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Point-like decompositions of E°
by
R. H. Bing (Wisconsin) *

1. Introduction. An upper semicontinuous decomposition G of B*
(Buclidean n space) is poing-like if for each element g of G, Bte—g is
topologically equivalent to the complement of a point. We call such
an upper semicontinuous decomposition a point-like decomposition.

If @ is a point-like decomposition of E? (or F*), the resulting de-
composition space is topologically E? (or E') [17]. However; there are
examples of point-like decompositions of B whose decompogition spaces
are topologically different from E2. We give another such example in
this paper and suggest a decomposition which may be an example.

Suppose that @ is a point-like decomposition of E* and H is the
collection of nondegenerate elements of @. It is known that @ yields E®
if it satisfies any one of the the following conditions:

1) Bach element of @ is a starlike body (Theorem 2 of [4]).

2) Each element of H lies in a hovizontal plane [11].

3) There is a countable number of planes such that each element of H
is an interval normal to one of these planes [14].

There are examples ([3], [12]) which show that the union of the
following two conditions is not enough to ensuve that G yields B

4) Bach element of H is a tame are.

5) The sum of the clements of H is a G set.

There are no published examples which resolve the question as to
whether or not either of the following conditions implies that G yields E°

6) Bach element of H is a straight line interval.

7) H is countable.

In this paper we give an example to show that Condition 7 does not
imply that G yields E® and another example to cast doubt on the potency
of Condition 6.

Tt is known (Theorvems 3, 1 of {4]) that Condition 7 together with any
one of Conditions 4, 5, 6 is enough to insure that @ yields E® Open are

* Work on this paper was supported by contract NSF-G11665.
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the effects of imposing such conditions as that H is a family of planar
disks or that H is a countable family of ares (not necessarily tame) or
even continuous curves.

2. An indecomposable plane continuum. Each nondegenerate
element of the point-like decomposition of E® that we describe in
Section 3 is a copy of the following plane continuum X which iy described
as the intersection of a countable number of annuli A4, 4,, 44, ...

The annulus .4; shown in Figure 1 is bounded by two concentric
circles. The annulus 4, plus its bounded complementary domain lies
in 4, and wraps around A4, twice with the ends of the “wraps” near each
other on the left side of 4, as shown in Figure 1. The annulus 4; (only
part of which is shown) wraps around 4, in a similar fashion. Similarty
A, wraps around A4, 4; around 4,, ... The continunm X = AI-AZ-Aa-..i
is the sum of a collection of semicircles.

Ao

Fig. 1

Fig. 2

' Note tl.mt _X is also. the intersection of a sequence of topological
disks. If X hes'm‘ a pl@ne in B?, it is the intersection of a sequence of tame
cubes. Hence, it is point-like in #3. Also, X may be regarded as the inter-

§ection of a sequence of solid tori in 3. It is in this light that it is viewed
in the mnext section.

. 3. A de(?omposition of F3. In this section we describe a point-
like decomposition ¢ of B such that @ bas only a countable number of
nom}egenerate elements, each of the nondegenerate elements is a copy of
tl.n? indecomposable continuum X described in Section 2 and the decompo-
s%t%on space is topologieally different from H3. The proof that the decompo-
sition space is different from B3 is found in Section 5. The nondegenerate
elements of @ are described as the intersection of a sequence of tori.
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. Suppose that T, is a round solid torus as shown in Figure 2. Inside Ty
are two solid tori Tg, T’y linked as shown. These are solid even though
they are shown as linear. Their sum essentially goes around T, twice.
The diameter of To is comparatively large but the diameter of Ty, is
less than one half that of T,. The center axis of T lies in the same plane
as the axis of T, but the axis of Ty lies in a plane perpendicular to
this one. .

Just as T and Ty arve built in Ty, so is a Topo and a Ty built in
each Ty;. Similarly we define fowr Thige’s, four Toy's, eight Tosjko’S y +-e
Tach component of ¥ = Tg- 3 Toi* 2 Tosi- > Tosje- - is an element of .
Also, each point of E*—7Y i an element of .

Note that ¥ has a Cantor set of components. Tt a,,85... is an infinite
decimal where each a; is 0 or 1, we may let this decimal correspond to
the component: Toq, * Toaae* Toasasa "+ If the decimal has infinitely many 1’s,
the diameter of the component is 0. Hence, G has only a countable number
of nondegenerate elements. We could define @ so that each of these non-
degenerate components either lies in the @y-plane or the yz-plane and
any two of them are congruent under a similarity homeomorphism.

