Y^*\) is not an \(\mathcal{A}^n\)-set.

Lemma 4. Let \(X_1, \ldots, X_n\) be the wings of an \(n\)-membrane \(Y\) and let \(M\) be a closed subset of \(Y\) such that \(X_i \cap M = \emptyset\) for \(i = 2, \ldots, n\). Then \(Y^*\) is a retract of the set \(M \cup Y\).

Proof. By lemma 1, there exists a retraction \(r_i\) of the set \((M \cap X_i) \cup X_i^*\) to \(X_i^*\) for every \(i = 2, \ldots, n\). Moreover, there exists a retraction \(r_1\) of the set \(X_1\) to the simple arc \(X_1 - Y^*\). Setting \(r(x) = \begin{cases} x & \text{for every } x \in Y^*, \\ r_1(x) & \text{for every } x \in X_1 \end{cases}\)

we get a retraction \(r\) of the set \(X_1 \cup Y^*\) to \(Y\). In order to obtain a retraction \(r\) of \(M \cup Y^*\) to \(Y^*\), it suffices to set \(r(x) = \begin{cases} r_1(x) & \text{for } x \in M \cap X_1, \\ r_i(x) & \text{for } x \in M \cap X_i, \quad i = 2, \ldots, n, \\ x & \text{for } x \in Y^*. \end{cases}\)

7. **Topological classification of points of a membrane.** Let \(n\) be a natural number \(\geq 2\). By an \(n\)-membrane \(X\) we shall understand a subset \(Y\) of \(X\) satisfying the following two conditions:

(i) \(Y\) is an \(n\)-membrane.

(ii) \(Y^* \supset Y \cap X - Y\).

Condition (ii) implies that \(Y - Y^*\) is an open subset of \(X\).

Now we consider the following subsets of the membrane \(X\):

- \(X_{11}\) consisting of all points \(x \in X\) such that for every \(\varepsilon > 0\) there exists a \(Y\) of \(X\) with diameter \(\varepsilon\) such that \(x \in \text{neighbourhood of } Y\) and \(x \in Y^*\). The points of \(X_{11}\) will be said to be **frontier points** of \(X\).

- \(X_{111}\) (where \(n > 2\)) consisting of all points \(x \in X - X_{11}\) such that for every \(\varepsilon > 0\) there exists an \(n\)-membrane \(Y\) of \(X\) with diameter \(\varepsilon\) such that \(x \in Y\).

such that \(x \in Y^*\). The points of \(X_{11}\) will be said to be **points of the ramification of order \(n\)** of the membrane \(X\).

\[X_{1V} = X - X_{1} - X_{11} - \bigcup_{k=2}^{\infty} X_{111}. \]

The points of \(X_{1V}\) will be said to be **singular points** of \(X\).

Since by a homeomorphic map of the membrane \(X\) onto another membrane \(X'\) to every bit (resp. to every \(n\)-bit) \(Y\) of \(X\) corresponds a bit (resp. an \(n\)-bit) \(Y'\) of \(X'\), and to the boundary \(Y^*\) of \(Y\) corresponds the boundary \(Y^*\) of \(Y'\) and to the set \(Y^*\), we infer, by lemma 3 of No. 5, that the sets \(X_1, X_{11}, X_{111}\) and \(X_{1V}\) are topologically invariant. Evidently

\[X = X_1 \cup X_{11} \cup \bigcup_{k=2}^{\infty} X_{111} \cup X_{1V}, \]

and

\[\text{the sets } X_1, X_{11}, \bigcup_{k=2}^{\infty} X_{111} \text{ and } X_{1V} \text{ are disjoint}. \]

Let us observe that

\[X_1 = X^*. \]

In fact, if \(x \in X^*\), where \(X = P([a, b])\), then we infer by \((3a)\) and \((4a)\) that for every \(\varepsilon > 0\) there exists a bit \(Y\) of \(X\) with diameter \(\varepsilon\) such that \(x \in Y^*\) and \(Y\) is a neighbourhood of \(x\). Consequently \(x \in X_1\).

