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On classes of abelian groups
by
S. Balcerzyk (Torur)

The present paper is concerned with the study of the structure of
classes of abelian groups.

The notion of a class of abelian groups was introduced by J.-P. Serre
(see [8]) for a generalization of the Hurewicz theorem on homotopy and
homology groups of topological space.

In this paper we give a full description of all classes of abelian groups.
Any class of abelian groups € which is not the class of all abelian groups
is determined by:

(1) a cardinal number m > x, or & set © of types of rational groups;

(2) a collection B of functions defined on the cartesian product
of the set of primes by the set of natural numbers, functions taking cardinal
numbers as values;

(3) a collection D of functions defined on the set of primes and taking
cardinal numbers as values.

The number m in (1) (if it exists) is characterized by the following
property: any torsion free abelian group A such that |A| <m is in C. If
such a number does not exist, the set of types O is characterized as the
set of types of rational groups which are in C.

The collection B of functions b(p, n) in (2) is characterized by the
following properties: b(p,n)=10 for n>m(p) (with m(p) depending
on b) and the group > D Z(prem is in €.

peP neN

The number m (or the set @) and the collections B,D satisfy some
conditions which follow from the properties of € as a collection of groups.

§ 1 contains definitions, notation and some information. For the
proofs of the statements contained in this section we refer the reader
to [2], [4].

In § 2 there are proved three lemmas on extensions of groups. Two
of them establish a relation between invariants of a group, its subgroup
and its factor group in the case of a primary group of bounded order.

In § 3 we show that any class € is completely determined by its
subelass T (©) consisting of all torsion groups from € and by the collection
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F(C) consisting of all torsion free groups from C. Theorem 1 gives a de-
seription of all collections of type #(C) and the necessary and sufficient
conditions for collections of abelian groups F and T to be represented as
F =F(@), T ="T(C) for some clags C. Thus, the study of classes of
abelian groups is reduced to the case of classes consisting of torsion
groups.

The results of § 4 are summarized in Theorem 7: any class C con-
sisting of torsion groups is fully determined by the collection B(C) of
all invariants of groups which are in € and having primary components
of bounded order and by the collection D (@) of all invariants of divisible
groups which are in C. Theorems 4 and 6 contain characterizations of
collections of the type B(C), D(C).

In § 5 we study classes which are weakly complete, i.e., classes which
are closed with respect to functors ® and Tor. Theorem 10 states that
a class € is weakly complete if and only if the subclass G, of C consiting
of all torsion groups in @, p-primary components of which satisfy the
descending chain condition is weakly complete. In this section we are
reminded also of an example of the class, given in [1], which is not weakly
complete. All p-primary components of groups in this class are finite.

In § 6 the preceding results are applied to the description of all complete
classes: it is given in terms of an ideal of subsets of the set of primes and
a semigroup of functions defined on the set of primes and taking non
negative integers as values. -

In the last § 7 we prove that a class is perfect if and only if it is weakly
complete.

§ 1. Notation, definitions and information. All groups con-
sidered in this paper are abelian groups.

{(1.1) A non empty collection © of groups is called a class iff (1) the
following conditions are satisfied:

() If @ group A s isomorphic to some group in @, then A is in C.
(i) If a group A is a subgroup or a factor group of a group in C, then A
is in C.
{iii) If a group A is an estension of a group in C by a group in G,
then A is in C.
A class € is called weakly complete iff

(iv) if groups A and B are in C then the groups A @B and Tor(4, B)
are in C. .

A class € is called complete iff

(v) if a group A is in C then the groups A @B and Tor(4 , B) are in C
for any arbitrary group B.

() “iff” meams “if and only if”

-/ ©
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A class is called strongly complete iff

(vi) any direct sum of groups from € is also in C. '

1t a group A operates as a group of automorphisms of a group B, then
with the pair (4, B) one can connect groups Hn(4, B), m = 0,1,.2,'...1,;
which are called the homology groups 9f the group A with coef}i(flen
group B (see [3]). If B = Z (infinite cyclic group) and 4 operates trivially
in B then the group Hu(4, Z) is denoted by Hm(4).

A clags @ is called perfect iff

(vii) if @ group A is in C then the groups Hn(A) are .in @ for all m > 0.

(1.2) It X is any set, then |X| denotes the cardinal number of X.

The following notation is used:
N is the set of all positive integers ¥ = (1,2, ...),

P is the set of all primes,
R is the additive group of all rational numbers,
Z(n) is the cyclic group of order =,
zZ is the additive group of all integers,
Z(p=) is the generalized cyclic group of Priifer.] . .
Tt A is a group and m is a cardinal number, then A™ is the discrete

direct sum of m copies of a group 4. .
Tf A, B are groups, then 4 g B means that the group B contains
K

a subgroup isomorphic to 4. .
(1.3) If R, is a subgroup of B and R, # 0, then with each elggllent
r e Ry, r 7 0 we can connect a characteristic y = {xpy (for p e P) with %,

taking values 0,1, ..., co. 7p is the Lu.b. of the set of integers » > 0 such

i jon i i that
i np — r admits a solution in Ry. It is easy to see
e mother ¢ ' ig its characteristic, then

if # == 0 is another element of R, and x
@) %o = oo iff yp = oo,
i) 2z P.
(ii) y = yp for almost all p e B
If anpy two characteristics satisfy the above condlmogs,_thgn c;}];zg
are said to be equivalent and a class of equivgl;ent lgnha;a:)ct:vr:sgg 120 called
i R,
a type. Consequently, with each group I, y ol
theygype T(Ry), Whi(‘l’l iy the equivalence class of & characteristic of any
element == 0 in R,. . ,
Groups R,, Ry C R are isomorphie iff 7(R,) = {Ryg)-
In the set of all types we can define a rel:ﬁmn ép as
' oz ! t p € R
and y' e’ then 7 <7’ iff yp < yp for alr_nos . )
'j]CTh:a gsum '’ = v-+7’ of types r and 7' ig the type’eox%ta,lmng thedchzj\ia:’
teristic 4’ determined by the condition o= Tt .With b4 ]entcﬂll ‘xsomc;
A group G is said to be a rational group if it is mom?rp with o
subgroup R, of the group R, i.e.if @ g R. The type t(@) is the type 7(t)-

follows: if x ¢ ¢


GUEST


152 S. Balcerzyk

(1.4) Any torsion free group G contains a free (abelian)
rank |G|, or @ is isomorphic with a subgroup of a finite direc
rational groups.

group ¢
t sum o

(1.5) If @ is an arbitrary group and n is any integer then we write:

G[n] = {g< @ ng=0},
nG = {ge@; g =mng for some g @G},

76~ Jepm,

¢ = U6 ).
n=1
If @ is a torsion group, ie. T (@) = @, then it may be represented ag
G= 2; 6%, G” being a p-primary component of G.
24 v

(1.6) A group G is said to be divisible iff n@ — G for all integers
n #0. A torsion divisible group @ may be represented as
G= X Z(pepo,
peP
b(p) being a cardinal number for each P € P. The function b defined on P
and taking cardinal numbers b(p) as values is said to be the invariant
of the group G.

(1.7) If a torsion group @ is a direct sum of eyclic groups

¢=23 3 z(prpon
PeP neN .
(a{p,n) being cardinal numbers), then the function q defined on the

set Px N and taking cardinal numbers a{p,n) as values is called the
invariant of the group G. ‘

(1.8) If for a p-primary group G” holds P& =0, ie, if G is of
bounded order, then G? is isomorphic with a direct sum of cyclic p -primary
groups of orders < p~.

mAfy P-primary group 7 may be isomorphically embedded in a group
Z(p™)" it "Ipl~Z(p)™.

(1.9) If a Pp-primary group G® is a direct sum of cyclic groups with
;?bounded orders, then there exists a homomorphic mapping of G® onto
. Z(p™).

(1.10) A subgroup B of a group G is said to be pure in G iff
nB = B ~ n@ for all n. '

For every torsion gr

the following conditions:
_ 7

(

oup G there exists a subgroup B which satisfies

*) This notation does not cause any confusion with the notation G™ of (1.2).

icm
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(i) B is a pure subgroup of G,

(ii) B 4s a direct sum of eyclic groups,

(ili) the factor group G[B is a divisible growp. .

Each subgroup B with all the above properties is called a (Kulikov’s)
basie subgroup of G. Any two basic subgroups B, B’ of.the group G are
isomorphic; the groups G/B, G/B’ are, in general, not 1somorpl?ic.

(1.11) A group & is an emtension of a group K by a group Litf K C G
and G/K ~L. By (1.10), it follows that each torsm.n group is an extension
of a direct sum of eyclic groups by a divisible torsion group. Any group G
is an extension of torsion group T'(G) by torsion free group. Cf/T(G).

(1.12) Any group @ is isomorphic with the injective hx.mt of the
system consisting of all finitely generated subgroups of G with natural
embeddings (as the mappings of the system). . .