4. The intersection of disks with tori. In this section we
consider the intersections of certain disks with the tori used in Section 3
to define Y. Although these tori were drawn as curved, we would get
the same set Y if we had used polyhedral tori. We suppose in this section
that each of Ty, Tooy Ty has a polyhedral boundary (is the sum of g finite
number of triangular disks). We use Bd T to denote the boundary of solid
torus T and Int T to denote T'—Bd T. For a disk D we use Bd D to denote
its edge and IntD to denote D—BdD.

We shall consider the intersections of various polyhedral disks D
with Ty, Tooy Tor- Each of the disks will be in general position with respect
to BAT (T = Ty, Too, Toy) in that if p is a point of D-BAT, there is
a neighborhood U of p and a lLomeomorphism % of U onto B® such that
B(U-BAT) is the 2 = 0 planc and 1(U-D) is either the . =0 plane or
the # = 0, 2 > 0 halfplane. This ensures that each component of D-BdT
is a polygonal simple closed curve.

PropErTY P. The disk D has Property P with respect to T, if D is
a polyhedral disk in general position with respect to Toy Tooy Tox and Bd.D
is a simple closed curve on BT, that circles Ba T, meridianally.

Note that Property P implies that some component of D - Ty is a pune-
tured disk such that the outer boundary component (with respect to
BdD) of the puncturved disk circles Ba T, meridianally and the other
houndary components (if any) bound disks on BdT,. To get such a com-
ponent one could consider the various gimple closed curves on D-BdT,
that circle Bd7, meridianally, consider one of these which bounds
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a disk D’ of D which contains no other one of the simple closed curves,
and finally take the component of D’-T, which containg Bd.D’.

TurorEM 1. If D is a polyhedral disk in general position with respect
to BAT and J is a component of D-BA T, then J either bounds a disk on
BAT or J circles BAT once longitudinally and no times meridianally, or J
circles BAT once meridianally and no times longitudinally.

Proof. Suppose that J does not bound a disk on BdT. Let J’ be an
inner such simple closed curve on D with respect to this property in the
sense that J’ is a simple closed curve on D-Bd T which does not bound
a disk on Bd T but the subdisk D' of D bounded by J’ contains no other
such simple cloged curve.

The closure of the component of D'—BA T containing J’ is a pune-
tured disk such that the boundary of each hole bounds a disk on Bd 7.
If the holes in this punctured disk ave filled by disks near Bd 7 and then
the resulting disk is pushed slightly away from Bd T near these fill-ins,
there regults a disk D' which does not intersect Bd T’ except in its boundary
BdD" =BdD' =J'. It IntD"”"C T, J’' circles BT meridianally and
it IntD”-T'=0, J' circles BAT longitudinally. Any other simple
closed curve (such as J) on BdT—J' which does not bound a disk on
B4 T would circle BAT in the same fagshion. This is because Bd T—dJ*
is an open annulus and any simple closed curve on an annulus which
does not bound a disk on the annulus circles the annulus exactly once.

TEROREM 2. The fundamental group of EP— Ty -+ Ty) is a free group
on two generators. A simple closed curve that cireles BA T, meridianally
cannot be shrunk to a point in HB— (T~ Toy).

Proof. If we were only going to prove the first half of the theorem
we would merely note that there is a homeomorphism of E® onto itself
that takes Ty and Ty onto two nonlinking circular solid tori. It is a bit
complicated to see where a meridianal simple closed curve on Bd T, goes
under this homeomorphism so we formally compute the fundamental
group of EP—(Ty-+Ty).

The fundamental group of B~ (Lo 4 Ty) can be read from Figure 3.
‘Where the eye is regarded as the starting point, the letters on the arrows
represent a path starts at the eye and goes under Ty or Ty, in the direction
of the arrow and returns to the starting point, and relations vesult at
perspective crossing points of Ty, and T,. If one admissible polygonal
path is homotopie to another, it can be deformed in a series of jumps so
that no jump involves going past morve than one pergpective crossing.
Hence the word corresponding to the first path can be changed by a finite
number of the relations into the word representing the other path.

As read from Figure 3 the fundamental group of B*— (To+ To) is
given by generators a, b, ¢, d, », Y,2,w and relations xd = ax, yd = dz,
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be = yb, 0z = W0, WE = C, xb = ax, de = x¢, ©e =—£m. The 1’elajﬁi01}-s1 ;n;r_elly
imply that a = aba ™", ¢ =07 bw, d=Db, y =bab™, z=w, w=o""bob""a.
Hence the group is generated by b and # with no relations. .