On the other hand, if \(x \in X_1\) then there exists a neighbourhood \(Y\) of \(x\) which is a bit containing \(x\) in its boundary \(Y^*\). Applying lemma 3 of No. 5, we infer that for every \(\varepsilon > 0\) there exists an open neighbourhood \(U \subset Y - X^*\) of \(x\) with diameter \(\varepsilon\) and a retraction \(r\) of \(Y\) to \(Y^* - U\). Setting

\[r(y) = \begin{cases} r_1(y) & \text{for every } y \in Y, \\ y & \text{for every } y \in X^* - U, \end{cases}\]

we get a retraction of \(X\) to \(X^* - U\). It follows, by lemma 3, that \(x \in X^*\).

According to \((2a)\), there is exactly one of three cases for each point \(x \in X - X_1\). In fact:

1. There exists a natural \(m\) such that \(x\) belongs to the \((1)\)-skeleton of the triangulation \(T_m\) but \(x\) does not belong to either to \(X = P_m\) or to \(P_m\).

2. For every \(m = 1, 2, \ldots\) the point \(x\) belongs to the set \(\bigcup_{\Delta \in T_m} [\Delta(\Delta, \varepsilon_m - \Delta)]\).

3. There exists a natural \(m\) such that \(x \in P_m\).

In case 1, one easily sees, by condition \((4a)\) with sufficiently large \(\varepsilon\), that \(x\) belongs to the interior of arbitrarily small ordinary bits of \(X\), and thus \(x \in X_1\).
In case 2, there exists every \(m = 1, 2, \ldots \), a triangle \(a \in T \) such that \(x \in X \cap Z(a, t_a) = d \). But \(X \cap Z(a, t_a) \) is an ordinary bit of \(X \) containing \(x \) in its interior and its diameter is \(\leq 2/n \). Thus also in this case \(x \in X \).

It follows by (21) that only in case 3 the point \(x \) can belong to the set \(\bigcup_{n=3}^{\infty} X_{3n} \cup X_{3r} \), i.e.

(23) Every point of ramification and every singular point of \(X \) belongs to one of the segments of ramification \(a \partial d \).

Finally, let us observe that if \(x \) belongs to the interior of \(a \partial d \), with \(d \in T \), then there exist \(2n \) triangles among the triangles \(d_1, \ldots, d_{2n} \) containing \(a \partial d \) on their boundaries. Let us denote them by \(d_1', \ldots, d_{2n}' \). Applying condition (4) we infer that for every \(l = 1, 2, \ldots \) the union of all triangles of the triangulation \(T_{l+1} \) lying on \(d_1' \) (where \(x \) is one of the numbers \(1, 2, \ldots, 2n \)) and containing the point \(x \) in a disk \(G \), and we see at once that the union of corresponding membranes \(Q_l(n_{l+1}) \) is a 2n-bit of \(X \) with diameter \(\leq 2/(k + l) \) and the point \(x \) belongs to \(Y \).

It follows that no point \(x \) lying in the interior of the segment \(a \partial d \) is singular. Consequently only the endpoints of segments of ramification \(a \partial d \) can be singular.

8. Points of ramification. Now let us prove the following lemma.

Lemma 5. Let \(X \) be an \(n \)-bit (\(n > 2 \)) of a membrane \(X \) and let \(x \) be a point of \(Y \). Then \(x \) does not belong to any of the sets \(X_3, X_{3r} \) and \(X_{3r} \) with \(m \neq n \).

Proof. Let \(X_1, \ldots, X_n \) be the wings of \(Y \). First let us suppose that \(x \in X \). Then there exists a bit of \(X \) such that

\[
x \in X_3 \quad \text{and} \quad X_3 \subseteq Y.
\]

Since \(X_3 \subseteq Y \), \(X_3 \subseteq \overline{X} \), we infer that the set

\[
X = Y_3 \cup X_3 - (Y_3 \cup Y_1)
\]

is not empty and that it is open in \(Y \). By lemma 1, there exists a retraction \(r \) of the set \(Y \) to \(G \) in \(Y \). Setting

\[
r(x) = \begin{cases} r(x) & \text{for } x \in Y_3 - G, \\ x & \text{for } x \in Y_1 - Y_3.
\end{cases}
\]

we get a retraction \(r \) of the set \(Y \) to \((Y - Y_3) \cup Y_3 \). But \(Y_3 \) is a neighbourhood of \(x \) in \(X \), and consequently \(Y_1 - (Y - Y_2) \cup Y_1 \neq 0 \) for

\[i = 1, 2, \ldots, n.
\]