(1.13) If a sequence 0 —~G'—G—G@"'—0 is exact and H is an arbitrary
group, then the sequence
0—Tor (&, H)—~Tor (&, H)—Tor (¢, )~ ¢ @ H>GQH+G"' @ H—0

is exact (for the definition of functor ® and Tor see [2]). If H is a torsion
free group, or the image of G in & is a pure subgroup of @, then the se-
quence 0—~G' @ H->GRH—~+G"' ®H-0 is exact.

The following relations hold

(1.13.1) AP® A% =0, Tor(4”, A%) =0 if p, q are different primes.
(1.13.2) A*®D =0 if D is a divisible group.

(1.13.3) Z(n) ®A = AjnA, Tor(Z(n), A) = A[n].

(1134) A®B=B®A4, Tor(4, B) =Tor(B, 4).

(1135) Z@A—=A.

L13.6) (X 4,)@B= %’A,,@B, Tor(%‘ 4,,B) = }2 Tor(4,, B).
(1.13.7) T:)r(A, B) = Tor(T(4), T(B)).

(1.13.8) Tor(4,B) =0 if A or B is torsion free group.

(1.13.9) If B, B, are basic subgroups of G, Gy respectively, then G QG

= B®B,.
. Z(p™), A) = A”.

(1.131"11?()) or_i.or]gy(l()l.)l,?»ﬂ)) and (1.13.1) we can restrict ourselves tg the caie
A = A”. Let R, be the rational group generated by }umm)eiso g;n &
n=1,2,...; thus we have an exact sequence 0—>Z—>ZR,,: gﬂ’)%z@ﬁ'
by (1.13.8) we get another exact sequence 0—>Tor(‘ ™), g
—>R, QAP Z(p™) @ A® 0. Since p"R, = Ky fo;f all ™ we have B,
=0, and consequently Tor(Z(p”), A”) = Z®A" = 4"
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(1.14) KUNNETH FORMULAE. If Gy, @, are any g"roups, then the
homology groups of the direct sum @, +@, are given by the formuls
Hol6h+6) = D) HiG) OH(Gy) + . 2, Tor(Hi(@), Hy(6,)

i+i=n itj=n—

If a group @ operates trivially in a coefficient group 4, then

Hy(@, 4) = Ho(@) ® A + Tor (H,_+(@), A).

(1.15) If a group G is an injective limit G = Lim@,, then the group
Hy(G) is an injective limit H,(G) = LE)nH,.(G,,) with respect to homo-
morphisms Hn(@,)—>Hy(G,) induced by homomorphisms G,—GQ,.

(1.16) If @ is any group, then-

(1161) Hy(&) =2, H(®) = 6

(116.2) Hn(Z) =0 for n> 1.

(1.16.3)  Hew(Z(m)) =0, Haous(Z(m)) = Z(m) for n > 0.

(1.16.4) Han(Z(p>) =0, Hon1(Z (p®) = Z(p*) for n > 0.

This last formula follows by (1.15) since the group Z (p*) is an injective
limit of groups Z(p*), k=1, 2 ; -y With respect to natural embeddings,
which induce natural embeddings of groups HZn_l(Z (pk)) = Z(p*).
(116.5) Ha(Z(p")") = Z(p")™ if m > 5, and n > 0.

(1.16.6) Han(Z(p™)") = 0, if n > 0.

Hona(Z(0™)™) = Z(@™)™ it m > x,.

(1.16.7) If G® is a finite p-primary group of dimension # — dim 6%,
then the groups H,(G"), n > 0, are finite and P -primary, and
their dimensions 8(n, 7) = dim H,(6?) satisfy relations:

@) s(1,7) =1,

(ii) s(n,r+1)=s(n,1')+8(n—1,r)—{—...+s(1,T)-l—;_-(1~(-—1)"),

(ii}) s(n,7) <rm, ”

(iv) s(n,r+1)—s(n, 7)< (r4+1)n—pm,

Formulae (i), (ii) follow by the Kiinneth formulae and (1.16.1);
formula (iii).follows by (ii) inductively with respect to 7; (iv) follows
by (iii).

(1.16.8) If n>0 and » is finite, then H,,(Z(pw)r) = Z(p™)™ and
numbers #(n, r) satisfy the conditions:

@) tn,r) =0 for even .
r_}_n;l
@) n,r) = niy | for odd n.
2

(iif) Hn,r) <.
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The proof of these statements is similar to that of (1.16.7). -
(1.17) If @ is a torsion group @ = D G” then for n> 0 the groups
peP

H,(@) are torsion groups and their P-primary components are isomorphie
with Hu(G%): Hx(G) = %H"(G”). If a group G* satisties p"G° = 0, then
peE

P Hn(G®) = 0 for n > 0.

This proposition follows by (1.12), (1.14), (1.15)-and (1.16).

§ 2. Lemmas on group extensions. In this section we present
three lemmas, which will be used in § 4.

Let @ be a p-primary group of bounded order, i.e., p™@ = 0 for some

natural number M. If 4 is a subgroup of & and B = G/4, then p™4
= pMB = 0 and there exist direct decompositions

(2.1) G =G+ Gt + Gy,
(2.2) A=A+ Ayt t Ay,
(2.3) B=B,+By+..+By

such that the groups G, 4,, B, are direct sums of groups Z(p»),
n=1,2,..,M.
 Levma 1. If G is a p-primary group, pM@ — 0, A is a subgroup
of G, B = G/A, the groups G, A, B are decomposed as in (2.1), (2.2), (2.3)
and
g(n) =dim@,, a(n)=dim4,, b(n)=dimB,,

then there ewist cardinal mumbers Du(k), n=1,2,.., M, k=1,2, ..., n,
such that

n

(2.4) g(n)= 2 bu(k),
M
(2.5) a(m) = 2 Yyn),
M—n
(2.6) ' b(n) =kg; Dot (k)

for n = 1,.2, wey ML
Proof. To prove the lemma it is sufficient to prove the following
statement:

(8) There exist direct decompositions G'=; ZA {32}, A=Z§,{a,;} and
M n
a decomposition of the set of indices A =] U Anr such that

n=1k=0
M
8.1 A'=U U,


GUEST


156 S. Balcerzyk
(8.2) If ie Ay then g, is of order p* (for k=0,1,...,n) and a,
is of order p* (for k=1,2,..,n).

(8.3 If Ae Apy then g, = a; for n =1,2,..., M;
if Ae duy then p*igy = p*¥la; for n=1,2,.., M,

E=1,2,..,(n-1)
(8.4) Ifa =1§1m1g1 belongs o the group A and
(1) my=0 for Ae Aun,
() 0<mu<pv® for e Adpy >k >0
then m; = 0 for all 1e A.
(8.5) Any element geG may be represented as g = a’4 D mg,
with a' € A and m; satisfying (i), (ii) .above. e
To obtain (2.4)-(2.6) it is sufficient to put Ha(k) = | Anxl.
In the group G[p], any subgroup is also a direct summand. Then,

for some subgroup @' C G[p] wehave G[p] = A[p]+ & . In the group 4[p],
we have the following chain of subgroups

A[p] ~ pM-1G C A[p] ~ pM—2G C ...C A[p] ~ pG C A[p];
then A[p] may be decomposed

Alpl =H,+Hy+ ..+ Hy
in such a way that

Alplnp" @ =Hpy+Hpp1+ ...+ Hy Tfor n=1,2,..,M.
In each of the groups H, we have the chain of subgroups
Hynpr"ACHy~np*»2AC...CHy ~pACHp;
then H, may be decomposed

Hn = Hnl +Hn2+~--+Hml
in such a way that

Honp*'A = Hue+ Hogeany+ oo+ Han - for n=1,2,.., M,

k=1,2,..,n (the group H, ~ pn A4 is the zero group).
In the group G we have the chain of subgroups

G APYIAGCEHE A pM2GC..CH A pGC &
then G’ may be decomposed

i G =Hy+Hy+...-+ Hyp
in such a way that

& np" G =Hy+Hyprp+ .o+ Hyg for n=1,2,.., M.
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Since any group Hyy is a direct sum of cyclic groups Z(p) and H,,C p*» G
Ap¥tAd for n=1,2,.., M, k=1,2,..,n and Hy C p»'@, there exist
disjoint sets of indices Aux, n=1,2,.., M, k=0,1,...,n, elements

n

g1eG for ded ="@1 kL=JDAnk and elements a, e 4 for Ae A’ =nt‘=jl LQ{/I""
such' that

(2.7) p*lay;=p*g; for Ae Apk, k>0, and ay =g; if n=kF,

(2.8) elements p™~ig; (for Ae Ani) form a basis of the group Hyy.

It is easy to see that elements g, for 1 ¢ A form a basis of the group G.

In fact, elements g, are linearly independent, and the whole group G[p]

is contained in the group @ = ) {g:}. Moreover, any element of G[p]
2€d

has the same height in @ as in @, whence G is a direct summand of &
(see [7]), which contains all G[p], consequently G = G. By similar argu-
ments the elements a, for A e A’ form a basis of the group A. Thus all
of the conditions (S.1)-(8.3) are satisfied.