As may be seen by examining the six.nple closed curve J on the right,
a simple closed curve circling Bd T(,. memd}anally may eorresppgd 130 the
element cb~ da~t = &' ba’b™ 2. Since this element is non-trivial in the
free group, J cannot be ghrunk to a point in BP— (T + Tu)-

TamorEM 8. If D is a disk with Property P with r_espeot to Ty, then
ither D-Bd Ty contains o simple closed curve that owcles- BAT, me-
ridianally or D -Bd Ty contains a simple closed curve that circles Bd Ty
meridianally. . .

Proof. First we ghow that there is no loss of gex.;lemlity in supposing
that no simple closed curve on D Bd Ty bounds a disk on Bd Te and no
gimple closed curve on D-]?)él.’l"01
bounds a disk on Bd Ty;. We do this
by eliminating unwanted simple
closed curves by a method used
in the proof of Theorem 1. This
elimination is accomplished by
considering the punctured disk
which is the clogsure of the com-
ponent which contains BAD of D
minus the sum of the simple closed
curves of D +(Bd Te+Bd Ty,) which
bound disks on BdTg-+Bd Ty,
then one-at-a-time (starting with
a hole bounded by an inner mosi

imple closed curve on BdTg ' ] _
S-l-]?I»)d T,,) fill in the holes of this puncterec'l disk with dlsk];doTn Bd];[%]; (—}:
+Bd Ty, and push these fill-ing to one side of Bd T‘;., ;— th‘g,; Tenoe
we suppose that if J is a comlgge;t of D+(Bd To+BdTn),
not bound a disk on Bd L+ oLe _ ‘
If a component J of D-BdTy is a simple 'close.d curvle t]?t' clizlz
Bd T,, longitudinally, then to one side qf J there i8 & s?x‘nple c c;se DcurT o X
on Bd T, that circles Bd Ty longitudinally M_ld whlch- miss sr 1.(1;11% o
is 2 homeomorphism % of B® onto itself that ghrinks T to 80 nea; e
is the identity on Ty -+Bd Ty and D-h(To) = 0 Hence wo Suppo
isges Tgo- o
m]SSIiL aoosimﬂa,r faghion, it can be shown that unless Theortfim 3 ﬁaﬁﬁ
we may assume that D misses Ty also. However, this woul '01?1;11 Eﬂl—
Theorem 2 which says that Bd.D cannot be shrunk to a poin
- (T o0+ T 01)-

TFig. 3
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. THEOREM 4. If D is a disk with Property P with respect to Ty, then D
contains two mutually exclusive subdisks such that cach of the subdisks
has Property P with respect fo Ty or each of the subdisks has Property P
with respect to Ty,.

Proof. Asin the proofs of Theorems 1 and 3 we adjust D so that the
adjusted disk contains no simple closed curve that bounds a disk on
either Bd Ty, or Bd Ty, . If we can find two disks satisfying the conclusion
of Theorem 4 on the adjusted disk, we can find two on D. For convenience
in notation we suppose that the adjusted disk is D. It follows from Theo-
rem 3 that D contains a disk D’ that has Property P with respect to either
Ty or Ty - We suppose that D’ hasg Property P with respect to Ty . Further-
more, we suppose that D’ is maximal in the sense that it is not g proper
subdisk of any other subdisk of D that has Property P with respect to Too-
Note that although BdD can be shrunk to a point in the complement
of Ty, BAd D' cannot be shrunk to a point in the complement of the central
curve of Ty,.

Since Bd.D’ is not homotopic to Bd.D in (BB—TInt Ty), D—D' con-
taing a simple closed curve J such that J circles Bd T meridianally.
To see that this is true consider the annulus 4 in D bounded by Bd.D
and BdD'. Some point of A must lie in TInt Ty since BdD’ can be
pulled to BdD on A but not in E—Int Ty. Since BAD does not in-
tersect Ty, 4 -Bd Ty, contains a component J other that Bd.D'. The disk
in D bounded by J is another disk in D that has Property P with
respect to Ty.

THEOREM 5. If D,, D, are two mutually exclusive disks each with
Property P with respect to T,, then D; (i =1,2) contains a subdisk D.
such that either each of D, D} has Property P with respect to Ty, or each of
Di, D; has Property P with respect to T,

Proof. We shall show that Dj (3 = 1,2) contains a simple closed
curve J; such that either J, and J, s lie on Bd Ty, and circle Ty meridianally
or Jy and J, lie on. Bd Ty and circle Ty, meridianally. Then D} will be the
subdisk of D; bounded by J;.

Following an argument similar to that employed in the proofs of
Theorems 1 and 3, we assume with no loss of generality that no simple
closed curve on .D; bounds any disk on either Bd 7, Bd Ty, BAT,.
Furthermore we suppose that D;*Bd T, = BdD;. Then IntD;C Int T,.