It follows by (21) that there exists a retraction \(r \) of the set \((Y - Y_3) \cup Y_3 \) to \(Y_3 \). Finally, it is evident that there exists a retraction \(r \) of \(Y_3 \) to the simple closed curve \(C = Y_3 \cup Y_3 - Y_3 \). Setting

\[
r(x) = r(x)^2(x) \quad \text{for every } x \in Y_3 \cup Y_3,
\]

we get a retraction of the set \(Y_3 \cup Y_3 \) to the simple closed curve \(C \). But this is impossible, because \(Y_3 \cup Y_3 \) is an \(AR \)-set (since \(Y_3 \), \(Y_3 \), and \(Y_3 \cup Y_3 \) are \(AR \)-sets). Thus the supposition that \(x \in X \) leads to a contradiction.

Suppose now that \(x \in X \) or \(x \in X_{3n} \), with \(2 < m \neq n \). We can consider both cases simultaneously, setting \(X_{3n} = X \) and supposing that \(x \in X_{3n} \) with \(2 < m \neq n \). Since the hypotheses concerning \(m \) and \(n \) are symmetric, it suffices to consider the case where

\[2 \neq m < n.
\]

Suppose that \(x \in X_{3n} \cap X_{3n} \). Then there exists a system of \(m \)-membranes \(W_1, \ldots, W_m \subseteq X \) and there exists a simple \(M \) such that

\[
M = W_i - W_j - W_i \cup W_j \quad \text{for } i \neq j,
\]

\(x \) belongs to the interior of \(M \).

\[
W = W_1 - W_2 \cup \ldots \cup W_m \quad \text{is an } m \text{-bit of } X
\]

(if \(m = 1 \), \(W \) is a bit of \(X \)).

\[
W \subseteq Y - Y,
\]

\[
W \subseteq \overline{W} \subseteq \overline{X}.
\]

Since \(W \) is a \(2 \)-dimensional, there exists a point

\[
a_i \in W_i - W_j - \bigcup_{j=1}^{n} W_j \quad \text{for } i = 2, 3, \ldots, n.
\]

The sets \(Y_i - Y_i \) being disjoint, there exists for every \(i = 2, \ldots, m \) exactly one index \(k_i \) such that \(a_i \in Y_k - Y_i \). It follows by (24) that among the indices \(1, 2, \ldots, m \) at least two are distinct from all indices \(k_i \); we can assume that

\[i = k_i = 2 \quad \text{for every } i = 2, 3, \ldots, m.
\]

Now let us assign to every \(i = 2, 3, \ldots, m \) an open subset \(G_i \) of \(X \) such that

\[
a_i \in G_i \subseteq W_i - X_k - X_k - Y_k.
\]
If \(m > 2 \), then, applying lemma 4, we infer that there exists a retraction \(r_2 \) of the set \(\text{W} - \bigcup_{i=1}^m G_i \) to the set \(\text{W} \). An analogous statement is true also in the case of \(m = 2 \). If we replace \(\text{W} \) by a simple arc lying in the boundary \(\text{W} \) and containing the set \(\text{W} \), we get a retraction \(r_3 \) of the set \(\text{W} - \bigcup_{i=1}^m G_i \) to the set \(\text{W} \). Furthermore, this is true also in the case of \(m = 2 \). If we replace \(\text{W} \) by a simple arc lying in the boundary \(\text{W} \) and containing the set \(\text{W} \), we get a retraction \(r_3 \) of the set \(\text{W} - G \) to the set \(\text{W} \). Setting

\[
r_3(x) = \begin{cases}
 r_2(x) & \text{for } x \in \bigcup_{i=1}^m G_i, \\
 x & \text{for } x \in \text{W},
\end{cases}
\]

