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to (32), implies the equality » = 0. Further, from the linear independence
of ¢, and v the inequality u 5 0 follows. Thus (e; —e¢,)* € 4 (v) and ¢;, (¢, —¢,)*
are linearly independent. Hence and from the isomorphism between 4 (v )
and the complex field it follows that the subalgebra A(e,—e, ) is of

dimension two. Thus A((er—@z) ) = A (v) and, consequently, ¢; eA( 61— €5)° )
By symmetry, we also have the relation e, eA((el~eg)2), which shows
that the subalgebra 4 ((el—ez)z) contains two non-trivial idempotents.

But this contradicts the isomorphism between A((el—ez)z) and the
complex field. The Theorem is thus proved.
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A characterization of abelian groups of automorphisms
of a simply ordering relation *
by
C. C. Chang (Los Angeles, Calif.) and A. Ehrenfeucht (Warszawa)

A binary relation S is a set of ordered pairs (z,y) of elements z and y;
the field of 8, denoted by F(8), is the set of all elements » for which there
exists an element y such that either <z, y) eS8 or (y,z> 8. A binary
relation S is a simply ordering relation if for any elements z,y, 2 eF(8),

(i) <z, x>el,
(ii) for x # y, either {(z,y> S or (y,m) e 8, but not both,
and

(iii) if <@, yd> ¢ 8 and (¥, 2) €8, then <{z,2>¢f.

A set X is said to be simply ordered by a relation 8, if 8 is a simply
ordering relation and X C F(§). Two binary relations § and T' are iso-
morphie, in symbols § = 7', if there exists a one-to-one mapping 7 of F(S)
onto F(T) such that for z, y e F(8), {x,y> e 8 if and only if {f(z),7(y
The mapping f is called an isomorphism of 8 onto T. If the range of f is
a proper subset of F(T) then f is an isomorphism of 8 into T} if §and T
are the same relation, therr the isomorphism onto is called an automorphism
of 8. Given a binary relation S, the set of automorphisms of 8, denoted
by G(8), is a group under the usual operations of functional composition
and inverse: In this paper we are interested in those groups G(8) which
are groups of automorphlsms of a simply ordering relation 8. We shall
prove the following theorem. Let G be an ‘abelian group. A necessary
and sufficient condition that G be isomorphic to a group G(8), for some
simply ordering relation 8, is that & be isomorphic fo a direct (cartesian)
product H @; of groups @; each of which is a subgroup of the additive

group of real numbers. This result will be provided as a consequence to
several lemmas.

* This paper contains results announced by the auﬂmrs in [l] a.ml [2] Tha ﬁrst
named author was supported by a grant from the National
of the type we consider here were presented by Goffman [4].
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If § is a binary relation, we sometimes write 28y for the expression
&, y; 8. We introduce the notion of a type o of a relation § in such
a manner that if ¢ is the type of § and 7 is the type of T, then ¢ = ¢ if
and only if S~ 7. The type of a simply ordering relation is called an
order type. It is quite clear that if 8~ T, then G(S) is isomorphic to Q(T).
Thus no ambiguity is introduced if we let G (o) stand for the isomorphism
class of groups G(S) where § has type o.

‘We shall assume that ordinals have been defined in such a way that
each ordinal coincides with the set of smaller ordinals. We also assume
that cardinals have been defined as those ordinals which are not set-
theoretically equivalent with any smaller ordinal. The Greek letters
a, 5y, » (with appropriate subscripts) shall denote ordinals and cardinals.
It is clear that the membership relation restricted to each ordinal deter-
mines a simply ordering relation; furthermore, the membership relation
is a well-ordering relation. If « is an ordinal we also let the symbol «
stand for the order type of the well-ordering relation determined by a.
If o is a well-ordered type, we let o* denote the inversaly well-ordered
type obtained from a. '

A binary relation § is a subrelation of a relation T if § C T. In a similar
mann.er, we can speak of a type o being a subtype of a t;pe 7. A simply
ordering relation S is densely ordered, if

(i) F(8) contains at least two elements,

(ii) if #8y and 5%y, then there exists a z e I (8) such that 2 # z,
Yy # 2, 28z and 28y.

