On the structure of a class of archimedean
lattice-ordered algebras *
by
M. Henriksen and D. G. Johnson (Lafayette)

By a ®-algebra A, we mean an archimedean lattice-ordered algebra
over the real field R which hag an identity element 1 that is a weak order
unit. The ®-algebras constitute the class of the title. It is shown that
every @-algebra is isomorphic to an algebra of continuous functions
on a compact space X into the two-point compactification of the real
line R, each of which is real-valued on an (open) everywhere dense subset
of X. Under more restrictive assumptions on A, representations of this
sort have long been known. An (incomplete) history of them is given
briefly in Section 2.

The compact space in question is the space W(4) of maximal
l-ideals of A with the Stone (= hull-kernel) topology. The gubset 4*
of bounded elements of 4 is also a @-algebra, and W (4*) is homeomorphic
to M(4).

The class of @-algebras includes, of course, all lattice-ordered algebras
of real-valued functions that contain the constant functions. In addition,
it containg the algebra B, of Baire functions modulo null functions, and
the algebra L, of Lebesgue measurable functions modulo null funections,
on the real line R. It is well known that neither of these is isomorphie
(even as a vector-lattice) to any algebra of real-valued functions.

If M eNM(A), then A/M is a totally ordered integral domain con-
taining R. If 4/M = R, then M is called a real maximal ideal; otherwise
it is called hyper-real. R (A) denotes the space of real maximal [-ideals
of A. If A is an algebra of real-valued functions, then “R(4) is dense
in WP(A4), but R(B,), and R(L,) are empty. If a4, then “R(a) denotes
the set of maximal [-ideals of A such that M (ja]) is not infinitely large.
For each a e A, R(a) is dense in WP(4).

We have summarized the main results of Section 2. In Section 3,
we invegtigate ®-algebras that are wuniformly closed, i.e. every Cauchy
sequence of elements of 4 converges in 4. It is an easy consequence of
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the Stone-Weierstrass theorem that if A is uniformly closed, then A*
and the algebra C(U(4)) of all continuous real-valued functions on
M(A) are isomorphic. Moreover, if A is uniformly closed, and a4,
then every bounded fe 0(%R(a)) has a continuous extension over ((4).
Not every @-algebra is a sub-@-algebra of a uniformly closed @ -algebra
with the same space of maximal [-ideals.

For any compact space X, let D(X) denote the set of all continuous
functions into the two point compactification of R each of which ig real
on & dense subgpace. While .D(X) need not always form an algebra, we
show that A = D(N(A)) if and only if 4 is uniformly closed and overy
element of A is either a divisor of zero or has an inverse,

Congider the @-algebra 4 as a subset of ])(‘7/((11.)). If a0)C
N(A)~R(D) for some be.A implies that ¢ is contained in no proper
l-ideal of A, then A is said to be closed under [-inversion. A ®-algebra A of
real-valued functions is said to be closed wnder inversion if ovm:y olement
of 4 that is eontained in no real maximal I-ideal of A4 iy contained in
no proper [-ideal of A. The consequences of these postulates, and the
relations between them are investigated in Section 4.

‘ In Section 5, we obtain internal characterizations of the algebra
C(Y) for several clagses of topological spaces. A mnecessary, bui not
§ufﬁcient condition that a @-algebra 4 be isomorphic to some CO(l)
Is that 4 be a uniformly closed algebra of real-valued functions that
is closed under inversion. By adding to these conditions we obtain char-
acterizations of C(\Y) in case U/ is either Lindeldf, locally compact and
o-compact, extremally disconnected, or discrete. -

@-algebras are also f-rings in the sense of Birkhoff and Pierce, and
we rely on known results on the structure of f-rings given by these authors
in [4], and given by D. Johnson in [23]. We also rely heavily on known
theorem§ on the algebraic structure of the ring O(.). In Section 1, we
summarize enough necessary background material to keep this paper
%‘ea.sonably self contained. For more background on (1), the rveader
18 referred to [16].

We are indebted to C. Goffman for a number of suggestions and
references. We are especially indebted to M. Jerison for xm.i.tn‘y valuable
conversations concerning this paper while it was in progross.

_ 1. Definitions and preliminary remarks. By « lattice-ordered
ring A(+,, v, A), we mean a lattice-ordered group that i a ring in
whieh the product of positive elements is poa,it.i'vd. If, in addition, 4 is
a (real.) vector lattice, then A is called a lattice-ordered algebra, ,

. Birkhoff and Pierce have called a lattice-ordered ring A an f-ring
if, for @,b,0ed, anb=0 and ¢ 0 imply acAb=capb =0 ([4].
Tt 4 is also a vector lattice, then it is called an f-algebra. A lattice-ordered
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ring A is called archimedéan if, for each a ¢ A which is different from 0,
the set {na: m = 41, 42, ...} has no upper bound in A. Birkhoff and
Pierce have shown that every archimedean f-ring is commutative.
(Indeed, they have shown that associativity is a consequence of the
remaining postulates for an archimedean f-ring ([4], Theorem 13, ff.).)

1.1. Let A be a ring of real-valued functions on a set d, under the
usual pointwise addition and multiplication. Suppose that for every
7,4 ¢ A the function fvg defined by (fvg)(z) = f(z)vg(®) for all zed,
and the function fag defined by (fAg)(x) = f(#)ag(w) for all med,
are in 4. Then A is an archimedean f-ring. In particular, the algebra
C(<Y) of all continuous real-valued functions on a topological space af,
and the subalgebra C*Q) of bounded elements of C(Y), are archimedean
f-algebras with the same identity element (the constant function 1).

1.2. Let B denote the set of all Baire functions on the real line R,
and let & denote the set of all measurable functions on R. Under the
ugual pointwise operations, these are archimedean f-algebras with identity.
Tet B, and £, denote, respectively, the f-algebras obtained from B,
respectively £, by identifying functions that coincide almost everywhere.
Then B, and &, are archimedean f-algebras with identity, but neither
is isomorphic (even as a vector lattice) to an algebra of real-valued
functions. (See [17], and [19].)

1.3. If A is a lattice-ordered ring, then, as usual, we let A+ = {a ¢ A:
a>0). For acd, let at =av0, a-=(—a)v0, and |a|=aVv(—a). Then
atha— =0, and

(i) @ = a*—a~, and

(i) |a| =a*+a.

If, in addition, 4 is an f-ring, then

(iii) a® >0 for each aeAd, and

(iv) |ab| =|a}p] for all a,deA.

For proof, see [4]. (But, note that these authors define a- = —(—a)VvO0.)

1.4. The kernel of a homomorphism of a lattice-ordered ring 4 into
a lattice-ordered ring B is called an [-idéal. (We assume, of course, that
both the ring and the lattice operations are preserved by homomorphism.)
An [-ideal of A is a ring ideal I which satisfies: @ eI, b e 4, and || < |a|
imply bel. If A has an identity element, then every proper [-ideal
of A is contained in a maximal [-ideal of A.

If 4 is an f-ring, and M is a maximal [-ideal of A, then A/M is
totally ordered. Indeed, 4 is an f-ring if and only if A is a subdirect
union of totally ordered rings ([4], p. 56).

Every maximal ideal, and every prime ideal of a 0(%) is an [-ideal
([16], Chapter 5).
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1.5. DEFINITION. A @-algebra is an archimedean f-algebra with identity
element 1.