Let us suppose that all asumptions of (8.4) are satisfied. If not all m;
are 0 then a # 0 and for some 1, ¢ A the order of ¢ is the same, say p°,
as that of myg;,. Since p*—'a e A[p], we have Ae A’ and A e An; for
gome n >k > 0. Let a :12/11 ra; and my, = pPmj, with p+m;,. Obviously

atB=n and Peims,g, = PHIMY, g, = PV Goy = PFIMA G5 this last
element, being 1,-component of pe¢-la, iz equal to p*~ir,a;. Hence
PE=imy, = po=lr, (modp¥), a<n and 0< p"°mj, < p"~*. From this last
relation it follows that mj =0 or a—1 >k; in the second case, from
the above congruence it follows that p|mj,, then also mj = 0 and we
get a contradiction.

To prove (S.5) let g be any element of ¢ and g =A§1 myg;. For any

A€ Ay, an integer m; may be uniquely represented as m; = prkgy -+ my
with 0 < mj < p*— k. If we write

2.9 G =, Pt
2€Anx
and
M
G= D o,
n=1 A€Ang

then, for the proof of (8.5), it is sufficient to show that gnx e A+ @, for
n=1,2,..,M, k=0,1,..,n. We shall prove it inductively with
respect to the order of gns. '

If ¢, is of order p, then it belongs to Q[p], 'which is the same as
Alpl+ Gp]1C A+ G,.

Let us suppose that any element of the form (2.9) and of an order
< pe belongs to A +G,. Let gnx be of the form' (2.9) and o? the order p°.
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This implies that a <k and p*|p*t"~%g; consequently g, = p*~ig; for
some integer ¢;. Moreover,

Pt (gmc— Z p"““qicu) =p Z (P *q:9:—p* q50:)

A€ Ak Aednk

= Z QP —pFlas) = 0

A€Any

then, by our assumption, element ¢, belongs to A4 4 G,.

Levmma 2. If cardinal numbers g(n), a(n), b(n) satisfy all conditions
of Lemma 1, then there exist a p-primary group G of bounded order, and
its subgroup A such that invariants of G, A and B = @G/A are g, a and b
respectively.

Proof. By our assumption there exist a set of indices A and its

M n
decomposition A4 =1J |J Ane such that |Adu =ba(k), n=1,2,.., M,

n=1 k=0

k=0,1,..,n We define the group & as

M n
6= D6u, with Gu= Y Z(pm),
n=1 k=0 A€dnk
and

n
A = ZAM, ) with Ank = _’pn_'ank y
1 k=1

ne=

for n=1,2,..,M, k=1,2,...,n It is easy to see that all our con-
ditions are satisfied.

Levma 8. Let @ be a torsion group, G,C G, G,= G|G, and G, be
a direct sum of infinitely many cyclic groups. If |G| < |Gy then there
ewisis a direct decomposition G = G’ + &' inducing a direct decomposition
Gy= G ~ G+-6" and such that |G| < |G| if |Gy is infinite and G is
finite if @, is finite.

This lemma is an eagy consequence of the fact that any infinite
subgroup of G, is contained in a direct summand of &, of the same car-
dinality, and any finite subgroup of G, is contained in a finite direct
summand of G,.

§ 3. Torsion free part of a class. Let C be an arbitrary class;
by T(€) we shall denote the collection of all torsion groups which are
in € and by F(€) the collection of all torsion free groups which are in C.
It is easy to see that T(C) is a class. In this paragraph we shall study
the structure of (@), and then we shall reduce the problem of charac-
terization of all classes C to the case of @ consisting of torsion groups.
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THEOREM 1. If @ 48 a class containing at least one torsion free group,
then F(C) is one of the following collections:

(31) the collection Fo of all torsion free groups,

(8.2) the collection F, of all torsion free groups of cardinality <m with
m > Koy

(3.3)  the collection Fe of all groups G which may be embedded inio a finite
direct sum Zl' R; of rational groups B; (n depending on G) such that types
7(R;) belong to the set of types @ which satisfies the following conditions:

(3.4) if 10 and v <7 then 7,¢ 0,

(3.8) % 11,72€0 then v+, ¢ 0.

Proof. If in the collection F(©) one can find groups of cardinality
n > 8, then by (1.4) one can find in F(€) also a free group of rank 1,
and consequently each torsion free group of cardinality <n is in F(@)
(being isomorphic with a factor group of a free group of rank n). These
arguments lead to collections (3.4) or (3.5) in all cases when F (@) con-
tains groups of infinite rank. Let us suppose that in F(C) there are only
groups of finite rank and let © be the set of all types r such that a ra-
tional group of type v is in F(C).

It a group F is in F(@), then it can be embedded into the group

n

> Ri, R; being rational groups. Without any restriction we can suppose
i=1

that R; are homomorphic images of F and consequently are in F(C),
thus 7v(R;) € 6.
On the other hand, if the types 7(R;) belong to &, then R; are in

F(C) and consequently > R; is in F(C) and each subgroup of Z:Ri is
£=1 i=

also in F(@).

It remains to prove that the set @ satisfies conditions (3.4), (3.5).

Condition (3.4) is obviously satisfied, because any group of type
7, <7 can be isomorphically embedded into the group of type r, which
is in €.

Let 7,, 7, be two types belonging to 6 and let R,, R, be subgroups
of the group R in which 1 has characteristics y', " belonging to 7;, 7,
respectively. Let us consider, at first, the case of all y,, z; being finite.

If R, is the subgroup of R in which 1 has characteristic y"' = y'-+y"’
then v(Rg) =7, +7,, B3 D R, and R,/{1} ~ Ry/R, because each of these

groups is isomorphic with the direct sum _E;Z (p*) and yp = 24" —%n-
e

Let ¢ be an isomorphic mapping ¢: R;/{1}->Ry/R, and let F' be the sub-
group of the direct sum R, -+R, defined as follows: {r,r’> belongs to F

Fundamenta Mathematicae, T. LI 11
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iff p(r-+{1}) =1+ R,. The projection <r,#">—>r maps F homomorphic-
ally onto R, and the intersection of its kernel with F is isomorphic
with R,, consequently F as an extension of a group in € by a group
in @ is also in €. On the other hand, the preojection ¢r, r'>—r' maps F
onto Ry; thus Ry is also in €, and consequently z,+1, € 6. .

Tet us consider the case of quite arbitrary types 7;,7,. Characteristics
', ¢’ can be represented as ' =7 +%, 1" = 7' +7", %, %' taking finite
values only and %', %" taking values 0 and co only. By the preceding
arguments the group R, with characteristic of 1 equal to 7' +x" isin @
and the groups B, K, with characteristics of 1 equal to %' and 7" re-
spectively, also are in C. It is easy to see that the image of the group
B, +R,+R, (being in @) with respect to the mapping <ry, Ty, Far =0+
+ 1o+, is of type 7,47 and thus 7, +7 € 6.

The following theorem gives another characteristic property of groups
which are in Fg.

THEOREM 2. If a set of types @ satisfies conditions (3.4) and (3.5) then
a torsion free group F of finite rank is in Fe iff for each non-trivial homo-
morphic mapping ¢: F—R we have t(p(F)) € 6.

Proof. If a group F is in Fe then Fg D' R; and 7(R;) ¢ ®; since
i=1

n
R is divisible group, ¢ can be extended to g defined on the group > B;.
“

The image of g contains the image of ¢ and is of the type <v(B;)+...+
+7(Ry); thus z(p(F)) € 6.
On the other hand, if F is a group of finite rank, then it may be

53
embedded into a group of the form > R;, R; being rational groups and
i=1

projections being onto. If F' has the property mentioned in the theorem,
then 7(R;) ¢ @ and F is in F.

Theorem 1 presents only necessary conditions for a collection ¢ of
torsion free groups to be of the form F = F(@) for some class €. In Theo-
rem 3 we state that the conditions of Theorem 1 are also sufficient for F
to be of the form F(C), and, moreover, we give necessary and sufficient
conditions for a pair F, T, T being a class of torsion groups, to be re-
presented as F = F(C) and T = T(C) with the same class C.

THEOREM 3. If F is a non-empty collection of the form (3.1), (3.2)
or (3.3) and T is a class of torsion groups, then the following conditions
are necessary and sufficient for the existence of a class C such that F = F(C)
and T = T(C):

(81" i#f F=Fw, then T is the class of all torsion groups,

(8.2} #f F = Fn, then T contains all torsion groups of cardinality <<m,
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(3.3") if F=Fe and O satisfies conditions (3.4), (3.5), then the type
determined by the characteristic y belongs to O iff the group ZP Z(p*»)
PE.
is in C. :

Ij all these conditions are satisfied, then C s identical with the col-
lection of groups G which are extensions of a group in T by a group in F.