A simply ordering relation is scattered if no subrelation of § is densely
ordered (*). Since the notion of isomorphism among relations preserves
the properties of being densely ordered and being scattered, we can extend
the definitions to order types. ’

‘We assume that the reader is familiar with the notions of an ordered
sum 8+ T' of relations § and T, an ordered sum o-+7 of types o and 7,

an ordered sum 1_21' 8; of relations §; over a simply ordering relation 7,

and an ordered sum i; o; of types o; over a simply ordering relation 7 (3.

In this note, we shall use these notions only for simply ordering relations
and .types. Using the notion of +, we can speak of the imitial, middle
or final segments of a simply ordering relation or type (3). Cleal,'ly eacﬁ
segment of a type ¢ is a subtype of o; however, a subtype of an70rder
type o need not be a segment of ¢. If fe@(8) and R is a segment of §,
then we say that 7 is fized on B whenever f maps F(R) onto F(R). It i;

(*) These definitions are found in 5] '

(*) For a comprehensive treat i
e n e [GI])_ eatment of these notions, we refer the reader to [6].
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clear that if R is a middle segment of § such that § = T+ R+ U and
if f is fixed on R, then f must also be fixed on T and on U. It is also clear
thatif f is fixed on R, then the mapping f restricted to F'(R) must be in G(R).
Whenever no ambiguity can arise, we shall speak of order preserving
mappings which map order types (or segments thereof) onto other order
types (or segments thereof) rather than the mappings which map the
corresponding relations on relations. In terms of the notions introduced
so far, we state in what follows several well-known facts concerning
densely ordered types, scattered types, and well-ordered types.
(I) Bvery finite type is a well-ordered type.
(IT) Ewery well-ordered (inversely well-ordered) type is a scattered type.
(IIT) EBvery well-ordered (inversely well-ordered) type admits only the
trivial automorphism.
(IV) HEwery segment (containing more than one point) of a densely
ordered type is also a densely ordered type.
(V) No well-ordered (inversely well-ordered) type contains as a sub-
type any infinite inversely well-ordered (well-ordered) type.
(VI) If T is a densely ordered type, a; are non-zero scaitered types,
then every segment o of the ordered sum 21: o; which contains points from

2
more than one of the seyments o; is not scatiered.

We begin by constructing some order types which admit only the
identity mapping as an automorphism. Let E be the usual ordering re-
lation over the set of all rationals. Thus, ¥(R) is the set of all rationals
and R is clearly densely ordered. Let » be an enumeration of the rationals,
i.e. % is a one-to-one mapping whose domain is F(R) and whose range
is the set of finite non-zero oridnals. According to our convention, for
“each ieF(R), # also denotes the finite order type determined by ;.
Let © = ), .

LR

LEvnea 1 (4). The order type v admits only the trivial automorphism.

Proof. Let f be an automorphism of 7. Aussume that f is not the
identity mapping. Then there exists an 4 ¢ F'(R) such that the segment »;
is mapped by either f or /" onto a segment o of = where ¢ is not contained
in any segment x; for j ¢ F(R). By (I) and (VI) we see that while x; is
scattered its image under f (or f) cannot be scattered. This is a con-
tradiction. Thus G(r) is the one element group.

LemMA 2. If a is a well-ordered type, then the type a*+7+a admits
only the trivial automorphism.

Proof. Let f be an automorphism of o*+7+a. By (IV) and (VI)
every proper initial or final segment of = is not scattered. By (I1), f must

(*) The type  has also been defined in Morel [6], p. 70, and the fact that 7 has

no non-trivial automorphism is used in a proof therein.