Ag remarked above, every @-algebra is commutative. The purpose
of this paper is to describe the structure of @-algebras.

In [28], D. Johnson gave a structure theory for f-rings analogous
to the Jacobson theory for abstract rings. We now quote, in the special
context of @-algebras, some of these results.

An f-ring A is said to be [-simple if A% £ {0}, and if it contains
no non-zero proper [-ideals. (Note that every [-simple f-ring is totally
ordered.)

1.6. If A is a ®-algebra, then

(1) the intersection of all maximal [-ideals of 4 iy {0,

(if) every maximal [-ideal M of A is a prime ideal; indeed, .A/M
is a (totally ordered) I-simple f-algebra without non-zero divisors of %6ro,

(iii) every prime [-ideal of A is contained in a unique maximal
[-ideal of A, and

(iv) if I is an [-ideal of 4 disjoint from a multiplicative system T
of 4, then I is contained in a prime [-ideal of 4 disjoint from 7. See [3],
Chapter I and II.

1.7. A maximal [-ideal of a ®-algebra A need not be maximal as
a ring ideal of 4.

For, let B+ denote the space of nonnegative real numbers, and let 4
denote the @-algebra of all continnous functions on R+ that are even-
tually polynomials. That is, f e A if and only if fe ¢(R*), and there is
& y e R* and a polynomial p such that f(z) = p(z) for all z > y. It is
easily verified that M = {f e A: f is eventually 0} is a maximal [-ideal
of A. Clearly M is not a maximal ring ideal of A.

1.8. A lattice-ordered algebra A is called complete (respectively,
o-compleie) if every (respectively, every countable) bounded subset of 4
has a least upper bound. Every o-complete lattice-ordered algebra with
identity is archimedean ([4], p. 65). )

1.9. We now review some known facts about the D-algebra C()f)
of all continuous real-valued funetions on a topological space /.

(i) Every C(f) is isomorphic to ¢ (/) for some complotely regulay
(Hausdorff) space ', so, in studying the structure of ¢(lf), thore is
no loss of generality in assuming that J is completely regular.

A subspace I of a space ‘)f is said to be C*-imbedded in it every
f € 0*(d5) has an extension 7 ¢ 0*(1)). ) ‘

(ii) Every completely regular space 'Uf is (homeomorphic to) a dense
fsubspaee of a compact (Hausdortf) space -/ such that ' s is C*-imbedded
In pY. I KA is & compact space containing “Jf as a dense subspace, and

Archimedean lattice-ordered algebras 77

Qy is O*-imbedded in <X, then there is a homeomorphism of g/ onto X
keeping < elementwise fixed. U/ is called the Stone-Cech compactifi-
cation of “Uf.

(iii) Let </ be a dense subspace of a compact space 9. Then, i_n
order that there exist a homeomorphism of g9/ onto X keeping <V
pointwise fixed, it is necessary and sufficient that whenever f;, fo € C*(V/)
with £740) A f>%(0) = @, then f7*(0) and f7*(0) have disjoint closures
in X.

(iv) If f is a continuous mapping of a completely regular space U
into & compact space S, then there is a continuous extension f of f over
BoY into .

For proofs, see [16], Chapter 6.

1.10. If 4 iy a P-algebra, then A*={aecA: |a] <A-1 for some
AeR} is also a @-algebra. A* is called the subset of bounded ele-
ments of 4.

1.11. In a vector-lattice 4, an element a ¢ A+ iy called a weak order
unit of A4 if bed and andb =0 imply b =0, and it is called a sirong
order unit if b ¢ A+ implies b < na for some integer n. Clearly the identity
element 1 of a @-algebra A is a weak order unit, and it is a strong order
unit if and only if 4 = A*

Indeed, an archimedean lattice-ordered algebra 4 with identity
element 1 is a @-algebra if and only if 1 is a weak order unit of A ([4],
p. 61).

1.12. A ring A4 is called regular, if for every a e A, there is an & ¢ A
such' that aze = a. It is easily seen that the examples B, 8, B, and &,
of 1.2 are regular.

2. The representation theorem. If X is a compact space,
let D(S) denote the set of all continuous mappings of X into the two-
point compactification yR = B {4oo} of the real field B that are
real-valued on an (open) everywhere dense set. The elements of D(X)
are called extended (real-valued) functions. v

Tor each feD(9X), lot R(f) denote the set of points at which f is
real-valued, and let 9U(f) = X ~R(f).

Let f,geD(%X) and 2e¢R. Then the functions if, fvg, and fAg
defined in the usual manner (i.e., pointwise) are in D(%X). If there arve
functions h, ke D(X) which satisfy

h(w) =f(@)+g(@), K@) =](®) g(x)

for each @ ¢ R(f) ~R(g), then h and & ave called the sum and product
of f and ¢, and are denoted f-+g and f.g. Sinece R(f) ~R(g) is depse
in &, these operations are uniquely defined. However, as the following
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example shows, D(X) is not, in general, closed under addition and
multiplication.

2.1. BExamrLe. Let X = N u {w} denote the one point compacti-
fication of the discrete space N of positive integers. Let fy(a) == % --sing,
fol@) = (1/m)sine, g(2)=—a if e, and lot fi(w)=co, fyw)=0, while
g(w) = —oo. Then f;, fo, and g € D(X), but neither f, + g nor f,¢ is defined.

A subset A of D(X) closed under all of these operations will be
called an algebra of extended functions on X. Note that any such 4 will
be archimedean.

2.2. PROPOSITION. D(X) 4s an algebra of emtended functions if and
only if each open, everywhere dense Fo-set in X s O*-imbedded in X.

Proof. Suppose that each open, everywhere dense F,-subset of o

is O*-imbedded. Then, for f, geD(X), R{f) ~R(g) is *-imbodded
in X. 8o, by 1.9 (i), ) = B("R(f) ~ R(g)), whence by 1.9 (iv), f-+¢ and
79 € D(X). It follows that D(X) is an algebra of extended rfurn‘(nti(‘)'lm.
. Conversely, suppose that o is an open, everywhere dense J,-set
in & on which iy defined a bounded continuous real-valued function f
without a continuous extension over X. Now X~c iy a closed @,-set
in the compact space 9, so there is a ge O(X) such that ¢ > 0 and
g7(0) = X ~d. Bince g-(0) is nowhere dense, 1/g e D(CY). The :'l‘fu'nevtion h
defined by

1 T “ 14 N J
hix) ={ g(@) +fH@), if wed,
v oo if w¢cS

"is in D(%). But h—1/g¢ D(X), since h(w)—g%@xf(w) it geds.

The condition of 2.2 indicates two large classes of examples of
compact spaces X such that D(X) is an algebra. First, if every closed
Gf’ in X has a non-empty interior (e.g., if 9 is the one point compacti-
fication of an uncountable discrete space), then D(X) = C(X).

4 completely regular space If is called an 7 -space if for every
feO(Y), there is a ke O(%Y/) such that f = E[f|- I£ 2 iy any locally compact
a-copapqet space, then £/~ is an F-gpace. 'V is an B -gpace if zhnd’
only if Uf~f70) is C*-imbedded in Y for every fe C(Y). (For proofs
see ['14], Section 2, or [16], Chapter 14.) Thus the compact ,Zf’-la'pmms:
provide a second clags of spaces for which the condition of 2.2 holds.