we get a retraction \(r \) of the set \(Y - \bigcup_{i=1}^m G_i \) to the set \(\text{W} \). Since \(\text{W} \) is a neighbourhood of the point \(x \in Y \), it follows that \(Y - Y - \text{W} \neq 0 \) for every \(j = 1, 2, ..., m \). Since \(Y - \text{W} \cap Y \), we infer by lemma 4 that there exists a retraction \(r_3 \) of the set \(Y - \text{W} \) to \(Y \). Finally, it is evident that there exists a retraction \(r_2 \) of the set \(Y \) to the simple closed curve \(C = Y \cup \partial Y \). Setting

\[
r_2(x) = r_3r_1r_2(x) \quad \text{for every point } \quad x \in Y, \quad Y, \quad Y.
\]

we get, by (28), a retraction \(r \) of the set \(Y, Y, Y \) to \(C \). But this is impossible, because \(Y, Y, Y \) is an AR-set.

Thus the proof of lemma 5 is concluded.

In the case of \(\text{X} = \text{P}(\text{A}) \) we infer by this lemma and by formula (20) that every point \(x \) lying in the interior of a segment of ramification \(\text{A}, \text{B}, \text{C} \), where \(\text{A} \) is a triangle of the triangulation \(T_1 \), belongs to \(\text{X} \). It follows, by (17), that:

\[
(26) \quad \text{For every subsequence } (m_0) \text{ of the sequence } (m_2) \text{ and for every open subset } G \text{ of } \text{X} \text{ the set } G - \bigcup_{i=1}^{m_0} \text{X} \text{ is of power } 2^\mathbb{R}.
\]

On the other hand, only the endpoints of segments of ramification may be singular points or points of ramification of orders which do not belong to the sequence \((2m_2) \). Consequently (23) implies that:

\[
(27) \quad \text{If } \text{X} \text{ is the set of all natural numbers } > 2 \text{ which do not belong to the sequence } (2m_2) \text{ then the set } \bigcup_{i=1}^{m_0} \text{X} \text{ in at most countable.}
\]

9. Main theorem. The fundamental result of this note is the following

Theorem. There exists a function \(\Phi \) assigning to every real number \(t \) a membrane \(\Phi(t) \subseteq \mathbb{R} \) in such a manner that for \(t \neq t' \) no 2-dimensional closed subset of \(\Phi(t) \) is homeomorphic to any subset of \(\Phi(t') \).

Proof. Let \(w_1, w_2, ..., w_\infty \) be an enumeration of all rational numbers. Let us assign to every real number \(t \) an increasing sequence \((n(t)) \) consisting of all natural numbers \(n \) such that \(w_n < t \). It is clear that for \(t < t' \) the sequence \((n(t)) \) contains, besides all numbers \(n(t') \), also all natural numbers \(n \) for which \(t \leq w_n < t' \). Therefore

\[
(28) \quad t < t' \text{ implies that in the sequence } (n(t)) \text{ there exist an infinity of terms which do not belong to } (n(t')).
\]

Now let \(P \) be a triangle in \(\mathbb{R} \) and let us put \(\Phi(t) = \text{P}(\{n(t)\}) \) for every real \(t \).

It remains to show that if there exists a homeomorphism \(\lambda \) mapping a 2-dimensional closed subset \(A \) of \(\Phi(t) \) onto a subset \(B \) of \(\Phi(t') \), then \(t = t' \).

Suppose to the contrary that \(t \neq t' \). Since \(\dim A = \dim B = 2 \) and since the inverse homeomorphism \(\lambda^{-1} \) maps \(B \) onto \(A \), we see that the hypotheses concerning \(t \) and \(t' \) are symmetric, and thus we can suppose that \(t < t' \). It follows by (28) that the sequence \((n(t)) \) contains a subsequence \((m(t)) \) consisting of natural numbers which do not belong to \((n(t')) \).