Fundamenta Mathematicae, T. LI 10
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leave each of the segments a¥, 7, and o fixed. By Lemma 1, f is the i i
. ; . . e identity
on r; by (III), f is the identity on a and o*. Thus f is th i i i
on a*+t+a. ! ® identity mepping
'LEMMA 3 (%). If for .each iel G;=G@(8) for some simply ordering
;:ela'twn 8;, then there ewists a simply ordering relation S such that G(8)
is isomorphic to the direct product [| ;.
i€l
) Pro‘_:of. ‘With no loss of generality, we assume that the index set I
is a @dmal ﬂ (8 may be a finite eardinal). Let T; be the natural well-
ordering relation whose field is 8, and, for each y € 8, let T, be the initial
:seg.m.ent of _’_(’ﬁ determined by y. Let g, be the type of 8, and let.a be an
infinite cardinal greater than each of the powers of §,. For each y ¢ B
let », = o,+a*+7+a and let o = > »,. ’
»Tg
Let f be an automorphism of ¢. We shall prove that

(1) for each y e, f leaves the middle segments o, and v, of o fized
In order to prove (1), we first prove by transfinite induction that
(2) for each y < B, f leaves the initial segment D) v of o fimed.
T,
. .. - . .. Y
. hIf we consider the un(.lerlymg pairwise disjoint relations, the definition
of the ordered sum ) », is determined by a union of sets. Thus, in order

3

to prove (2), it is sufficient to show that
(8) for each y € B, if f leaves the initial segment 2wofo fized, then f
4,T.

also leaves fived the initial segment Z vs oj' o. 7
. 1

Y

W i =
e write ) v, = (d%‘ v5)+v,,, and let us assume that f is already

8,T,+1
. 7 Ty
fixed Ona,; vs. Assume y+1 < g, and we write
¥

g = 2v,,+(o',,+a"—|—-r+a)+a'.
5T,

If { does not leave the middle segment o, fixed, then by the fact that f

leaves i i i
a% v fixed the image of o, under either f or £ must contain an

1;}111:13,1 se.gmgg sz c;;. hSigce adwas 80 chosen that its cardina]ity exceeds
cardinali ch 8, and since every initial segment of «* h
: s th
z?lu;e I;;’WGT a8 a, We see that this leads to a contradiction. Thw:l f isaﬁxes
on S,e.e 1?171 :tmmﬂa:rf o m?gumﬁxe ;notl,l but tTh}is ti;ne appealing to (II), (IV), and (VI),
A : ' »,. Therefore (3) is .
gives us immediately both (2)y and (1). {9V proved. Our proof of (3)

(*) The lemma was also known to Anne Morel
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We now construet 2 one-to-one mapping g of G(s) onto I16, as
yep
follows: for f e G(o), g(f) is such an element of [] @, that the value of g(f)
— vEB

on each y € B is the automorphism induced by f on o,. The mapping ¢
is clearly a homomorphism onto [] @,. By Lemma 2, f is always trivial
veB

on each final segment of », of the form a*-+7+a. Thus the mapping ¢
is one-to-one.

Tmmma 4. Buvery proper subgroup G of the additive group of real
numbers is isomorphic to some G(8). -

Proof. We shall construct an order type ¢ which will be the type
of 8. Let X be the set of all real nunibers and let the cosets of @in X
be deneted as usual by #/G. Let h be any one-to-one mapping of the set
of cosets #/@ into the set of infinite cardinais. For each real number # e X,

let
#(t) = h{E]GV*+T+h(tG) .

By Lemma 2, each x(t) is an order type which admits only the trivial
antomorphism. Furthermore, for real numbers &, and &, x(}) = x(%) if
and only if #,/& = t,/G. It is also clear that if t, and 1, belong to different
cosets of G, then by (V) no initial segment of x(t,) is & final segment of
#(t,). Let T be the natural ordering relation among the real numbers and
let 0 = ‘ZT] (1) ) ;

For t e @, let f, be that automorphism of o which maps each segment
#(8), 8 ¢ X identically onto the segment »(t-s). Since s and -8 belong
to a single coset of @, x(s8) = »(t+8) and we see that f; is a well-defined
automorphism of ¢. We now prove that

(1) every automorphism of o 48 equal to some fi, te@-

Let f be an automorphism of o. From our construction of ¢ we see
that '

(2) no segment x(s) of o can be such that its image under | or i
contains poinis from more than one segment x(t), te X.