1} completely regular space !/ is called extremally disconnected (‘1'6~
gpectwely, basically disconnected) if the closure of' avery open setb
grespectively, every open set of the form ‘)f~7"(0) for some f e 0 N
Is open. Every basically disconnected space is an F-gpace. That D(2X)
is an algebra in case I is basically disconnected hag long been known
(cf., e.g., [26]). If I/ is completely regular, then C(‘Y) is o-complete
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(respectively, complete) if and only if 7/ is basically (respectively, ex-
tremally) disconnected. This statement remains true if “C(f)” is replaced
by “O%)”, Tt follows that <Uf is basically or extremally disconnected
if and only if' g9/ is ([14], Section 8, [16], Chapter 6).

Let A denote a @-algebra, and let 9 (A4) denote the set of maximal
[-ideals of 4. The Stone topology on M {4) is defined in the following
way. Tor any o C W (4), the kernel k() of S is (M {M: M e S} (where
it is understood that k(@) = 4). If I is an [-ideal of 4, the hull h(I)
of Iis {M e M (4): M DI} A subset &5 of W(A) is said to be closed if
o§ =1 (k(c5)).

Tt is readily verified that with this definition of closed set, W(4)
becomes a Tp-space such that every open covering has a finite sub-
covering. These assertions can be verified by examining [22], [12], or
the more abstract formulation given in [2]. Unless otherwise stated,
N (A) will denote the topological space defined above. Note that the sets

W) = {M eNM(A): ae M}

for @ e A, form a base for the closed sets in W (4).
The main result of this section is the following representation theorem.

2.3. TuHEOREM. Hvery ®-algebra A is isomorphic to an algebra A
of extended functions on NL(A). Moreover,

(i) W(A) is & compact space (in particular, it is & Hausdorff space),
and

(ii) if S, and S, are disjoint closed subsets of WI(A), then there is an
@ ed such that B[] =0, a[J] =1, and 0 < T < L.

Proof. If a e A, and M W (A), let M (a) denote the image of & under
the natural isomorphism of 4 onto A4/M. With each « ¢ 4, we associate
a function @ on M (A4) into yR as follows. If a e A, let

a(M)=inf{leR: M(a) <A}
(where inf@ is understood to be +oo). If a e 4 is arbitrary, let
a(M) = ar (M) —a~(M).

Since atAa- = 0, either M(a+) =0 or M(a~) =0, so @ is well defined.

Let A denote the collection of all functions @, for a ¢ 4. The mnext
two observations are easily verified.

(1) If 1 denotes the identity element of A4, then 1 is the constant
funetion 1, and A-1 =4 for all AeR.

(2) For each aed, and A¢R, (a+1) =a+4 and ia = .

For each ae A, the set {M e M (A): M(a)> 0} ={MeN(4A): M(a*) >0}
= {M ¢ M(A): a+¢ M} is a basic open set in (4). We use this fact
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to demonstrate continuity of @ at each point M, of W (4). We may
agsume that @(M,) = 0.
Suppose first that @(M,) = +oo. Then, for each Ae¢R, the set
{M W (A): @(M)> A} contains the open neighborhood
{MeM(A): M(a)>A+1} = {M M (A): M(a—1—1)> 0}
of M,. Hence @ is continuous at M,.

It a(M,) = 2¢R, then for each real £>>0, the set {M ¢ W (4):
A—e < a(M) < A+¢} containg the open neighborhood

{MeN(A): A—e2 < M(a) << A-+4/2}
= {M «N(A): M(a—~2A+5/2)> 0y ~{M e N (A): M(~a-+A-te2) > 0}
of M,. Thus, we have proved.
(3) For each ae 4, @ is a continuous mapping of W (4) into pI?.
Now let M, and M, be distinet maximal [-ideals of 4, and choose
a positive element ¢ in M, but not in M,. Then, by 1.6 (i), since Al M,

is an [-gimple f-algebra, there is a b e A+ guch that My(ab) = 1. Lot
¢=uabAl. Then (M) =0, and &(M,) = 1. So, by (3),

{MeM(A): e(M) <3} and {MeWM(A): (M) > 2}

are digjoiny open neighborhoods of M, respectively M,. Ilence ‘N (A)
is a Hausdorff space. Indeed, as remarked ahove, M(4) is compact.
Thus (1) has been established. '

Now (i) holds when o, and o, each consist of a single point.
A standard compactness argument may be used to extend this first to
the case in which o, consists of a single point and o, is arbitrary, and
then to the general case.

For each a ¢ 4, let R(7) = (M « N (A): {@(M)| # oo}, We will show
that R(z) is dense in W(4). For, suppose that b e A+, and M (b)=0
for all M «‘R(a). Then, for n=1,2, ..., Mn(baL) =0 it M eR(a),
and M(n(bal)) < M(|a|) it M ¢ R(@), so n(bAl) << |al. Thus, since 4
is archimedean, bA1 = 0. But, by 111, 1 is & weak order wnit of 4,
80 b = 0. Thus, each Ze 4 is a continuous function on NM(4) into yR
that is real-valued on a dense subset. Fence

(4) ACD(M(4)).

We now define operations on A by inducing those of (W (4)) on it,
an;i pj:oeeed to show that the mapping «-+a@ is an isomorphism of 4
onto 4.

S_uppc_)se that @, b e A, and let M « R (@) AR(D). Tt iy casily verified
that (@+b)(M) = (a-+0)(M) and that ab(M) = ab(M). Sinco a--b, and
abe ACDON(A4)), a+b and @b exist and ave in A.

If @ ¢4 is such that @ = 0, then for each M W (a), M(a) = 0 or
| M ()] is infinitely small. Hence M (nla[) < M(1) for each positive integer
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n, and for all M e “M(4). Since A is archimedean, |a| = 0, whence a = 0.
Thus:

(B) @ =0 implies @ == 0.

The lattice operations induced on A by D(W(4)) yield the usual
pointwise order on 4. Hence our proof of Theorem 2.3 will be completed
ag goon a8 we show that

(6) aeA+ if and only if @e A+

If @3> 0, then a-(M) =0 for each M ¢N((4), 8o a~ =0 by (5).
Conversely, if @0, then clearly @ > 0.

This completes the proof of Theorem 2.3.

There are a large number of repregentation theorems similar to
Theorem 2.3. The earliest seems to be due to M. H. Stone, and requires
that 4 be (conditionally) o-complete ag a lattice ([34], [35]). Similar
theorems were obtained by Dieudonne ([7], [8]), Nakano ([31]) and
Yosida ([37]). Representations of A as a vector lattice abound; Birkhoff’s
book [3], Chapter 15, and the latter’s paper with Pierce, [4], contain
several such references. Particular care has been given by Kadison ([24]),
and Kakutani ([25]) in case 4 has a strong order unit. The work of Fell
and Kelley ([10]), Kantorovi¢, Pingker, and Vulih ([26]), Shirota ([33]),
and Vulih ([36]) also deserve mention. Representations of a different
gort have been obtained by Goffman ([18]) and Olmstead ([32]).

The theories closest to the present work seem to be those of Domra-
teva ([9]) and Zawadowski ([37]). These authors do not rely on com-

leteness assumptions. On the other hand, they do not work with objects
sadily identified as ©@-algebras, and it does not seem possible to apply
heir work directly to Theorem 2.3 or to the sequel. Hence a fresh ex-
position seems in order.