It D, contains a simple closed curve that circles Bd 7'y, longitudinally,
there is a simple closed curve K on Bd Ty that circles Ty longitudinally
such that K misses each of D, and D,. There is then a homeomorphism &
of B? onto itself fixed on Bd Ty, and Ty, that pulls Ty so near K that
(Dy+Dy) -h(Ty) = 0. Tt then follows from Theorem 3 that each D, D,
contains a simple closed curve that circles Bd Ty meridianally. Hence,
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we suppose that neither Dy nor D, contains any simple closed curve that
i y itudinally.

ireles either Bd Ty or Bd T, longitu .
mmle;hfce it follows from Theorem 4 that each D; intersects ogf]s] of Ty d, g’og

ssum I i ; Dy inter onditio

i 5 of rality that D, intersects Tp. The ¢

ssume with no loss of genera :
“:fe’];_‘mheorem 5 is satigfied if D, intersects Ty, 50 we :Csuppose that D, m1§2§§
(;' and intersects To. Also we suppose that _D{ misses T.m. Wle (1}30111;1). p
t'hog proof of Theovem 5 by showing that it is impossible that DTy
= Dy Loy = 0. . » » ’

2Cc)r::ider the universal covering space of To. It 1% repll{esgn;sieIEtSy
Figure 4 where it appears that T, has been 1‘,(/)}16(1 out to make 11:; o ie;;
many copies of Tg and L. Let Tgy, Tor, Toi' be ,tllln*ee a.d]aJcel]?t fongws
of T, and T4 be the copy of Ly that links ¢ and To,l as sh’own(.1 Tollows
frorr;u’l‘hem'em 3 of [3] that there is an arc A} from Ty to To and & b

e

oy

trom T to T4l such that these arcs miss the mrio'u§ copies off 1;111 anl?dlzi ;
With 110(1)J loss of generality we suppose that the projections of 4; & 2

‘ i P d A4,.
i " are mutually exclusive arcs 4, an 4, N .
e I{nl;tall? be an arc in Ty from the last pol{m of 4, to tlllle ?‘1~sz pg;ﬁi
of 4, and 1132 be an arc in Ty from the last point (;f fﬁ to Otinis ]ilsdigmed
. 3 inten v ’s at only the p
» suppose the B’s intersect the A’s a 0 fed
:ﬁ fﬁa‘rvii T%Bl +A,+ B, is a simple closed curve that circles foAtvir;e;
q A, B, ,
This simplle closed curve would be the sum of two arcs, one A, N

‘missing D, and the other 4;+B, missing D

y if Dy Ty =0 =Dy Too-
d out in the following paragraph. 1 N

Since D, and D, chop T, into two 3-cells O:l, 0’,:1, ;re Clﬂ];i}yai‘zgzi 91} 1
arc going from D to Dy in C; as going halfway a.lf)tun ” gs. e e ard
would not go as much as once around T, since it 1(1.10 . mi;ses D, This
Ao+ B, would go as much as once around T, 81114 ) J-|-B N ot T\
contradicts the fact that the closed curve 4, + By +4, 2 8

exactly twice. lyhedral
o :, e g

THEOREM 6. Suppose that § is a polyh . ith respect

that 8 does not lie in either Ty, or Toy, S i in genoral pt(;:‘;:@‘;”;u’:’@g? a gfisk

to BdTy,+Bd Ty, S contains no simple elosedi mmeEa 8 intersects Ty-
in either B Tyy or Bd Ty, and the bounded component of B — )

This is impossible as pointe

9-gphere in Int Ty such
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Then 8 contains o disk D such that etther D has Property P with respect
to To or D has Property P with respect to Ty,.

Proof. If § intersects Bd Ty, S-BdT,, containg a simple closed
curve J such that either J circles Bd Ty, meridianally (in which ease the
condition of Theorem 6 is easily established) or circles Bd T longitudinally.
In this latter case there is a simple closed curve K on Bd Ty, such that K
circles Bd Ty longitudinally and K lies in the bounded component of
B3— 8. There is a homeomorphism & of B onto itself that is fixed on
Ty +Bd T, which takes Ty so near K that h(Ty) les in the bounded
component of E°—S8. Hence we suppose that Ty lies in the bounded
component ¢f B3-S,

In a similar fashion it is shown that unless Theorem 6 is true, we
can assume with no loss of generality that T, lies in the bounded com-
ponent of E*—§. However, this would violate Theorem 2 gince simple
closed curve circling Bd T meridianally can be shrunk to a point in the
unbounded component of E8— S.