Proof. At first we prove that if F= F(€) and T = T(C) for some
class @, then all the conditions (3.1')-(3.3") are satisfied.

By the same arguments as those used in the proof of Theorem 1,
we see that every torsion group (in the case 3.1')) or every torsion group
of cardinality <m (in the case (3.2')) must be in the class € and con-
sequently in T = T (€). In the last ease F =g, if a type 7 is determined
by a characteristic y and 1 has a characteristic  in the rational group R,,
then R,/{1} NZPZ (p*). By this relation it follows that R, is in € iff

PE.

the group Y, Z(p*) is in T and this implies (3.3').
peP

It is obvious that the collection described in the last part of the
theorem is the only one that can satisfy the relations F = F(€), T = T(C).
All that we need to finish the proof is to verify that this collection is
the class.

A group G is in @ iff there exist a group T in T and F in F such
that TC G and G/T =F.

T# F = Fo then C consists of all groups and thus is a class.

Let us suppose that F = Fm or F = TFe.

If a group @ is in € and @ is a subgroup of @, then the group
GT(@)=F is in F, T(G) is in T and TEF)=T({H~G is in T
Moreover, G'|T(G') = G [[T(G)~ @1~ [ +T(E) TG C GIT(G) = F and
@&|T(@) is in F; since T(¢')is in T, 6" is in C. .

If a group @ is in C and @& = G/H is its factor group, then let us
denote by @, such a subgroup of G that T(6) = G,/H. Since G, T(G),
the torsion free group G'/T(&) = G/H / Go/H ~ G/G, is isomorphic with
the factor group of F = G/T(@) and thus @'|T(@') is also in & (in the
case F = Fo -we use Theorem 2). Let us write U =[T(¢)+H}H; then
U~ T(G)[T(G) ~H] and U is in T because T(@) is in T. On the other
hand, U C T'(G') and

T(@)]U s Gofl T +H] ~ 6 T(&) | [T(@) +HYT (@3

then the torsion group T(@")/U is isomorphic with the faetor 'group»of
the group Gy/T (&) which is in 7. Conditions (8.2") and (3.3") imply that
any torsion group which is a homomorphic image of a group in & is in .
Consequently the group T(&)/U is in T and the group T(G'), as an
extension of the gronp U in T by a group in T, also is in T. Finally,

11*
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the group G is an extension of the group 7(G') in T by the group G/@,
in F and thus is in C.

Let G’ be an extension of a group &, by a group @,, both being in @:
G'|G, = G,. Hence T(@,), T(@;) are in T and F; = G,/T(G,), F, = G/ T(@)
are in . Obviously 7'(G')D T(@,) and T(G’)/T(GI)gT(GZ), thus T'(@)
is in T. Lebt F' be the factor group F' = @'/T(G'). It is easy to see thah
the rank of G’ is the sum of those of G, and @, (see [7]). Thus, if 7= F
then ' is of cardinality <m and is in F. If F = Fo then F’ is of finite
rank. To prove that F' is in 7 we shall study its homomorphisms into
the group R. Let ¢ be a homomorphic mapping ¢: F'—R; ¢ induces the
homomorphism ¢': ¢ —R with Ime’ = Ime. If G,C Kerg’, then ¢’ induces
homomorphism ¢,: /6, = G, R such that Img, = Img¢’ and since 7,
is in Fe, v(Imp)=v(Imp,) e O. If G ¢ Kerg/, then ¢(G) #0 and
7(¢'(G1)) € @. It is easy to see that the group zp’(G)/qo'(Gl)mZPZ(p"p)

is & homomorphic image of ¢, = @/, and consequently the type 2;2 having
a characteristic y belongs to 6. Since 7(p’(6,)) ¢ © and T(p'(6) = 7(p'(Gy) +
+7, T(p'(#)) €@ and F' is in Fo.

§ 4. Classes consisting of torsion groups. In this paragraph
we shall study the structure of classes consisting of torsion groups only.
We shall call such a class a torsion class. With any torsion class ¢ we
connect two collections of functions.

DeprviTioN 1. We shall denote by (@) the collection of all
functions a defined on the set P x N, taking cardinal numbers as values
and such that the grouwp 3 Y Z(p™*®™ iz in e.

pePneN
DErINITION 2. We shall denote by D(C) the collection of all fune-
tions b defined on the set P, taking cardinal numbers as values and such
that the group 3 Z(p*P® is in ©.
peP

The collections A(C) and D(C) are uniquely determined by the
class € and they describe groups of very special type, which are in ©.
In the present paragraph we shall prove that, in fact, each class is uni-
quely determined by some collections %, D of types described above,
and we shall give necessary and sufficient conditions for such collections
to be represented as A-= A(C), D =D(C) for some clags C.

Now we give necessary and sufficient conditions for a collection D
of funetions to be represented as D = D(C) for some class C.

THEOREM 4. If D is a collection of functions defined on the set P and
taking cardinal numbers as values, then D may be represented as D =D (C)
for some class C iff the following conditions are satisfied:

(41) 4f b is in D and b'(p) < d(p) for all peP, then v is in D,
(4.2) if 3, are in D, then v4b’ is in D.
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If these conditions are satisfied, then a class C may be taken as the
collection, of all groups A which are isomorphic with some subgroups of the
group 2 Z(p™)? for b in D.

peP

Proof. If D=D(C), then conditions (£.1), (4.2) are implied by
properties (i), (ii) of § 1.

Let us suppose that conditions (4.1), (4.2) are satisfied. Then by (1.8)
it follows that the collection € described in Theorem 4 is identical with

the collection of groups A = Y A” such that dim A[p] < d(p) for all
peP

p € P and for some function b in . It iy obvious that these groups form
a clags and D =D(C).

Remark. The class @ deseribed in Theorem 4 is not the only one
that satisfies D =D (C).

We shall consider a subclass @, of © consisting of all such groups

A=) A" that each group A" is of bounded order, i.e. that there exist
nEP

numbers M (p) (depending on 4) such that p™®4” = 0. Of course, @, is
a class; we shall denote by B(Q) the collection B(C) = A(Cy). It is ob-
vious that a function b of A(C) is in B() iff b(p, n) = 0 for » > M (p).

We shall study relations between collections €(@), B(C) and D(C).

THEOREM 5. A function a defined on P x N and taking cardinal num-
bers as values is in W(C) iff there exist functions b, d such that

(4.3) b is in B(C) and b is in D(C),

(4.4) bd(p) =8, or D(p) =0 for peP,

(4.5) a(p,n)<b(p,n)+d(p) for peP, nelX.

Proof. If the conditions (4.3)-(4.5) are satisfied, then

” (,1) N N r g mablon) 00\b(1)
N2z S N N 2+ 4]
peP neN peP neN

and the last group is in (; consequently a is in A(C).

Let a be any function in A(C) and let us write s(p, ») :k_f_;"u(p, k).

Since inequalities s(p, 1) > s(p, 2) > ... hold, there exist such M (p) that
s(p,n) are all identical for n > M(p). We define db(p) = s( ,M(p)) and

a(p,n) for =< M(p),
B(p,'n)={ 0 for n < M(p). H

Conditions (4.4), (4.5) are obviously satisfied and b is in B(C); thus we
need only to prove that b is in D(C), or that for each p ¢ P the group

oo
.y
Z(p™® iy a homomorphic image of the group A? =ﬂ£ Z{p" e,
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If d(p) = &, then a(p,n) # 0 for infinitely many »’s, and then the

group A* may be homomorphically mapped onto Z Z(p™), and by (1.8)

also onto Z(pm)m: Z(_‘pw)b@)._ m=1
It b(p) >, then the set N, of indices n such that a(p,n)> x, is
infinite and consequently we have a sequence of homomorphic i
> ma S
(all being onto) - P ppies

Ap‘—>ZZ(p")u(p’")NEZ(p")”u(ﬁ’n)—>E[Z(p)+Z(292)+u-+Z(pn)]u(p'")

v t
neNy neNy n €Ny

AR A0y e
~ [Z(p)+Z(p2)+ _,,]h(p)%Z(pm)b(p),

and the last group is in @; consequently b is in D(C).

By the abpve theorem, the collection () is completely determined
by the collections B(C) and D(C), and for further study we need to
have necessary and sufficient conditions for a collection B to be repre-
sente.d a8 B = B(C) for some class C. Moreover we must also know the
relations between B and D necessary and sufficient for the common
representation B = B(C), D =D(C).

To give a statement of Theorem 6 in an abbrievi i

: 4 ieviated form we intro-
duce a 1"43134171011 E which holds between functions g, a,b defined on Px N
and taking cardinal numbers as values.