It follows by (26) that the points of ramification of orders \(2m_2 \) lying in an arbitrarily given open subset \(\Phi(t) \text{ of the membrane } \Phi(t) \text{ constitutes a subset of } \Phi(t) \text{ of power } 2^\mathbb{R}. \) On the other hand, we infer by (27) that the subset \(\Phi(t) \text{ of all points of ramification of orders } 2m_2 \) of, and of singular points is at most countable. By lemma 2, the set \(A \) contains a bit \(X_0 \) of \(\Phi(t) \). Since \(X_0 - X_0 \) is open in \(\Phi(t) \), we infer from (27) that \(x_0 - X_0 \) contains a dense subset \(E \) consisting of points of ramification of orders \(2m_2 \) of the membrane \(\Phi(t) \) such that any one of \(\lambda(x) \) is neither a singular point nor a point of ramification of order \(2m_2 \) of the membrane \(\Phi(t') \). If \(\lambda(x) \subseteq \Phi(t') \subseteq \Phi(t) \), then \(\lambda(X_0) = \lambda(E) \subseteq \Phi(t') \subseteq \Phi(t) \). But this is impossible because \(\lambda(x) \) contains, by lemma 2 and formula (20), a bit of \(\Phi(t) \). Thus we see that there exists a point \(a \in R \text{ such that } \lambda(a) \text{ belongs to the interior of } \lambda(X_0). \) Consequently \(\lambda \) maps every neighbourhood of the point \(a \) in the set \(\Phi(t) \) onto a neighbourhood of the point \(\lambda(a) \) in the space \(\Phi(t) \). However, this is also impossible, by lemma 5 and formula (20), because \(a \) is a point of ramification of order \(2m_2 \) of the membrane \(\Phi(t) \), and \(\lambda(a) \) is neither a singular point nor a point of ramification of the order \(2m_2 \) of the membrane \(\Phi(t) \).

Thus the proof of our theorem is concluded.

The problem of the existence of a universal \(n \)-dimensional AR-set, i.e. of an \(n \)-dimensional AR-set which topologically contains every
other n-dimensional AR-sets, is old. Only in the case of $n=1$ it is solved positively since the 1-dimensional AR-sets coincide with dendrites and it is known (1) that there exists a universal dendrite.

Mr. Sieklucki has recently remarked that the existence of the function Φ satisfying the theorem of No. 9, allows us to solve the problem of the existence of a universal 2-dimensional AR-set in the negative sense if we recall the following theorem ([2]):

In an n-dimensional ANR-set every family of n-dimensional subsets which are ANR-sets with the common part of any two of them at most $(n-1)$-dimensional is necessarily at most countable.

In fact, using this theorem, we infer from the theorem of No. 9, that no 2-dimensional ANR-set contains topologically all membranes $\Phi(t)$, because the common part of two sets homeomorphic to $\Phi(t)$ and $\Phi(t')$ with $t \neq t$ is necessarily of dimension ≤ 1.

11. An application to the theory of r-neighbours. A space X is said to be r-smaller than a space Y (or Y is r-greater than X) provided X is homeomorphic to a retract of Y but Y is not homeomorphic to any retract of X. If X is r-smaller than Y but there exists no space Z which is r-smaller than Y and r-greater than X, then X is said to be an r-neighbour of Y on the left (see [3]).

It is clear that every space which is r-smaller than an AR-set is also an AR-set. Evidently all membranes are r-smaller than the Euclidean cube Q^2, because each of them is topologically included in E^2, and consequently it is homeomorphic to a subset of Q^2 and this subset, being an AR-set, is a retract of Q^2.

Now let us assume that X is an r-neighbour of Q^2 on the left. We can assume that $X \subset Q^2$. Since X is r-smaller than Q^2, no open subset of Q^2 is included in X and consequently $\dim X \leq 2$. As we have already seen, it follows that there exists a real number r such that the membrane $\Phi(t)$ is not included topologically in X. Now let us consider a Euclidean ball $B \subset Q^2$ such that:

The interior of B is a subset of $Q^2 - X$.

There exists a point $x_0 \in X$ lying on the boundary of B.

Evidently there exists a set $F \subset B$ homeomorphic to the membrane $\Phi(t)$ such that $F \cup X = (x_0)$. We see at once that the set $Y = X \cup F$ is an AR-set which is r-smaller than Q^2 but r-greater than X. However, this is incompatible with the supposition that X is an r-neighbour of Q^2 on the left.

Thus we have shown that the 3-dimensional cube has no r-neighbours on the left.