5. The decomposition space I'. We use I" to denote the decom-
position space whose points are the elements of G There are several
ways of showing that the decomposition space I' ig different from E.

Perhaps the easiest way to show that I' is topologically different
from E® is to follow the methods used in [8]. Using this approach, one
would show that if I'is topologically equivalent to IR, then there is a pseudo
isotopy fixed outside 7, which shrinks elements of & to points. It would
then be shown that this is impossible since any homeomorphism % of E®
onto itgelf that is fixed outside 7T, takes some Ty onto & set of large size,
some Toy in this Towould have an image of large size under %, some Tosp
in it would have large size under By o

Although we could carry out the program suggested in the preceding
paragraph, we do not suggest that it is easy. On the contrary, one ecan
find from examining the proof in [3] that such an approach can be quite
tedious.

We show that I' is topologically different from KB by showing that
there are points of I" without small neighborhoods bounded by 2-spheres.
Although this approach is more difficalt than the one outlined above,
it has the merits that it iy different from that used in [38] and gives a handy
property to distinguish the decomposition space from BB Let f be the
map of E® onto I' that takes each element of & onto a unigque point of I
. TEROREM 7. If ¢ is a nondegenerate element of &, f(Ty,) contains no
neighborhood of f(g) whose boundary is a 2-sphere.

Proof. This theorem is established by applying the results of Sec-
tion 4. Assume. that there is a neighborhood N of f(g) in f(T,) such that
BAN is a 2-sphere. We show in five steps that this is impossible.
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Step 1. Putling boundaries in convenient posmon»s._Iln this p.aragra,ph
we show that if there is an N, there is one guch that f (Bd.N ) is loca111y
polyhedral except possibly at points gf Y. J us‘r.. because BdN‘ is &32-8}_)11616
in I' is no reason to suppose that f (BAN )_lls a 2-sphere in EB8 In faqt
it may even not be & 2-manifold. HOWG'YGl‘ f (Bdl\? ) is 190&11}; a 2-111?1:;1-
fold away from Y and FYBIN)— Y' is a 2-mam’f01d 111_ E — Y. No e
that f{(BAN) separates ¢ from Bd T, in 3. There is a positive Qll@ber £
such that if h is a map of F{BAN) into B that moves no point m;)re
{han &, then 7f "' (BAN) separates g 'fI‘(')m Bd T". (T-L‘heorem VI, 10 of 1[1] ]{f
Tet F(x) be the real function which I the; 1Jrnmln_mm of ¢ and one ‘fmld
the distance from @ to Y. By regarding f~(BAN ).— Y as a 2~1?1ar}1 0 ;
in I8— ¥ it follows from Theorem 7 of [6] that there is a homeomorphism 11,
of 77BAN) into B* such that k does not move & b)_r more th;mh 7 &co])3 ;37()
B (BA ) is locally polyhedral at hx) 1f17’(.w).> 0. Note that E”— fl ( .
is the sum of two components Uy, U, containing g, B_cl_’l T, 1"espe,cmve1 v -ezls;
#(Uy) is an open set bounded by the 2-sph§r(.a R (BAN). feg) %??(g[f)
by f(U,) we get an open set in f(To} containing f(g) such t at ib11
is a 2-sphere whose inverse under f is locally po]yhedr;bl exce(Il) A })1?18356_ N};
on Y. For convenience in notion Welsupfo:s; that ¥ = f(U,) and f ‘
iy loce hedral except possibly at Y. .
" lorilgwll)lﬂ?; 1ed at the bggilﬁling of Section 4 there is no loss of generallty
in supposing thal the boundaries of the .fl"s are 1)01yh.e§lra1. .}tller;zes, Zs:z
suppose that each BAT is polyhedral and in general position with respec
to fTHBAN).

Step 2. BAN contains a disk D such that f(BAD) circles so;ne Bd_’l)’
meridianally. Since f(g) les in N, there is & Toaas..an suc}ll that 7( oul?,]:;l,,s
lies in N. We show that for some Topps.by (M < 'n.),_f (Bdl\% e(()lno ::hjs
a simple closed curve that circles Bd Toppe.bm meridianally. We

lying Theorem 6. ]