Henceforth, we will identify, whenever it is convenient to do so, the
@-algebra A with the isomorphic algebra AC D (N (A)) of extended functions
obtained from Theorem 2.3.

Recall that A* denotes the set of bounded elements of A. An [-ideal
I of A or A* is called fimed if there is an M « W((A) such that ael
implies a(M) = 0.

2.4. LemmA, If I is a proper l-ideal of A or A*, then I dis fiwed.

Proof. Since every proper [-ideal of 4 is a subset of a maximal
l-ideal of A, the lemma is immediate for A.

If Iis an [-ideal of A* that is not fixed, then for every M e N (4),
there is an ay € I such that az (M) > 0. Since W(4) is compact, a finite
number of the open sets WUy = {M' € W(A): an(M') > 0} cover N (4),
$ay WUntyy ooy U, Then a = |aag|+... +]aag} € I, and there is a real
number 1> 0 such that ¢ 4-1. Then 1< (1/A)a e I, whence I is not proper.

Fundamenta Mathematicae, T. L (1961)
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- Now suppose that the @-algebra 4 is given to us oxplicitly ag an
algebra of extended functions on 4 compact space X such that X = W(A).
The following proposition describes the maximal [-ideals wf 4 in terms
of this representation. Tt generalizos a result obtained by Gelfand and
Kolmogoroff in case A = (/) for some completely rogular space if.

2.5. TumoREM. A subset M of A is o mawimal [-ideal of A if and
only if there is a unique » e N (A) such that

M= My={acd: (ab)(w) == 0 for all bed}.

Proof. Clearly My, thus defined, is an [-ideal of A, Tf ¢ ¢ M., then
there is a de.A such that |ed| () = 1. Tt U denote a closoed neighborhood
of » disjoint from (ed)™*(0). By Theorem 2.8 (if), there iv an @ ¢ A+ guch
that a[U]= 0, and a[(ed)™(0)] = 1. Sinece R(b) is demse in W(4) for
every bed, we know that aeM,. But thore is a AeR such thait
AMa+ed]) = 1. Henee M, and ¢ together gemerate A. Thus, M, is
8 maximal [-ideal.

That every maximal [-ideal of A takes this form follows from
Lemma 2.4. The uniqueness of 2 is an immediate congequence of Theo-
rem 2.3 (ii).

If 2eNM(4) and a(s) =0, then (ab) (@) =0 for all be A*

Thus,
we have

2.6. CorOLLARY. A subset M* of A* is o mawimal I-ideal of A* if
and only if there is a unique » e W(A4) such that

M= My = {awed* a(w)=0}.

If M is a maximal [-ideal of 4, then the totally ordered algebra
A/M contains R as-a subfield. M is called real ov hyper-real according
a8 A/M =R or 4/M contains R properly. ‘

If 2 € W (A), then the mapping a-—>a(w)
of 4* onto R. Hence, we have

2.7. CoROLLARY. Fvery mamimal [-ideal of A* i3 real,

The weak topology for W(A) induced by the elements of A* is the
spmllest topology for W (4) in which all of the funetions in A* are con-
tinuous. An immediate consequence of part (i) of Theorem 2.3 iy that
the Stone topology for N(4) coincides with the woak topology induced
?Jy the bounded elements of A. Similarty, the Stone topology for (4*)
is the wealk topology induced by all of the elements of 4*,

By 2.5 and, 2.6, there is a one-to-one correspondence M« M* hetweon
M(A) and UWC(A*). We show that this i & homeomorphism by showing
that, for a ¢ 4, the value of the funetion a e D(M(A)) at M is the same
as the value of the function 7 at M*
tion of A*

is clearly a homomorphism

a8 an algebra of extended functions on N(A*). Now, by 2.7,

, where a~a denotes the repregenta-

icm
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M* is a real maximal [-ideal of A% so @(M*) = M*(a) =r ¢ R. Thus,
a—r ¢ M* Since M* is the unique maximal [-ideal of A* containing
the prime [-ideal M ~ A* (see 1.6 (iii)), a—r»e M* if and only if a—»
iy infinitely small modulo M ~ A% hence if and only if a—r iy infinitely
gmall modulo M (in 4). Thus, @(M*) = r if and only if a(M) = r. Hence,
we have established,

2.8, COROLLARY. W (A) and N(A*) are homeomorphic.

That N (A) and N (4*) are homeomorphic in case 4 is the ring
of all continuous funetions on o completely regular space 'l was shown
by Gelfand and Kolmogoroff in [11]. (See also [15].) Indeed, in this case
they are homeomorphic to fU. In case A Is o-complete and regular,
Corollary 2.8 was obtained Dy Brainerd in [5].

It we N(4), lot

Ny=={wed: a vanishes on a neighborhood of z}.

It ,b e Ny, then it is clear that a—DbeN,, and if ¢ce 4, and |o|<|a],
then ¢ € Npy. Thus, to show that N, is an [-ideal of 4, we must show that
ad e N for all d e A. There is an open neighborhood U of & on which
vanighes. Cledrly (ad)(y) = 0 for all ¥ e R(d) ~ WU. But ‘R(d) is dense
in W (), 8o (ad)(®) = 0 for each 2 e U. Hence, ad ¢ N,. Thus, we have

9.9, If A 48 a ®-algebra, then for each ® e W(A), Ny is an l-ideal,
and every 1-ideal of A containing Ny is in the unique magimal [-ideal M,.

We conclude this section with a theorem concerning prime [-ideals.

2.10. Tunonsm. Let A be a D-algebra and let P be o prime l-ideal
of A. Then there is a unique © € N (A) such that N, C P C M,. Moreover, .
N, is the intersection of all the prime [-ideals containing it.

Proof. By 1.6 (iii), P iy contained in & unique maximal l-idfaa.l
M, of A. It @ € N,, then there is an open neighborhood U of # on which
it vanighes. By Theorem 2.3 (i), there is a be.d such .tha,’c b('w) =1
and B[N (A)~) = 0. Then ab = 0 ¢ P. Since b ¢ My, b¢ P. So, since P
iy prime, @ ¢ P. Ienco N, C P,

To prove the last statement, suppose @ e Mg, and .aé.'Nx_. Then no
power of a is in Ny. Ience {a, @ ..., a" ..} 18 & multiplicative syg.tfam
disjoint from Ny. By 1.6 (iv), there is a prime {-ideal P of A containing
N, and not containing a.

Wo remark, finally, that the first part of Theorem 2.10 can be
inferrod from results of Gillman given in [12].

3. Uniformly closed ®-algebras. A sequence {op: n=1,2,..}

of elements of w ®-algebra A is a Cauchy sequence if for each real & > 0,

there is a povitive integer n, such that |om— 4| < & Whenever n, m = .
Taking & ==1, we obtain

6*
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3.1 If {an: m =1,2, ..} is a Cauchy sequence in a O-algebra A. then
there is @ positive integer ny such that R(ay) = Batn,) for n = n,.