DEerFinNITION 3. The relation E(g, a,b) holds i i
ditions are satisfied. {81, 5) folas 36t the following con-

(4.6) There emist integers M (p) such that =
0 form s (p) at g(p, ) = a(p, n) = b{p, n)

(4.7) There exist cardinal ,

b el oo e nal numbers Ya(p, k) for 0 <k <m, nel,

g(pyn)“—“}g;bn(ﬁ;k): a(p,n) =k§nbk(1’,n), B(p,g@):2b1l+k(p’%).

k=0
By conditions (4.6), (4.7) it follows th
. . at [ =
and then all sums in (4’.7) are finite. s B = 0,208 n > Up)
The relation % establishes the c i
; onnection between invariants of
a group, its subgroup and its factor group. More precisely:
o bo;;EMMA 2 If G, 4,B are torsion groups having primary components
Mldsunded; thor ers .a,-nd 8, 0, b are their invariants, then the relation H(g,a,b)
iff there exists a subgroup A’ C G such that A~ A’ and G/A' ~ B.

This lemma follows b
y Lemmas 1 i i
components of groups @, 4, B. and 2 when applied to primary
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THEOREM 6. If B is a collection of functions b defined on the set P x N
and taking cardinal numbers as values, then B may be represented as
B = B(C) iff the following conditions are satisfied:

(4.8) 4f b ds in B then there exist integers M (p) such that b(p, n) = 0
for n = M (p),

(4.9) if g is in B and H(g,a,bd) then a is in B,

(£.10) 4f g is in B and E(g, a,b) then b is in B,

(4.11) if a,b are in B and H(g,a,b) then g is in B.

If conditions (4.8)-(411) are satisfied, then a class C.may be taken
as the collection of all such groups A that

Amggvzw)wm for some b in B.

Proof. If a collection B is represented as B = B(C), then (4.8)
holds by the definition of B(C). Let us suppose that E(g, a, b) holds
and G, A, B are groups with invariants g,a,b respectively. By the de-
tinition of B (C) it follows that if g is in B, then @ is in € and by Lemma 4
the group 4 may be embedded isomorphically into @ and B is isomorphie
with the factor group of G; consequently 4, B are in € and thus a, b
arein B.If a, b are in B then 4, B are in € and by Lemma 4 the group G-
is an extension of a group isomorphic with A by a group isomorphic
with B and then @ is in C; consequently g is in B.

Let us suppose that all conditions (4.8)-(4.11) are satisfied. It
is sufficient to show that the collection @ defined in our theorem is
a- clags. Conditions (i)-(iii) of (1.1) follow by Lemma 4.

Remark. It is easy to prove that conditions (4.9) and (4.10) are
equivalent since the relation ¥ is symmetric with respect to variables a, b.

TrworEM 7. If B is a collection of funciions defined on the set P x N
and taking cardinal numbers as values and D is a collection of functions
defimed on the set P and taking cardinal nwmbers as values, then B and D
may be represented as B = B(C), D =D(C) iff B satisfies the conditions
of Theorem 6, D satisfies the conditions of Theorem 4 and, moreover,

(412) if b is in D and b(p,n) =0 for n > M(p) and ngvb(p,n)

< o(p) for all peP, then b is in B.

If all conditions mentioned above are satisfied and U is the collection
defined by conditions (4.3)-(4.3) in Theorem 5, then the class C consists
of all such torsion groups & that invarianis of their basic subgroups A are
in % and invariants of factor groups GIA are in o )

The class C is uniquely determined by the collestions B and D.

Before beginning of the proof we give another characterization of
groups which are in the collection @ defined in Theorem 7.
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LeMMA 5. A group G = 6 is in C iff @ may be represented as
peP

G = B+G in such a way that
(4.13) B is a direct sum of cyclic groups and its invariant is in B ;
(4.14) there exists a function d in D such that

1671 <b(p) o d(@)=w,,
FaZEPT i b(p) <.

Proof. It is easy to see that if G satisfies all these conditions then
it is in the collection C.
If a group ¢ is in @, 4 is its basic subgroup with invariant a and

invariant b; of D = @/4 is in D, then by Theorem 5 there exists a fune-

tion b in B and a function b, in D such that a(p, n) < b(p, n)+dp)
and by(p) > 8 or by(p) = 0. By this relation it follows that the group 4
contains a direct summand B with invariant b which is in 8 and invariant a
of factor group 4/B (which is a direct sum of cyclic groups) satisfies

0(p, n) < dyfp) for all p ¢ P, n e N. Since A is pure in ¢ and B is its direct

summand with primary components of bounded order, B is a direct sum-

~mand of G: ¢ =B+@. Relations (4.14) follow with b = b, +b,.

Proof of Theorem 7. By the properties of basic subgroups and
Theorem 5 it follows that the collection € described in our theorem is
the only possible one that can satisfy relations B = B(C), D =D(C).
All that we must prove is that € is a- class. .

Let us suppose, that a group @ is an extension of a group @, by
a group G,, both being in C: 4/@, = G,. By Lemma 5, the groups &, G,
may be represented as G; = B,+G,, G, = B,+ @, in such a way that
invariants of the groups By, B, are in B, and for some function b in D
we have

(4.15) [GF]+|G8] < b(p) if b(p) > s,

(£.16) F+FE~Z@™P? if v(p) < .

We divide the set P into two disjoint subsets P;, P, in such a way that
€ P iff d(p) > x,. At first we prove that G is in @ if one of the following
conditions holds:

(4.17) - B, =0,

(4.18) G =o.

If (4.17) holds then @, = @, and G/G, = ,. Let us denote by » the
natural homomorphism of & onto Gy and G, = yY@,). If p ¢ P, then
1681 < 1681 - |6%] < b(p) and G7|GF ~BY. Let A” be a basic subgroup of G*
and D” = GP|A”. Sinée for some Dositive integers a, we have p*?BE = 0,
P*G°C G5 and there exists homomorphism of the group Flp? P
~A%[p* AT (see [4]), there exists a homomeorphism h,: AP/pA? -5 BE
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onto BY such that |Kerh,| <bd(p). By (4.12) and (4.13) it follows that
invariant a’ of the group Z}') AP[p*4® is in B. If o is the invariant of
pePr’

A then, since [p”A"| < [p”6@ <168 <bd(p), we have Y a{p,n) <

L
n>ap

So-D(P) = d(p) and for n < o, we have a(p, n) <a'(p, n). Thus, by Theo-
rem 5, invariant a is in . Since the divisible group D” is a homomorphie
image of G”, also the group p@G*C & may be mapped onto D”. Con-
sequently [D”| <|GF| < b(p) for p e P, and finally, by the definition
of @, the group Y @ is in C.

neEPy

If p e P, then GF, GY are divisible and 6 is a direct sum P~y

+6 = G{-+GY+BY. By Lemma 5, the group Z;, G” is in @. By the
pels
additive properties of B and D it follows that the group & is in C.

If (4.18) holds then @, = B, and G/B, = G,. Let us denote by », as
before, the natural homomorphism of @ onto @, and @, = »73(B,). Con-
sequently we have G4/B; = B, and by (4.11) the invariant of G, is in B;
moreover, G/G, ~G,.

If p e P, then |G5) < b(p) and, since &, is a direct sum of cyclic
groups, by Lemma 3 we can represent the group G° as ¢F = GF--&%
in such a way that |G| <bd(p) and ¥ C@G%. By (4.9) the invariant
of the group 212, 6% is in B, then by Lemma 5 the group Z}'} @ is in C.

per; pery

If p € P, then @y~ Z(p~)*®; moreover, there exist integers a, such
that p* @&, = 0. These two statenients imply that the group D? = PGP
~GF is the maximal divisible subgroup of G* and the factor group
@°|D® is a homomorphic image of G%. Consequently the group J G

pePy
may be represented as

Y -
Yo~ Y Ya
pePs pePy PEPs

and by (4.10) the invariant of the group J, G is in %B; finally, the group

DEPs

2 @ is in ©. By the additive properties of B and D it follows that the
veEPy

group G is in . v B

Now let @ be an extension of an arbitrary group ¢, = B, + G, from c
by a group &, from ©. Since @/B,/G\/B,~G, and Gi/B,~ G;, G/B; may
be considered as an extension of the group G, by the group G,. By our
previous considerations, the group @; = G/B; is in €. Now we can apply
our previous considerations to the group B; and G,; consequently the
group @ is in €. Thus @ satisfies (iii) of (1.1).

Let us suppose that a group @ is in @, G, is a factor group ¢, = G/H
and » is the natural homomorphism of & onto G,. By Lemma 5, the group G .
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may be represented as G = B+, B, @ satistying (4.13) and (4.14). We
divide the set P.into two disjoint subsets P,, P, in such a way that peP,
iff d(p) = 8. N

It p e P, then G/n(B") < |»(G")] <bd(p) and by (4.10) the group
¥ y»(B?) is in C; since the group Z @ is an extension of this last group
pePy nepP;
by the group 2 GY/»(B”), which is in €, then, using our preceding pro-

pePy
position concerning extensions, we see that Y @2 is in @.
peP

If p e P, then 3 »(G”) is a divisible group and its invariant is in D.
pePy

Consequently Gf = BY+»(G") and BY is isomorphic with the factor group

of B¥. By (4.10) the invariant of the group N B? isin 9B and then the
pePy

group } @ is in €. By the additive properties of B and D it follows

pEPy

that the group & is in @, thus C satisfies the first part of (ii) of (1.1).