w a£§ Epgl.y Theorem 6 we must replace [~ (BdXN) by a,hpzlgflatghd(r&?;
2-gphere. (We recall that FHBAN) nee_c_l1 not even be a 2jsp_1el]"3 (.LN)..A
is a punctured polyhedral disk 4 on f (BdAN) such ﬁhzt f (be o
lies on Y Int Tooep.oms- The boundary components of.. cz{.rn 2_; -
to points in > Ing Toeyepmonss- HEDCE, there results 2 51‘ngu; <nr p jxll) A+
By the Sphere Theorem [18] there is a pol.yhedrajl 2-51);11;00 o
+ 3 Int Tooen.cne S0Ch that  Toggy.s, les in the bounded comp

s — S,

i DW@Sa‘Ssumu that 8 does not contain any simple closed cgrvfe 1;311;2
bounds a digk on any Bd Toee.q (8 < ). That we can do ﬁTs To 0
from arguments used in the proofs of Theore.ms 1 an 3. (jaE or;:ﬁ,g;zf
De the smallest 7' containing §. We note that j <. It follows rlom 0.
rem 6 that § contains a simple closed curve J such that J circles on
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Toaay...ar0y Lodygs..ap meridianally. This simple closed eurve would belong
to 4 and hence to f(BAN).

With no Joss of gencrality we assume that J C Bd T,.

Step 3. The disk D of Step 2 contains two mutually exclusive subdisks
Dy, B, suchthat f~(BAD,), f (BdE,) circles the same one 0f Bd T'g9, BA Ty,
meridianally. Just as we applied the Sphere Theorem in Step 2, we
apply Dehn’s Lemma in this step to replace f7'(D) by a disk D’ in
FHD)+Y Ton that eontains f7(D)— Y Toy. Tt follows from Theorem 4
that D’ contains two mutually exclusive disks Dj, B with Property P
with respect to the same one of Ty, Tou. If D, B, are the subdisks
of D which have the same boundaries as f(Dj), f(B), they are the
disks promised by Step 3.

Step 4. Disks D,, B, contain disks D,, B, respectively such that
there s a Togy such that f(BADy), 1 BAE,) each circles Bd Toos; meri-
dianally. This follows from Theorem 5 applied to disks replacing 7(D,),
1B

Step 5. Dy intersects B,. It follows from repetitions of Step 4 that
there are sequences of disks Dy, D,, D;, ... and B, B, By, ... such that
D,O2D,2D;2...,B, DE,DE,D..., and f}(Bd Dy), (B Ey) circle meri-
dianally the same Bd Tooeiey...c;- This implies that D, intersects .

The assumption that there is a neighborhood N of f(g) in f(T,) whose
boundary is & 2-sphere led to the contradiction between Steps 3 and 3.

6. A decomposition H of F* into points and segments. .

In this section we describe a decomposition H of B into points and straight
segments. Although this decomposition looks enough like the decomposi-
tion deseribed in [3] to suggest that the decomposition space may be
topolegically different from B, it looks enough like the decomposition
in [7] to make one cautious in venturing such a conjecture.

A descriprion of H. Let 6, and @, be two horizontal planes in E*
with 6, below 6,. Bach nondegenerate element of H is a straight segment
with one end in @, and the other in ©,. Bach horizontal plane that inter-
sects one of the segments will interseet the sum of the segments in a top-
ological Cantor set.

The sum of the nondegenerate elements of H is the intersection of
a decreasing sequence of open sets U, U,, ... Bach Uj is a tubular neigh-
borhood of a finite graph G;. Figure 5 shows @,. We describe it as follows.

Let Q(1),Q(2),Q(3),Q(4) be four points in O, and P(1), P(2) be
two points in @, such that the line through P(1), P(2) is not parallel to
any line through any two of the @’. We use [P(%), @(§)] to denote the
straight segment from P (4) to Q(j). Then G, is the sum of the eight [P(1),
Q(7)P’s as shown in Figure 5. U, is a tubular neighborhood of 6.
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We obtain G, by replacing each major segment [P (i), .Q(y")] in G
by a copy of Gy. The four copies of G in QB that are near 1"(7,) (t=1,2)
link each other and the two copies of @, in G, near €(j) .(y.z 1,2, 3., 4)
cross in a manner to be described presently. Bef(?re descr.lbm.g the elght.
copies of Gy in G, in detail, we remarllc that their ‘sum lies in U,. Just
as we obtained @, by replacing each major segment in ¢; by a copy of G,
we obtain G, by replacing cach major segment of &, by a copy of G.
Continuing in this fashion we get
a sequence of finite graphs G, Gy,
G, Gy .- and a sequence o£ ‘nubulaa:
neighborhoods Uy, U, Us, Uy, ... of
these graphs such that GipaC Ui
C U431 C U;. The tubular neighbor-
hoods get progressively so thin that
the intersection of the Uys is the
sum of a Cantor set of segments
each with one end on 6, and the
other on @,. These segments are
the nondegenerate eclements of the

p(2)