A sequence {ay: n=1,2,..} of elements of 4 is said to converge
to @ ed if for each real ¢ > 0, there is a positive integer n, such that
lan—al <& for n=ny. If {@n: n=1,2,..} converges to both a and b
“in A, then ¢ = b. For, given any real & > 0, there is an integer m, such
that |am—al < ¢/2 and |an—b| < 2 for n>mn,, so [@—b] < |a— an| +
+|an—b| < e. Hence, since 4 is archimedean, a == b.

A ©-algebra 4 is said to be uniformly closed it overy Caucly sequence
in 4 converges in 4. If A is an algebra of real-valuod funetions, then
thig notion coincides with the ugual notion of being closed under uniform
convergence.

If A is a uniformly elosed @-algebra, then A* consideroed as 4 subset
of D(CWZ(A)), is by Theorem 2.3, a uniformly closed algebra of continuous
real-valued functions on a compact space. Moreover, it containg the

constant funetions and separates points. Hence, by the Stone-Weierstrags
theorem, we have:

8.2. If A is a uniformly closed @-algebra, then A* and O (me(4))
are isomorphic.

A D-algebra 4 is said to be closed wnder bounded woersion if, for
acd, a>1 implies 1/a ¢ 4. Thus, by 3.2, we have:

3.3. Hvery uniformly closed ®-algebra is closed under bounded wnversion.

For any a « 4, we denote the smallest [-ideal containing o by <a).

Suppose that A is closed under bounded inversion, and @ e 4 is such
that <a) = 4. Then there is a b ¢ 4 such that ab] > 1. Thus, 1/]ab] € 4,
50 1/la] € A. Thus 1/|a* = 1/a2 €4, whence 1ja ¢ 4. So we have proved

3.4. If A is o D-algebra closed under bounded inversion, then for
aed, (o) =A if and only if l/ae A.

3.5. LEMMA. If A is a D-algebra such that A* is uniformly closed,
then “R(a) is C*-imbedded in NC(A) for each ae A. Thus N(A) = BR(a).

Proof. By 3.2, we may identify 4* with ¢ (‘77((’A)),. Lot a ¢ 4. Since
‘R(a) = R(a®v1), we may assume that a=1. Let geO*R(a)). Lot
f(@) = g(»)/a(z) if zeR(a), and (o) =0 if @ €'l(a). Then, sinee g is
bounded, f ¢ O(CWZ(A)) = A* Thus fa is the desired contitnnouy extension.
of g over 9 (4).

With the aid of Lemma 3.5, we are now able to
of a @-algebra that cannot be imbedded in a unifo
with the same space of maximal l-ideals.

3.6. Examrrz. Let R+ denote the g
with its usual topology,
all continuous real-valued

roduce an example
rly closed @ -algebra

Dace of non-negative real numbers
and, as in 1.7, let 4 denote the @-algebra of
functions on R+ that are eventually polynomials,
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ie. if fe.d, then fe O(B), and there is an @ ¢ R+ and a polynomifbl P
gueh that f(y) == p(y) for all y = ». It is easily verified that every maximal
1-ideal of 4 cither takes the form M, = {f e 4: f(2) = 0}, for .weI.ﬂJf,
or the form M, = {feA: there iy an 2 ¢ R+ such that ?/2 @ 1mp]1f3.s
fly) == 0} Thus W (A) is homeomorphic with the one-point compacti-
fication alRt = Rt {w} of Rt .

Tf it wore possible to imbed A as a subalgebra of a uniformly closed
@-algebra B sueh that W(B) == ‘W(A),‘thle.n, by Len_lmfh 3.5,. for each
aed, R would be O*-imbodded in W (4). But this is not the case
if @ is a non-constant polynomial in 4. ‘ .

A wubret 8 of a partially ordered set I s called order-convex if
a,bed, and we T with a -lw b, imply ek, v

3.7, Limmma. For a @-algebra A, the following are equivalent.

(i) A is wniformly closed.
i) A* g8 uniformly closed.
((Ii;; ill X (im)/rfn,or])h{b'f; with) an order-convew subset of D(W(A)).

(iv) A* 48 (isomorphic with) an order-convex subset of D.(CWZ(A)).

Proot. Tt is obvious that (i) implies (ii) and (iii) implies (iv). By 3:'2.,
it is clear that (i) and (iv) are equivalent. Next, we show that (ii)
implies (iii).

]mpl]ll(i‘?rs(t )wrlm'idm: aed, and ¢ e])("WZ(A))_ guech that :( g éfl. On
R (a), gle is a Dounded continuous funci:.ion. By Lemma 3.5, 1;, 1'1a.s & 01?]111(;
tinuous extension fe O (W (A)) = 1[11* Since g(#) = f(x)a(w) for @ in
dense gubget ‘R (a) of 4,g=faecd. ' ) i

Now Huppo(so that a,bed, geD(N(A), zm:i a ilg atajl;. uITn];fé
gt < 9| < Jal--]bl, g0 1= gr4l < Ja|++|b]+1 eA.' l'hub, 1@ Agﬂence
above shows that g*--1 ¢ A. Hence, g* e 4, and similarly g~ A. )

= qt—g-c A, _

g ?I?imﬁlyc, we show that (ii) implies (i',). If {an: n = 1‘7 Z;M}]»Jls,t a fafc;hy[
sequence in A, then there iy a positive integer m, such tha ‘] é,mw ﬁo
<1 if n = ny. Then, the sequence {Guers— tn,: '/o =1,2, ...}blS z* Thu;r
sequence in .4* which (zozmrergebg, by hirdpothems, to some b e A*. ,

= .} oconverges 6o b --dn, € A i .
{an: :Sl‘w ;’032(1’ rc?mﬂ‘b of ﬁ}ris gection ghows that 1',11'0, 1;1.1;1710& Htrmltrufbe oj
a uniformly cloged @-algebra is uniquely (mymmme(l. by 11,,&215 ar ﬁ)e {);‘:&
structure. That i, all of the axioms for 1-1111‘1’01'11113'7‘ (slose]d ‘-()J jgebra '
could bo rephrased in terms of the algebraie operations alone. .

3.8. Tumormy. If A is o uniformly closed P-algebra, then aeA
t] nly ©f @ =0b2 for some bed. .
Y M.b];zr?)ofl. ;;et @ efi"‘". Then & is a non-negative ﬁeftended junchm;l
on WM(A), so a2 e DV (A)). Now 0 < el < (a +1)¥2 < a1 e A. Thus,
by Lemma 3.7, a'2e 4.
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For the converse, recall that squares ave positive in any @-algebra
(1.3 (i) T
W.e cloge thig section with the following characterization theorem.
Note.flrst that an element a of a P-algebra A of ewtended functions is
a divisor of zevo if and only if a~*(0) has a non-empty interior. For, if the
latt'er holds ‘.ohere is an @ e a-1(0), and an open mneighhorhood U of # on
which a vanishes. By Theorem 2.3, there is a b e A such that b(w) = 1,
and 5[ X~U] = 0. Clearly ab= 0. The convorse is obvious.
3.9. TunorEM. A D-algebra A is isomorphic to D(X) for some compact
space X if and only if
(i) A s uniformly closed, and -
(ii) 4f o e A, then either a is a divisor of zero or {a) ==
Proof. Suppose first that (i) and (ii) hold. If feD(V(4)), a
. . I (4)), and
f=1, t.]?en by 3.2, g =1/f e A*. Now, ¢g(0) = N (f) is nowhere (,710113@,
so by (11)3 {g> = A. Then, by 3.4, 1/g =fe 4.
B If h'is any element of D((4)), the above shows that "1 and
W"+1 are in 4. Hence h= (B 4+1)— (W™ 1) € A. Thus A = D(W(4)).
Conversely, if A‘= D(X) for some compact space %, then clearly
X =M(4), and 'A is uniformly closed. Tf @ e 4, and ab == 0 implies
b=0, ther} a7(0) is nowhere dense, 5o 1/a e D (N (4)) = A. Thus (ii) holds.
If A is a regular ring (1.12), then for every a < 4, there is a ce A
such that a(ac—1) = 0. Thus (ii) holds. Henece we have:
3.10. CoroLLARY. If A is a uniformly closed - 'ty 1
e D(Cm(A)), f Wy ed, reqular ®-algebra, then
QOrolla.ry 3.10 shqws that if 4 is the ring 2 of Lebesgue measurable
functions on R, the ring B of Baire functions on R, or the rings £, or