Let us suppose that a group G is in € and @, is a subgroup of G.
We shall consider a decomposition ¢ = B+ @& given by Lemma 5 and
the same subsets P, P, as defined above.

It p € P, then G7[[G7 ~ B"] C ¢” and consequently |G¥/GT ~ B?| < b(p).
On the other hand, by (4.9) the invariant of the group 3 @ ~ B”C 2B

pePy

s . . : . . pePl
is in B. By our preceding considerations concerning extensions it follows

that 3 &7 is in ©.

pePy
_ I pePy and GF is the maximal divisible subgroup of 67, then
@7 C G°. Moreover, G2/ G CG°|GY C[B+G*)@ and by the maximality
of G and (4.5) it follows that the invariant of D QYIGF is in B and then

DEP

the group ' G¥is in @. By the additive properties of B and D it follows

nePg
that the group @ is in €, thus € satisfies the second part of (ii) of (1.1)
and the proof of the theorem is finished.

§ 5 Weakly complete elasses. One of the most important
properties of a class is weak completeness (see (iv) of (1.1)).

Let us remark, at first, that condition (iv) may be restricted to the
case 4 = B as follows by

Leumma 6. For any groups A, B we have
A®BC(44+-B)@(4+B),
Tor(4, B)C Tor(4 +B, A+B).
The lemma follows by the additivity of the functors ® and Tor.

) Levmma 7. A class C is wedkly complete iff its torsion subclass T(€)
8 weakly complete.
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Proof. Since the tensor and torsion product of torsion groups is
also a torsion group, if € is weakly complete, then T (C) is also a class
of this type.

Let us suppose that the class T(C) is weakly complete. Since by
(1.13.7) the group Tor(d4, 4) is a torsion group and is isomorphic with
Tor (T'(4), T(4)), we need to consider the functor G only.

Let 4 be any group in ¢ and let us write 7' = T'(4), F = A/T(4);
thus we have an exact sequence 0-—T->d —F—0. By (1.13) we get
exact sequences

(51) 0->TQA-ARAFRA-0,

(5.2) 0>TQT>TRATRF 0,

(5.3) 0-FRT>FRA->FRQF->0.

By our assumption the group T'® T is in € and it is sufficient to prove
that the groups I'QF and F OF are in € for arbitrary T'in T(C) and F
in F(€), because this implies that the middle terms of (5.2) and (5.3)
are in C, and by (5.1) also the group 4 ®A4 is in €.

We shall consider two cases:

(1) Let us suppose F(C)=F, with m > x,; then © containg all
groups of cardinality < m. Since |F|<m, we have |[FRF| < m and
F®F is in (. Moreover, there exist free groups W, W, in C and an exact
sequence 0 —W,~+W —F —0. Since the image of W, is pure in W, by (1.13)
we get another exact sequence 0T @W,—»T@W->T®F—0, and it
is sufficient to prove that T @W is in G, W being a free group of rank
n < m. Let B be a basic subgroup of T; then the sequence 0 +B—T-—+D

-+0 is exact, D being a divisible group. Consequently, the sequence

(3.4) 0>BOW—TGW->D@W->0

is exact. The group B is the direct sum of eyclic groups B = 21’3 n;.:v Z {prypiom
pe

and then

B@W~ Y > Z(pmem  for  byp,n)=n-bp,n).
neP neN

Thus the group B ®W may be represented up to an isomorphif.sm.a,s
B+B, with |B,] < max(n, 5 <m and finally BQW is in C. Similar
arguments applied to the group D lead to the conclusion that‘D.®W
is in €. By the exactness of (5.4) it follows that the group T W is in G
Finally, the group 7 ©F as a homomorphic image of T ®@W also is in C.

(2) Let us suppose F(C) = Fe; if W, is a free subgroup of F generated
by the maximal set of independent elements in F, then we have an exact
sequence

(3.8) 0->W;—>F—T;~>0.
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T, being a torsion group in T(C). By (1.13) we get an exact sequence
WT-FOTI~>T9T—0 and since W, ®T is isomorphic with the
finite direct sum of copies of 7, its image in F® T is in . The group
T;&T is in C by our assumption; thus F @ T, as an extension of g group
in € by a group in G, is also in €.

To finish the proof let us multiply the sequence (5.5) by F. We get
an Eaxact sequence 0—W, ®F —-F S F T, ®F 0. The group T, ®F is
in @ (as just proved) and W, F is isomorphic with the finite direct sum
of copies of F, thus F ®F is in € and the proof is finished.

DEerFrNiTioN 4. If € is an arbitrary class, then we shall denote by @,
the subelass of C consisting of all torsion groups 4 such that any of its
primary components A” satisfies the descending chain condition for
subgroups.

This last condition of the definition may be alternatively expressed
as the; finiteness of gronps A[p] for any p ¢ P, or that any group 4”
15 a direct sum of a finite group and a finite number of copies of Priifer’s
groups.

TeEOREM 8. For an arbitrary class C the following conditions are
equivalent:

(i) if groups 4, B are in C then A ®B is in G,

(i) if a group A is in @), then 4 R4 is in C,.

Pro o.f. Let us suppose that a class @ satisfies (i) and let 4 be any
group in C,. By (1.13.1) and (1.13.6) it follows that A ® A = 3 4? 4%

. P

_Smce all groups A” © A are finite and 4 ®4 is in C,A®Ais ﬁ @, and (i)
implies (ii). .

Let us suppose that a class € satisfies condition (ii). By Lemma 6,
l_)y the prootf qf Le.mm.a 7 and by (1.13.9) it follows that we need only
T,o‘prove that if a tgrswn group 4 is a direct sum of cyclic groups and
Is in C, then 4 ® 4 is in C. Let a he the invariant of the group 4. Since a
is in #%(€), by Theorem 5 there exist functions b in B(€), b in D(C), such
that a(p, #) < b(p, n)+d(p) for all p ¢ P, nelN, d(p) =8 or d(p) = 0.
Thl}s the grouva @ay be represented ag 4 — 4,+A4,, A, having in-
variant b and invariant q, of 4, satisfying oy(p, n) < b(p). Since the
p-components of 4;®4, are A7 4? and [47 ® A7] <b%(p) =b(p), the
group 4, ® 4, is isomorphic with a subgroup of a group ' Z(p=pw
which is in ©; hence 4, ®4, is in €. Pe
. Without any r‘estriction We can assume that b(p,n) > d(p) or

(9, n) = 0 because in the opposite case we can adjoin a group Z(p»)pem

to t;clhe group 4,. Consequently, the group Z(p")"®™™ g A? is isomorphie
With a subgroup of Z(pn)swm because it is: of cardinality < b(p, n) and
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each element of this group is of order < p". Thus A§ QAYC A and
4,84, C 4,. Consequently the group 4,& 4, is in C. -

The~group 4, may be represented as 4, = 4,+ 4; in such a way,
that all values of the invariant of 4, are finite, and all values of the in-
variant of A, are infinite or 0. Then by similar arguments as above we
can prove that the group 4, ®d;+ 4, 04,4+ 4, &4, 18 in C. Since 4, 54,
is in @ by our assumption, 4,& 4, and 4 &4 are in ¢ and the proof
is finished.

Since Z(p®) ®Z (p*) = 0, then by Theorem 8 it follows that a class C
is closed with respect to funetor & iff the subelass of ¢ consisting of all
torsion groups with finite primary components is closed with respect
to functor .

Any torsion group with finite primary components is fully charac-
terized by its invariant in B(Q,). Therefore it is useful to have a formula
for invariant a, of a group A ® 4 in terms of invariant a of a group 4.
It is easy to see that this formula is

alp, n) =la(p, WE+2 Y alp,n)-a(p,m).
m=n-+1

The next theorem will concern funetor Tor:

THEOREM 9. For an arbitrary class €, the following two conditions
are equivalent: .

(iii) if groups A, B are in © then Tor(4, B) is in C,

(iv) if a group A is in Gy then A S A ds in Cy and if b is in D(C)
then d? is in D(C).

Proof. Let us suppose that condition (iii) holds and 4 is any group
in @,. If B is a basic subgroup of 4, then 4 YA~ESE~Tor(E, E)
and consequently 4 ® 4 is in € and then in C,.

If b is any function in D(C), then the group D :p%, Z (p®P® ig in €.
Since by (1.13.6) and (1.13.10) the invariant of the group Tor(D, D)
from @ is equal to b? then b* is in D(€) and condition (iv) is satisfied.