It follows from (2) that under f each segment x(s) must be mapped
onto another segment x(f) where x(t) = »(8), i.e. Y@ = s/G. We. define
a2 one-to-one order preserving mapping g induced by f on the elements
of X as follows: for each s X, g(s) is that element ¢ of X such that the
segment x(s) is mapped by f onto the segment (). It is clear from the
definition of g that s and g(s) belong to.the same coset of @ and that g
is an automorphism of X. Furthermore, since s and g(s) belong to the
same coset of @, for each & ¢ X, there exists an element #; ¢ @ such that

g(8) = ts+8.
10%
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In order to complete the proof of (1), we show that

(3) there exists a te @ such that for each s e X, g(s)=t+s.

Assume (3) does not hold, then the following two cases exhaust all
the possibilities. Either

(4) there ewist s;,8,¢ X and ty,1, ¢ G such that s, < 8y, <1, g(sy)
=148 and §(s;) = {3+ 8,
or else

() there exist $1, 8¢ X and 1,1, € G such that s, < sy, &, <ty g(s,)
=148 and §(8;) = t,+8,.

) Let us consider (4) first. Since ¢ is a proper subgroup of X, there

exists an element s; e X—@G such that #, < s, <1,. We define the set

Y={seX; s<s, and g(s) = t,+s where t, ¢ @ and %, < s,} .

Clearly s, e Y and s, is an upper bound for the set ¥. Therefore there
exists a least upper bound for ¥, let it be s,. Suppose that g(s,) is such
that g(s,) > s;+8,. Since ¢ is an automorphism of X, there exists some
8¢ X such that g(s;) = s+, and s; < s,. Now, for each s¢ ¥, s<s,
9(8) = ts+8 < 83+8, = ¢(85). Hence, for each s ¢ ¥, s < 85 and 5 is a.nothelZ
upper bound for ¥ smaller than s,. This is a contradiction. Suppose
on the other hand, g(s,) < s;-+s5,. Then there exists an s; such that g(s-;
=8;+8, and g(s;) = -+ 8;. Clearly s, < s; and, by the equality 83—|—;‘4
=tg+ 85, We have 1, < s;. Since s, < 5,, We have ¢(s;) = 83-+8, < ty+8,
= g(sg)‘ and 8; < 8,. Thus s;¢ ¥ and 8, < 5 which again leads to a con-
tradiction. The last possibility that g(s,) = s;+s, contradicts the fact
that s, must not be a member of @ Thus (4) can not hold.

Assume that (5) holds. We consider the functions 7' and g7 If (5)
holds for f and ¢, then (4) holds for * and ¢~". By what we have already
shown, (5) can not hold. Thus (4) and (5) fail, hence (3) Liolds. The mapping
from ¢ to f; is the required isomorphism of @ onto G(o).

o soalzmamég )E_)' Every subgroup of the group of real numbers is isomorphic

Proof. By Lemma 4, it is sufficient to show that the group of all
real numbers is isomorphic to some proper subgroup of itself. As it is
well known that the group of all reals is a continuum weak direct product
of the group of rationals, it is easy t0 construct an isomorphism of the
group of real numbers onto a proper subgroup of itself.

LeMwA 6. Let an abelian group G be isomorphic to some G(8). Then G

48 isomorphi i . J
of the rglsi(c")fo a direct product of groups G; each of which is a subgroup

" T :

o 001(1 1)1 gyg;?iley; uih;r:;lfﬂilsors dls(;ove]red this result independently of those results
- very closely related to t! i i i

to rely entirely on the results already }{ublished. ° thoseidoas n 3], we have decided

Characterization of abelian groups 147

Proof. From a result of Cohn (3], Theorem 1, p. 43) we see that G
can be represented as a direct product of groups @; each of which is the
group of automorphisms on §;, a segment of . Since & is abelian, each G;
is abelian. Thus by Theorem 3 on p. 47 of [3], each @; is orderable. If we
now examine the last part of the proof for Theorem 3 ([3], p. 49), we
see that Cohn proved there that if each G; is orderable, then each G is
archimedean with respect to the ordering. This fact together with the
classical Tesult on archimedean ordered groups prove that each G; is
isomorphic to a subgroup of the reals. Thus, the lemma is proved.

TEEOREM. Let G be an abelian group. G 4s the automorphism group
of some simply ordering relation 8 if and only if G is isomorphic to a direct
product of groups G each of which %8 a subgroup of the reals.

Proof. By Lemmas 3, 5 and 6.
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