0 g 1J
523 (o] btaullled b y Ied ucin, ]lese IngS mOdL110 bll@ 1dea:1 ()f lll llll(:‘ll()]l
) (Cm )) ny f ] 5

4. Algebras of real-valued functions. If 4 is an c 6 of
o O-algobes 4. 1ot S. @ i8 an element of

Z(a) ={M N (A): a(I)=0}.

Thus M ¢ Z(a) if and only if M(|a|) is infinitel T ZOT {
A E[ JIl[ ly small or zero. Hence,

Let R (A) denote the subspace of real maximal ideals of 4. That i8,
R(A) =N {R(a): acd}.

In this section, we will consider, @-aleeb i
P- ras 4 which gatis
more of the following restrictions. ¢ sty one or

41. A D-algebra A is said to be clogsed ) b
under - )
a,bed, E(a)TH(b) implies (a> = A. eersion i, for
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4.2. A D-algebra A is called an algebra of real-valued functions if
O (M M eR(A)} = {0

4.3. A D-algebra A of real-valued functions is said to be closed under
inversion if, for a e A, T(a) ~R(4A) =0 implies {a> = A. '

Condition 4.1 makes sense, of course, even if A is not an algebra
of real-valued functions. It holds, in partieular, if DM (4)) is an algebra
and A = D(M(A)), and hence it holds in the ®-algebrag &, and B, of
1.2 by Corollary 3.10.

Note that the condition of 4.2 states that R(4) is dense in N4y,
go that A is, in fact, an algebra of (continuous) real-valued functions
on R(A). As mentioned earler, not every @-algebra is an . algebra of
veal-valuod functions; it may be that R(4)=@. This is, indeed, the
cago it A == 8y or A = B,.

By 3.3 and 3.4, in a uniformly closed ®-algebra 4, <a) = 4 if and
only it 1jaeA. '

4.4, A wniformly closed P-algebra A is closed under imversion (re-
spectively, L-inversion) if and only if, for aed, Z(a)n R(A)=0
(respectively, Z(a)C W (b) for some b e A) implies 1ja e A.

Tt is clear that every @-algebra of real-valued functions closed under
inversion is closed under [-inversion. That the converse is not true will
be shown by an example at the end of this section. Next, we give an
examplo of o uniformly closed @-algebra of real-valued functions that
is not closed under either type of inversion.

45, Wxamrrs. Let A = {f e O(R*): limf(z)e—= =0 for all real a> 0}.

200

Tt is casily verified that 4 is a uniformly closed @-algebra. Since A*
and C*R+) are isomorphic, M (4)= pR+. The function g such that
g(@) = ¢ for all e R+ is in A. Moreover Z(g) = N(f) = pR*~E",
where f(z) = « for all @< R+ However 1/g ¢ A.

Tn cago A == O(:)) for some completely regular space Y/, the following
result is due to Gelfand and Kolmogoroff ([11]). (See, also [15].) For
this special case, it is equivalent to Theorem 2.5.

4.6. Twowim. If A is a @-algebra of real-valued fumctions which
is olosed under inversion, then for each » e M (4),

My = {aeds we(Z(a)n R(A) }-

Proof, Tor a e A+, lot T = Z(a) ~B(4), and. suppose that @ ¢ Z .
Then we may choose a closed neighborhood U of » disjoint from Z™.
By Theorem 2.3, there is & b e A+ such that b[U] =0, and b[Z7]=1.
Now, since Z(a-+b) ~R(4) = @ and A is cloged under inversion, there
is & ceA guch that (e-4b)e>1. Since b[U] = 0, (ac)(y) =1 for all
¥ €U ~R(A). Since R(A) is dense in M (A), this means that (ac)(s) = 1.
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Thus, by Theorem 2.5, a¢ M,. Since a is in a [-ideal of A if and only
if |a| is, we have shown that M,C {aeA: we (Z(a) ~ R(4))7).

Conversely, if ze (Qf(‘a) ~“R(4))7, then every neighborhood of g
containg points of 9% (4) at which « vanighes. Thus, in every neighborhood
of z, there are points at which ab vanishes for any b e d. Hence, by
Theorem 2.5, @ ¢ M. This completes the proof of the Theorem 4.6.

It is easily seen that closure under inversion is also necesgary for
this deseription of the maximal [-ideals of 4. For, if @ e A is yuch that
Z(a) n R(4) =@, and <a) # A, then a is contained in some maximal
l-ideal M, of A4, and no such deseription of M, is availablo.

We close this section with an example of o uniformly clogoed D - algobry
of real-valued functions that is elosed under {-invergion, but is not cloged
under inversion.

4.7. Bxawrre. Let N denote the digerete spaco of poxitive integers
and let ‘) denote any locally compact, o-compact space that is \nm;
compact. Let T = N x</, and, for each n e, let ,Dn == {n}x /. Let
A= {feDBT): fIT is real-valued, and there is an fye N such that
m = ny implies f.2,, is bounded}.

Thus_, if fed, then fis real-valued on all but finitely many of the
spaces £y Tt is easily seen that A is a @-algebra sueh that 4* and OXT)
are isomorphic, so W(4) = BT. Thus, by Lemma 3.7, )

(1) 4 is a uniformly cloged &-algebra with N (A) = pT.

Sinee 9 is. locally compact and o-compact, there is an he O(fY)
that never vanighes on Y such that Bl ~ H]=0. Observe, also, that
for each 'n.eN, £Ln and Y are homeomorphic.

@ We 1w1§3h to show that if peBT~T, then M,¢R (4). Suppose first
! ai.z there is an m e N spch that p e £, . Define the function fon T by
Betytlln% (f(w)»,;;)}l= 1/h(y) if n = My, f(n,y) =0 if n m, for all y e<y.

-9 (Iv), f has a continuous extension 7 over AT into ». carly
i Tt =, . nsion f over AT into yR. Clearly fe A,

If, for every.n e W, P ¢ Ly, then e i (

o P2y, every mneighborhood of p moets
mflintely many of ?ghe spaces L. Thus, if g, 9) =n for all meN
Ye ‘Yf, then 13he conltmuous extension § of g over AT into B I8 such 1;11%1{
d(p) = oco. Since g ed, we have: u o

@) RA)=c.