Let us suppose that condition (iv) holds, let A be any group in C
and ¥ its basic subgroup. By Lemma 6 it is sufficient to prove that
Tor(4, A) is in €. We have an exact sequenee 0 —>FE-—»A ~>D—0 (D being

divisible) and, moreover,

0—Tor (B, A)—>Tor(4,4)—->Tor(D, 4)~-0,

0—Tor(E, B)—Tor(E, A)~Tor (¥, D)~0,

) 0—Tor(D, E)—Tor(D, A)-Tor(D, D)—+0;
all sequences being exact because of the purity of E in A. Let us denote
by b the invariant of the group D. The invariant.of the group Tor(D, D)
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is 9?; thus this last group is in €. Since Tor (&, B)~E O F and ¥ is in C,

by Theorem 8 it is sufficient to prove that the group Tor(F, D) is in C.

By (1.13.6) and (1.13.10) it follows that Tor(D, E) = b Tor (D7, BP)
peP

~ Y (EF)'™ By the Theorem 5, the group E may be represented as
4
Eﬂ= E,+E, in such a way that the invariant of K, is in B(€) and in-

variant o, of B, satisfies relation a,(p,n) << b,(p) for some b, in D(C)
such that dy(p) > s, or by(p) = 0. Since a(p, n)-d(p) < ds(p)-d(p) < d(p)
+0,(p) = dy{p), We have (BE® C 7(p™)*® and the group Tor(D, E,)

m Y (BYP® is in @ because b, is in D(E).
peP

On the other hand, if a,is the invariant of E,, then there exist numbers
M (p) such that g(p, n) = 0 for n = M(p). If we wiite G = D Z(p¥@pw),
pepr

then G C D and thus @ is in €. It is easy to see that the group Tor(D, E,)
is isomorphie with E, ® &, which is in C by our assumyption and Theorem 8.
Consequently the group Tor(D, B) is in C.

The last two theorems imply

TuEOREM 10. A class C is weakly complete iff a class C, is weakly
complete.

Proof. In fact, it is sufficient to prove that if @, is weakly complete
and b is in D(C) then d? is in D(C). The function b may be represented
a8 b = b; 4 b, ‘where d, takes only finite values and d,(p) is > &, or equal
to 0. Then 9°(p) = bi(p)+ ds(p) for all p ¢ P and since b is an invariant
of a group Tor(D, D) with D having invariant d,, then b} is in D(€) and,
by (4.2), also b2 is in D(C). ’

Let us consider more closely a case of a clags C consiting of groups
which are p,-primary for some prime p,. If b is in D(G,) then d(p) = 0
for p # p,. Consequently, by the additivity of D(G,), also 92 is in D(C,)
since both values d(p,), d*(p,) are finite and b(p) = 0 for p # p,. If the
group Z(p,) is in G, then also each finitely generated p,-primary group
is in €, and the preceding theorems imply

THEOREM 11. If C is a class and each torsion group in C possesses
only a finite number of non trivial primary components, then C is weakly
complete.

CoroLLARY 1. If a class C satisfies the condition

(v) if A® are p-primary groups in C,, then the group 4 = > A® isin @,

. peP
then C is weakly complete.

CoroLrLARY 2. If a class @ contains a free group of infinite rank then
C is weakly complete.

In paper [1] there was given an example of a class which is not weakly
complete. It may be deseribed in our present terminology as follows:
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Let P = {p,, Ps, ...} be any ordering of the set P. The collection D(€)
consists of the zero function only and a function a is in A(C) = B(C)
iff a(p,n) is finite for all p e P, n ¢ N and

AR
(5.6) the sequence {% \ a(pg, n)} is bounded.
_ k=1,2,...

All of the conditions (i)-(iii) of Theorem 7 are satisfied. If the group 4
bas invariant a in A(C) defined by

alpr, 1) =%k, a(@g,n)=0 for n=2
then its tensor product 4 .4 has invariant a, defined by
(P, 1) =k,  aypg,n) =0 for nu=2,
which does not satisfy (5.6), and thus € is not weakly complete.

§ 6. Complete classes. In this paragraph we give a characteri-
zation of all complete classes. It was proved in[8] that a class C is complete
iff it has the following property

(6.1) if a group A is in C then a group A™ is in © for each cardinal
number m.

For any function b defined on the set P and taking cardinal numbers
as values, let us write :

s(b) = {p e P; d(p) = 0}.

Tt is eany to see that the family J(C) of subsets of I’ defined by the

relation
F(€) = {s(b); b is in D(C)}

is an ideal of sets. )

LevMua 8. If a class € is complete then a function d is in D(C) iff s(d)
belongs to F(C).

Proof. Tf b is in D(C) then s(b) e I(J) by the definition of J(C).

If $(b) € 7(C) then there exists a funetion b, in D(C) such that &(d)
= $(b,); hence for some cardinal number m we have d(p) <m§,(p) for
all p ¢ P. Since @ is complete, md; is in D(C) and hence b is also in D(C).

With each funetion b in B(C) we connect a function ry which maps
the set P into the set of all non negative integers:

(6.2) rm(p)=0 if B(p,n)=0 for all neXN,
75(p) = m if b(p,’m):;é() and B(p,’n)=0 for all » > m.

Of course p™ with m = r5(p) is the least upper bound of orfiers of elements
in the p-primary component of the group having invariant b.

it
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It is easy to see that by property (iil) of (1.1) the set
S(C) = {rp; b is in B(C)} ‘
satisfies the following condition:
(6.3) if v, 7" e S(C) then r' +1" e S(C).
LemMA 9. If a class C is complete then a functio s 1 i
belongs to S(C). function b is in B(C) iff r,

Proof. If 1, ¢ S(C) then there exists b, in B
: ) S by (€) such that r, = »
By rela’mo'ns (6.2) it follows that there exist non negative integer: M,(hl‘
and ecardinal number m such that b(p,n)=0 for n3> M (ﬁ) afd)

mby(p, M(p)) > ZJ,‘Vb(p, n) for all p e P.
ne
Since the class € is complete, mb, is in B(C
¢ s and b : yo(ii
of (1.1) it follows that b is in 2328). ' « v proverty ()
THEOREM 12. If a complete class i i
! contai lorston  fr g
then C s the class of all groups. 1o dorson Jreegroup,
If a class @ consists of torsion i )
, . on groups and is determined (in the sen
(.>/ Theorem (? by collections D = D(C) and B = B(C), then é s e:nf e;i‘e
iff the following conditions are satisfied: P
(i) there exists an ideal 7 of subsets of t i
s in's f s of the set P such that the function b
(i) there exists a set & of functions mappi
here ‘ pping the set P into the set of
non-negative integers, the set S being closed with r it 4
fhat  function & 52 1 B i e cg5 . respect to addition and such
Proof. The first part of the theorem is trivial.

If a class @ is complete and consists of torsion groups, then con-

ditions (i), (i) are implied by Lemmas 8 and 9.

‘hLet us sgppose that conditions (i) and (ii) hold. Since by Lemma 5
feam,%group Gin C may be represented as ¢ = B+ &, B having invariant b
in B(C) and @ being such that for some function b in D(C), we have

1é”]<t’(_'p) - if D(p) =y,

F 2@ i d(p) <.
Thi gr(;)upf Cgm: G'f‘ admits a decomposition G~ B™-- G". The invariant
L= mb o is in B(C) since 75, = 7. If b(p) >, then |GY| < md(p)

and if b(p) < x, then (G°)"~ Z(p=)® !
s5(md) = s(b). ’ (&)~ Z(p™)™". Tt follows that @ is in € since

The condition (4.12) ca ; .
the set © as follows: ) can be expressed in terms of the ideal J and

(iii) If a set P, belongs to 3 th i
for 24 By bt 0., (5, g o then each function v such that r(p) = 0
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For completeness we present here one theorem from [8]:

TraEorEM 13. A class C is sirongly complete iff it is one of the following
classes:

1) the class of all groups,

92) a class of all torsion groups A such that AP =0 for p belonging
to some fized subset Py of the set P.

In terms of the preceding theorem, classes in 2) are characterized
by the principal ideal of all subsets of the set P, = P- P, and the set &
consisting of all functions r such that 7(p) =0 for p¢ P,.

§ 7. Perfect classes. In this paragraph we prove that a class
is perfect iff it is weakly complete (Theorem 14). The most important
tool in the proof of Theorem 14 is Lemma 10, which reduces the study
of the structure of & group Ha(G) to that of homology groups of groups A
and B such that G/4 = B. This lemma is based on the results of [5] ex-
pressed in terms of homology groups.

TEMuma 10. If @ is a class and a group G is an extension of a group A
by a group B and the groups Ha(B, HA)) are in € forp,q>0,p+¢>0
then the groups Hu(@) are in C for n> 0.

Proof. By thé results of [5] (for homology groups), there exists
a spectral sequence {E'} such’ that B ,~Hy(B, Hf{4)) and in the group
H,(G) there exists a sequence of subgroups

(7.1) Ho(@) = Huo6)D Hye1a(@)D . D Hognia( @) =0
such that .
(7.2) Hy () Hp-1411(F) ~Hog

Since B, = Em, for m >max(p, ¢-+1) and the group Ep, (for m > 1)
is a homoraorphic image of some subgroup of HEg4, by our assumption B
are in C for p-+¢ > 0, and consequently the groups HA(G) are in C for
n > 0.