9
\\/

S
\\\

i g3
decomposition H. ' do
The copy of & in @, replacing 90 A
[P(i),Q(j)] is denoted by G(,j). It )
is the sum of eight straight seg- Tig. 5

ts [P(3,7,m),Q(i,j,n)] (m=1,2; ' . .
zle:nl [2,(3’,?47) w,here’tl’le P(i,],m)’s are points in Qz near P(@? and tsh’e
Q,] : n)’s are points in @, near ¢(j). ‘We shz_mllhdescrlbe tpese P’s and Q §
presently but first show how we want G(i,j) and @(i, k) to entwine
near P (¢). .

Entwining near P(7). Figure 6 shows how certain 'segmeuts 0.£ t];e
G(1,7)’s look 'in perspective near P(1). The general rule. is that fo}; 77;<" ),]
[P(i,1,8),Q(,4§,)] passes between the eye and [P(z,k,?*),Q(z,. ) U
for t < wand [P (i, &, r), @(%, &, u)] passes between the eye and [P‘(z, 7y Sr)é
Q(i,q, )] for u <t P(i,§,1) and P(i,7, 2) are so close toget.lfel (ast?ve
P(i,k,1) and P(i, %, 2)) that the crossings are the same irrespec
of whether or not 7 (or s) is 1 or 2. ' .

Entwining near Q(j). Figure 7 shows how one broken arc 1m 1tC)%(l k’e?ri
entwines with four broken ares in G(2,j) near Q(y). Ea’ch.of ‘;1 he frs(;l cen
ares in G(1,4) entwines with these four ares in G(2,.9) in t ;; ta plon
but we did not show this in Figure 7 to avoid comphca,t.non. Oze' o
[P(1,§,1),Q(1, ], m)] passes between the eye ang. EP(2, 9,13;;)9, Qe(yéy,and

] j etween
(n=1,2,3,4), [P(2,],1),Q(2,],n)] pas§ses s
[P, ?"1 27), 22(1, i, m)], and [P(3,1, 2), @(1, ], m)] passes between the ey
and [P(2,7§,2),Q(2,§, n)]-
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The emistence of the G(,§)’s. It remains to be shown that we can
réally get G(4, §)’s that entwine as we have suggested. As a step toward
doing this, we replace each [P(4),Q(j)] by a triangular disk T'(%, §). The
triangles are as shown in Figure 8 and are described as follows.

Pli,1,1)
P(1,21)

P,31)

o Lto to
Poi1 P0G Pl
0
P(2,;2)
=Ry o(t,jm)
Sdss
Do

Fig. 7

Through @(j) consider a short segment T (Q(y’)) parallel to [P (1), P(2)].
The base of T'(s, §) is on I{Q(4)). There is a line I parallel to [P (1}, P(2)]
and a segment I(P(i)) on L near P(i) such that 7'(i,1)-L = T(,2)-L
=T(,3)L = T(i,4)-L=1I(P(4)). The lateral edges of T(1,{) and
T(2,j) cross as shown. We suppose that T(¢,4) is close to [P(i), Q(§)]
and:rlies in T,.

In deseribing the Q(i, §, %)’ it is convenient to think of I (and hence
the base of 7(s, 1)) ag running from left front to right back, with I (P(Z)}
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to the right of I(P(1)). Let Q(¢,, 1) be the left most point of the base
of T(i,4),Q(%,7,4) the right most point, @(i, §, 2) a point that divides
the base in the ratio 1 to 2 from left to right, and @ (7, §, 3) the point that
divides it in the ratio 2 to 1.

The vertices P(i,j,1) and P(¢, j,2) of @(4,7) in @, are obtained
by adjusting the apex of T'(3, j), but before describing this adjustment,
let us comment on a restriction that if placed on these P’s will ensure
that G(1,7) and G(2,7) entwine near Q(j) as shown in Figure 7. If
P(1,j,1), P(2,4,1) arc on the same side of the plane of T(1, §)+ T(2, )