As observed above, we also have:

(3) If aed, then {neN: N(a) ~ Ly 5 @Y iy finite.

suchli(;gw; if a,b e.{i are such that Z(a)C (b), then there is an Ng e N
o at m = n, implies Z(a) ~ Ly = 0. Hence m = ng implies that
a|L,, is bounded away from 0, so 1jac 4. Thus, ‘

{(4) A is closed nnder [-inversion.
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Finally, we observe that 4 is not closed under inversion. The function
% defined by letting %(n,y) = h(y) for all n ¢ N, y € Y has a continuous
extension & over fT. Clearly & e 4% Now, Z(k) A~ R(4) =@, but 1/k ¢ A.

5. Some internal characterizations of C()). In this section,
the algebra C(Y) is characterized among the clags of @-algebras for
several classes of topological spaces I/ by means of internal properties
of P-algebras. In each cage, one of the requirements is uniform closure,
50, in view of Theorem 3.8, the characterizations are, in reality, purely
algebraic.

In case Y is compact, the celebrated Stone-Weierstrass theorem
provides an internal characterization of O(7/). In this case, a charac-
terization of C()) as a ring was provided by MeKnight in 1953 ([30]),

and it was improved by Kohls in 1957 ([28]). Characterizations of O(Y)

in the general (completely regular) case were provided by Anderson
and Blair in 1959 ([1]), both as a ring, and as a lattice-ordered ring.
These characterizations, however, are external in nature. In each case,
one must examine a large class of extensions of the algebra in question
in order to determine if this is a C(%Y). The demand that the charac-
terization be internal seems to make the problem more difficult.

The assumptions that are common to most of our results are that
the @-algebra 4 be a uniformly closed algebra of real-valued functions
that is closed under inversion. Obviously, each of these conditions is
necessary. Isbell has supplied an example of a P-algebra A satisfying
all of these conditions that is not isomorphic to C(‘)f) for any completely
regular <Uf ([21], p. 108). Below, we give a few other such examples, which,
we believe are simpler in character. Note that if a ®-algebra A is iso-
morphic to some C(f), then it is isomorphic to O(%(A)).

5.1. ExAampre. Consider the @-algebra B of Baire functions on the
real line. (See 1.2.) It is an algebra of real-valued functions and, since
B is closed under point-wise convergence, it is uniformly closed. Let M
be a real maximal [-ideal of B. Now, C(R) is a subalgebra of B, so

OR) _CR)+M .3

o= Cx=h

Since the left-hand member contains R, we must have M ~ O(R) a real
maximal ideal of C(R). Hence ([16], Chapter 5) there is an xe B such
that M ~ C(R) = {f e C(R): f(z) = 0}. There is a ke O(R) such that
k7Y0) = {#}. Thus, if ge®B, and g(z) £ 0, then |%|--1g] is a positive
element of B that vanishes nowhere, and hence has an inverse. So,
M= M,={feB: f(x) =0}

We have shown that “R(B) consists precisely of the [-ideals M,,
® ¢ B. Since B contains all characteristic functions of one-point subsets
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of B, the Stone topology on “R(B) is diserete. Hence R(B) iy homeo-
morphic to the space of real numbers with the diserete topology. Tt is
now clear that B is closed under inversion. )

Not only is B not isomorphic to C(R(%B)), but card ¢ (R(B)) == 2°
while card B =¢ ([19]).

The argument just given applies verbatim to the @-algebra of all
functions in any Baire class, except that the latter need not be closed
under point-wise convergence. B, however, has the advantage that ig
both o-complete and regular (1.12). ’ -

A gimilar argument shows that the ®P-algebra £ of all measurable
functions on R is not isomorphic to a full algebra of continuous funetions
In this case, however £ and ¢ ("7{’.(53,)) have the same cardinal 'numbm'.
Note that £ is also regular and o-complete (1.12). .
. Ff)r a @-algebra A of real-valued functions that in closed under
mversion, & necessary and sufficient condition that 4 be isomorphic
Zgng*(gfz(fts)l)igifﬂ?,mt W(A) = B(R(4)). In fact, we may weaken this

5.2. LemmA. A @-algebr 8 iSomorphic Y(lf) for s
reglor spen 3 1 ond zil?/a’l;;st 18 isomorphic to (1)) for some completely
(i; A is an algebra of real-valued functions,

(11 A is uniformly closed,

(iil) 4 is closed under imversion, and

{iv) C(R(4 ] hat {7 Z(
m%(A;‘ f feC(R(4)), then there is an ac A such that 7(0) == Z(a) ~

Proof. These conditions are obviously n i i

L. Th . sly necegsary. To prove sufficiency
wel S]J';W first that W(4) = FR(A). Now, by 1.9 (iii), this is true if and
02 y i Wheilfvel" fiy fa e C(R(A4)), and #71(0) and f7%(0) are disjoint, then
fil (2 and f5(0) ham_r?'dlsjoin’o‘ closures in ‘M (A4). By (iv), there are elements
a;e A such that ; (0) = Z(as) nR(4), for ¢ =1,2. Now Z(al-ad)
mz%(f}) =0, so by (iii), there is a bed such that b(ad+a2) = 1 Now
@mb[f(0)] =0, and alb[f7X(0)] = S % 15 continug
o A , L & f27(0)] = 1. Hence, since a2b is continuons on

(4), /75(0) and f(0) have digjoint closuves in W7 (4).

]E‘&y 3.2, to show that 4 is isomorphic to ¢ ("R(4)), it sutfices to show
that if 1<ge(R(4)), then there is an a ¢ A such that g = a|'R(4).
gNZO;;N 1/g e O"‘(C}Q(A)), 50, b.y' the above, it has an extension b e A* Bub

( )Tl%(A-) =, 80 }sy (iit), @ = 1/b € 4. Clearly al'R(A) = ¢.
Rocat 1(:}_, authors are indebted to M. Jerison for the following lomma.
?’t, a Haugdortf space “If is called a Lindelof space if Wery open
cover of "/ has a countable subcover. ' | o
spacj.?)c.tLL;];yLMA. fIf Y is a Lindelof space contained in a
P A, then, for every fe C(%), there is an (X
iy = a‘l(o) L , 8 an ae O(X)

(compact)
such that
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Proof. For each ¥ e)f~f"%0), there is an a, e C(X) such that
ay(y) = 1, |ay] <1, and a,[f70)] = 0. Liet Uy = ' € U+ ay(y’) > 1}. Then
QU y e Y~F0)} is an open covering of Y ~7"0).

Now “Uf~fF40) is an I,-subset of the Lindelsf space %Y, and hence
is a Lindelof space. So, there exist countably many elements ¥, Yz .oy Yns .o

of <lf sueh that UY~fH0) C U Uy,: n=1,2,...}. Thus, if a= g‘ ‘2:_171,!0’%1’

then F740) = a~(0) A V. "

The hypothesis that ' be a Lindeltf space in Lemma 5.3 cannot
be deleted. In particular, if <f is an uncountable discrete space, and
% is its onme-point ecompactification, then the conclusion of Lemma 5.3
need not hold.

We are now ready to give our first characterization.

5.4, THEOREM. A @-algebra A is isomorphic to C(')f) for some Lindelof
space U if and only if

(i) A s an algebra of real-valued functions,

(i) 4 4s wniformly closed,

(iil) A is closed under inversion, and

(iv) if {@.: ael'} is a collection of elements of A such-that-for -each
M e R(A), there is an a el with a,¢ M, then there is a countable subset
Gy, Ogy -y Oy oo Of I' sUCh that {as: ¢ =1,2,...} has this property.