LemmA 11. If B is a finite group, then B ®B~HyB)+ Hy(B)+B.

Proof. We shall proceed inductively with respect to the dimension
of the group B.

If the group B is of dimension 1 then B~ Z(p"™) and HyB) =0,
B®B~B and the lemma holds.

Let us suppose that the lemma holds for all groups of dimension r
and let B be any group of dimension r-+1. Then there exists a direct
decomposition B = B;+Z(p"), B being a group of dimension r. Using
the Kiinneth formula we get H,(B)~ Hy(By)+ Z(p") ®B, and conse-
quently
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B®B~B,®B,+Z(p") B+ Z(p") ® B, +Z(p")
~ Hy(By) + Hy(By) + By + Z(p™) @B, + Z (p™) @ By + Z (p™)
~ Hy(B) + Hy(B) + B; '
thus the proof is finished.

Lemma 12. If B is a finite group, then Huy(B)C B®...®@ B (n-fold
product) for any n > 0. N

Proof. As a result of properties (1.17) and (1.13.1) we can restrict
our considerations to the case of p-primary groups B.

If the group B is of dimension 1 then B~ Z(p™) and formula (1.16.3)
implies the lemma.

Let us suppose, that the lemma holds for all groups of dimension »
and let B be any p-primary group of dimension r-4-1. Let p™ be
the least of all orders of cyclic summands of B; then for some group B,
of dimension r we have B = Z(p™)+ B,. Since all groups Hy(B,), k > 0
are direct sums of cyelic groups of orders > p™, then using the Kiinneth
formula we get

Hy(B)~ Hu(By)+ Z (p™)
where by (1.16.7) we have s = s(n, r+1)—s(n, 7). On the other hand,
since the group Z(p™)® B is a direct sum of groups Z(pm), the group
B®...®B (n-fold product) is isomorphic with B; ®.. ®B,+Z(p™)",
where 4 = (r+1)"—+". By inequality (1.16.7) (iv) we have s < u; thus
by the induection hypothesis follows Hy(B)C B®...® B.

THEOREM 14. A class C is a perfect ome iff it is weakly complete.

Proof. Let C be any perfect class. Then by Lemma 11, by (1.17)
and by Theorem 8 it follows that € is closed with respect to the tensor
product.

If b is any function in D(C,) and D is a torsion divisible group having
invariant b, then by (1.17) and (1.16.8) it follows that H,(D) is the torsion
divisible group with invariant »’ defined by formula

v = ().

Sinee C is a perfect class, b’ is in D(&,), and by relation 22'(p) > b(p) it
follows that »? is in D(C;). By Theorem 9, € is closed with respect to
functor Tor; thus @ is weakly complete. ‘
Let C be any weakly complete class.
Let a group @ be an extension of a group 4 by a group B; since all
the groups considered are abelian ones, then by the description of operators
in H(A) given in [5] (when applied to homology groups) it follows that

the group B operates trivially in H,(4). Hence we can apply the formula
of (1.14) and we get

H}I(B: Hq(A)) ~Hy(B) ® Hy(A)+ Tor (Hp—l(B) ’ Hq(A))

.

On classes of abelian groups 177

By this last formula and Lemma 10 it follows, that if the groups Hy(4),
Hy(B) are in @ for p, ¢ > 0, then the groups Ha(@) are in € for = > 0.
Consequently, to prove that @ is a perfect class it is sufficient to prove
that all groups H(G), » > 0, are in € if & is a group from C and if it is
of one of the following types:

(1) @ is a torsion free group,

(2) @ is a direct sum of finite eyclic groups,

(83) @ is a torsion divisible group.

Type (1). If F(€) = Fn for some cardinal number m > x,, then
the groups Hu(@) are of cardinality < m if @ is in Frn; consequently all
groups Ha(G) are in C.

If F(C) = Fo then any group G which is in Fg contains such an
r-dimensional free subgroup @, that the sequence 0—>G,—G-—>T—0 is

r
exact,.T' is a torsion group which can be represented as T = X T;, and
i=1

primary components of each group T; are cyclic groups or Z(p>). By
formulae (1.16) and (1.17) it follows that H(T;)~T; or 0 for »n > 0;
then Hy(T;) are in @ and by the preceding remarks also H,(T) are in C
for n > 0. Since H,(G,) are free groups of finite rank, Ha(@,) are in C
and consequently H,(G) are in © for n > 0.

Type (2). If & is a direct sum of cyclic groups, then it may be re-
presented as G = Gy+ G, + @, where G} are finite for all p, the invariant
of @, is in B(C) and takes only valnes > &, or 0 and the invariant of G,
is bounded by a funection d in D(C) which takes values > s, or 0.

Since each p-component G of @, is of cardinality < d(p), we have

Hi(Go)~ D) Hal@B)C D Z(™P®  for n>0.
peP peP
This last group is in @; thus Hx(@,) are in € for » > 0.

Since we know that Ha(Z(p™))~Z(p™)" for infinite a and = >0
(see (1.16.5)), nsing the Kiinneth formula we can easily prove that
Hu(G,) C Gy, and thus Hy(G,) are in € for # > 0.

Since, by Lemma 12, Ha(Gy) C Gy ® ... ® Gy (n-fold product) and the
class @ is weakly complete, Hn(G,) are in C for &> 0.

By the Kiinneth formula it follows that all groups Hu(@), » >0,
are in C.

Type (3). If & is a divisible torsion group and b is its invariant,
then Hy(@) =0 for even positive n. Let n be an odd positive integer
and b(p) > 8; then Hy(G")~ 6 by (1.16.6); if b(p) < %, then by (1.16.8)
Ha(6°) e Z(p™)®, where, by formula (iii) of (1.16.8), t(p) <[d(p)I"
Since »™ is in D (@), the groups Ha(@) are in € for all n > 0 and the proof
is finighed.

' 12¢
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Remark. Using the same method as in the proof of Lemma 11 we
can prove that for each finite group B we have Hy(B)-+H,(B)D B®B.
By this relation and the first part of the proof of Theorem 14 it follows
that a class is weakly complete even in the case when the group H,(4)
is in @ for any group 4 from @. This last property is then equivalent to
the perfectness of C. :

For any integer » > 1 and any (abelian if # > 1) group 4 the groups
Hn(4,n) are defined as homology groups of the Eilenberg-MacLane
complex K(4,n). If n =1 then Hp(4,1)= H,(A4). Theorem 14 and
Proposition 6.11 of [6] (p. 304) imply

TEEOREM 15. If C is a weakly complete class and a group A is in G,
then all the groups Hn(4,n), m > 0, are in C.
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A functional conception of snake-like continua

by
J. Mioduszewski (Wroclaw)

It is known [5] that snake-like continua (in short 8C) in the sense
of Bing [2] may be regarded as inverse limit spaces of arcs (closed intervals)
with projections which are continuous mappings onto.

This method of construction will be applied here to an important
class of 8C, viz. to the hereditarily indecomposable SC. The existence
of hereditarily indecomposable SC was shown by Knaster [6]. Bing called
them pseudoarcs. and proved their homeomorphism to one another [3].
I prove that every SC is a continuous image of the pseudoare; therefore,
the pseudoarc will be called here the universal smake-like continuum (in
short USC). This result seems to be a consequence of a certain theorem
of Bing (see [2], Theorem 5 and Lehner [7], Theorem 1), but I intend
to .use this opportunity to exemplify how the method of inverse limits
can be applied to this kind of problems. Therefore, my construction does
not resort to Bing’s geometrical method using erookedness. I nse particu-
larly the uniformization theorem of Sikorski and Zarankiewicz (see [9]
and [11]) concerning continuous mappings- of the closed interval onto
itself.

Waraszkiewicz [12] showed that there exists no continuum of which
an arbitrary continuum would be a continuous image, i.e. would be uni-
versal for the class of all continua. Henceforth, the following question
seems to be interesting: how large is the class of continua for which USC
is still universal?

§ 1. Preliminaries. ‘We ‘consider -SC as inverse limit spaces
X =lm{X,, 7y} of arcs X, with projections =y: Xp—>Xn, m>n,
m,n =1,2,.., which are continnous and ontoe (s, are assumed to be
identities). We assume, for convenience, that X, are closed unit intervals,
ie. Xp = {xn: 0 < 2, < 1}). Consequently, SC are 1-dimensional metric
continua (see theorems on inverse limits in [4]). It is also known that SC
are imbeddable into the plane (see [2] and [5]) ().

(*) A quite elementary proof of the last proposition is as follows.
The inverse limit does not change if we subtitute (even in infinitely many places)
a7th, for 7, where b, is a homeomorphism of X, +, onto itself. Furthermore, every
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