Proof. Condition (iv) states that every open cover of R(4) by
basic open sets of the form (WZ(A)N%(@)) ~ R(A), a ¢ A, has a countable
subcover. Thus, (iv) is equivalent to the statement that R(A) is a Linde-
16f space. Hence the theorem follows from Lemmas 5.3 and 5.2.

In case ‘f is locally compact and o-compact, we have a gsomewhat
simpler characterization of ¢(<)f), but we cannot claim that it is original.
It differs only superficially from a result of Isbell, [21], Lemma 1.18.
While we could prove our theorem by reducing it to his, it seems eagier
to give a direet proof.

5.5. TEEOREM. A ®-algebra A is isomorphic to C() for U locally
compact and o-compact if and only if

(i) A is an algebra of real-valued functions,

(i) A is uniformly closed,

(iii) A s closed under l-imversion and

(iv) there is an h e A such that R(A) = R(h).

Proof. These conditions are obviously necessary. If ae 4 is such
that Z{a) ~R(A) =@, then, by (iv), Z(a) CC(h), whence by (ili),
1/a ¢ 4. Thus, in the presence of (iv), closure under [-inversion implies
closure under inversion. By Lemma 3.5, R(A4) = ‘R(h) is C*-imbedded
in N(A4), so WM(A)= pR(4). Thus, by Lemma 5.2, A is isomorphic
to O(R(4)).
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We require an additional fact about extremally disconnected spaces.
(See the discussion following Proposition 2.2.) Tvery dense subspace of
an extremally disconnected space is O*-imbedded ([29]). Hence, by
Lemma 5.2, we have

5.6. TomoREM. A P-algebra A is isomorphic to C(l) for some ew-
remally disconnected space "If if and only if

(i) 4. is an algebra of real-valued functions,

(i) 4 is uniformly closed,

(iil) 4 ds closed wnder inversion, and

(iv) A 4s complete.

The algebra B of Baire functions of Example 5.1 shows that wo
cannot replace (iv) above by the requirement that A be a-completo,

By using Theorem 3.9, we may replace condition (iil) above by
requirement that every element of A be either a divisor of zero or have
an inverse. For, in this case, we may conclude that 4 = D(ne(4)),
and that (R (4)) = N (A4). This change does not, however, either weaken
or strengthen the hypothegis of this theorem.

By (1.8), we could also delete the requirement that 4 he archi-
medean.

An infinite cardinal number m is said to be nonmeasurable it there
is no countably additive measure on & seb of power m giving points
meagure 0, the whole set meastre 1, and assuming only the values 0 and 1.
In 1930, Ulam showed that m is nonmeasurable unless m iy strongly
inaccesgible from w,. Moreover, it is consistent with the axioms of get
theory to reject the existence of wuch cardinal nubers, For a thorough
discussion of nonmeasurable cardinals, see [16], Chapter 12, where

it is shown that if m is nonmeagurable, so is 2™ From this, we may
derive

5.7. TamoreM. Let A be a P-algebra of nonmeasurable power. Then
A is isomorphic to ¢ (Y)Y for some discrete space Y if and only if

(i) A is an algebra of real-valued functions,

(i) 4 is uniformly closed,

(iii) 4 is complete, and

(iv) 4 s regular.

Proof. By Corollary 3.10, (ii) and (iv) imply that 4 = D(W(4)).
By (ifi), N (4) is extremally disconnectod. Hence, as remarked above,
(i) implies that fR(4) = W (4). Thus A and C(R(4)) are isomorphic.
Since A is regular, ‘R(4) is a P-space (Le. every @, is open; seo [13]).
But Isbell has shown that every extremally disconnected P-gpace of
nonmeasurable power is diserete (see [20]; [16], Chapter 12). Also,

card ‘R(4) < 2" where m = card 4. This completes the proof of the
theorem.

icm

Avelimedean latlico-ordered algebras 93

Txample 5.1 shows that (iil) above cannot be replaced 'by the re-
quirement that A be o-complete. A characterization of C€(7/) among
tho clags of rogular o-eomplete @d-algebras was obtained by Brainerd [6].

Our last theorem is a simple application of Theorem 5.5.

5.8, Tumormm. Lot A be a P-algebra that is uniformly closed and
closed under [-inwersion. If hed, let By = {fe Ad: R{)CR(N)} Then
By, and O(R(h)) are isomorphic.

Proof. It is clowr that B, is a ©-algebra that is uniformly plosed
and cloged under [-inversion, indeod, BY = A% ence W{(Bj) = N (4),
and. R (By) = “R(h). Bince h e By, the theorem follows from Tht.mre.m 5.0,

Wo have Deen unable o obtain an internal characterization of
J(Y) in the goneral caso, By now, it is evident ‘that the ho(':urt ofmthg
‘ditfioulty lies in our Jack of ability to find an internal equivalent of
condition (iv) of Lemma 5.2,
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Added in pro of. J. E. Kist has pointed out that, in the presence of cormple-
teness, the hypothesis that 4 be uniformly closed in Theorems 5.6 and 5.7 is redun-
dant. (See, e.g. [31], p. 30.)

A note on 0-dimensional compact groups

by
Edwin Hewitt* (Seattle, Wash.)

Tvanovikil ([3]), Kuz’minov ([4]), and Hulanicki ([2]) have recently
published proofs of the fact that a 0-dimensional infinite compact group
is homeomorphic with the Cartesian produet of a number of 2-element
digcrete spaces, thus answering a question raised by P. 8. Aleksandrov.
Since all three of these proofs are somewhat complicated, it appears
worth while to present a simplified version of Hulanicki’s elegant proof
of the theorem. We prove slightly more, as follows.

TumorEM. Let G be a 0-dimensional, infinite, compact topological
group satisfying the 1, separation axiom, and let m be the least cardinal
number of an open basis at the identity e of G. Then G, regarded only as
a topological space, is homeomorphic with the space {a, bY", where {a, b}
is a discrete space and o # D,

Proof. We give the proof in a number of steps.

(I) Let {Uer be an open basis at e having cardinality nt. By a well-
known theorem of Pontryagin ([5], p. 140, Theorem 17), there is a normal
compact open subroup V, of G such that V.C U,, for each teI. Now
well order the family {V.},cs, and rewrite it as {Vi, Ve, Vi, ooy Vas i}y
where a runs through all ordinals less than (say) the first ordinal x4 with
cardinal mt. (Note that m must be infinite.) With no loss of generality,
we may suppose that V, = G TFor every ordinal g, 1<f-<u, let
Npy= (V. and let N, = @ It is clear that every N, is a normal

a<f

subgroup of G- Fix an ordinal f< u, and let X Dbe any subset of ¢
that is the intersection of sets of the form @,V w @V, v ... © @V, , Whero
aje@and f;<f (§=1,2,..,8). It is obvious that NpX = X

(IT) We next define certain open and closed subsets of G. Let B
be the set of ordinals g < u for which V, G NgVs. Both Vi and NgV, ave
open and closed normal subgroups of & The quotient groups NsVs/Ve and
G/ 3V are compact and discrete and hence finite. Liet b NV, ..., U™ NsVs
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