Fig. 8

as the eye with P (2,4, 1) only half as far from this plane as P(1, 7 » 1)
and P (1,7, 2), P(2, j, 2) are on the other side of this plane with P(1,, 2)
nearer than P(2,j,2), the desired entwining is obtained. ‘
As another step toward obtaining the P(i,f, k)’s we move the apex
A(i,]) of T(4,7) varying amounts backward to the right. B(i ) y? is the point
in @, obtained by moving 4 (¢,) enough to the right- that [B (.’b, 1),Q(,74, l)ﬁ
I(P(5)) divides I(P(s)) in the ratio j to 12—j from right to left.
P(i,j,1) and P(i, ,2) are obtained from B(i, §) by slight adjustments
moving them out of the plane of 7(3, ) as suggested in the pFecedmg
paragraph, the G(i,j)’s entwine near P(i) as suggested by Figure 6.
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An intermediate step. Instead of considering eight components of U,
in U,, it is more convenient at times to consider two open sets in U, ag
shown in Figure 9 and then consider four components of U, in each of
these open sets. In Figure 9 we do not emphasize straightness, but the
figure is useful in showing the entwining near the @’s as suggested in
Figure 7. This intermediate step is useful in Section 8 where we make
suggestions as to why the decomposition space of H may be topologically
different from ZB.

Fig. 9

7. Disks in Y. We use Y to denote the decomposition space whose
points are the elements of H of the last section and / to be the map
taking E* onto Y. For each element y of T, f™(y) is an element of H.
We use C to denote the Cantor set in Y which is the image of the
sum of the nondegenerate elements of H. We note that Y— ¢ is a 3-man-
ifold. ‘

If X, Y are sets in a 3-manifold M. , X i locally tame mod Y if for
each point p of X— ¥ there is a neighborhood N of p in M and a homeo-
morphism h of N onto a cube in E® such that 1(X - N) is a polyhedron
in the cube. Even if M is not a 3-manifold but M~ Y is one, we extend
the notion to say that X ig locally tame mod Y if for each point p of X— ¥
there iy such a neighborhood N of p. Hence we speak of locally tameness
of sets in T modC even though Y may not be a manifold.

As a help toward learning the properties of Y we consider how a disk
in B* may be associated with a disk in Y.
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THEOREM 8. Suppose that D is a disk in Y such that D is locally tame
mcd ¢ and C-BA.D = 0. Then for each integer i there is a-tame disk D, in B
such that {(BaDy) = BdD and D;C {YD)+ U,.

Proof. Asuresult of Theorem 9 of [9], Theorem 9 of [8], or Theorem 1
of [16], we suppose with no loss of generality that 77(D) is locally poly-
hedral modf™*(C). Since the theorem is tiue for a particular integer ¢ if
is true for a larger one, we suppcse that we are proving the theorem for
an 4 so large that j™(Bd.D) U; = 0.

Let X be a punctured disk in D— ¢ such that the boundary com-
ponents of X are BdD and simple closed eurves in #(Uy,). Then F(X)
is a punctured disk in B We suppose with no loss of generality that the
boundary components of F7(X) are FUBAD), Jy, s, .vyJy where J; is
a polygon in Uyiq. Since each simple closed curve in Uy, ean be shrunk
to a point U, J; bounds a polyhedral singular disk in U;. Let ¥ be the
sum of F7(X) and singular disks, one corresponding to each J;. Note
that Y is a polyhedral singular disk all of whose singularities lie in Tj;.

It follows from Dehn’s lemma as proved by Papakyrickopoulos [18]
that for each neighborhood N of the sum of the singularities of ¥, there
is a nonsingular polyhedral disk D; in ¥+ N with the same boundary
as D. To ensure that D; satisfies conditions of Theorem 8, we only need
to take N to lie in U;.

The next three theorems confain the questionable hypothesis that Y
is topolcgically FB.

TEEOREM 9. Suppose that BAd U, is polyhedral and Jy,Js, ..., dn 1s
a finite collection of mutually emclusive polygonal simple closed curves on
Bd U, each of which can be shrunk to a point in U,. Then if Y is topologically
equivalent to BP, there is an infeger § and a finite collection of mutually ex-
clusive polyhedral disks Dy, Dy, ..., Dy such that Bd.D; = J;, Int D;C Uy,
and no component of U; intersects two Dys.

Proof. It follows from Theorem 9 of [8], Theorem 9 of [9] or Theo-
rem 1 of [16] that we can suppose that f iz piecewise linear except at C.
We do this.

Sinee J; can be shrunk to a point in Uy, it follows from Dehn’s
lemma [18] that J; bounds a disk B; which lies except for J; in U;. Then
F(J3) bound the singular disk f(H;). Although #(¥;) may not be polyhedral,
there is a singular polyhedral disk X; such that BdX; = f(J3),
Int X; C f(Uy), and X; has no singularities on BdX;. It follows from
Dehn’s lemma as proved by Papakyriokopoulos [18] that BdX; bounds
a polyhedral disk ¥; which lies except for.its boundary in f(U).

We wigh to adjust the ¥’s so that the resulting disks will not intersect
cach other. Adjust Y, so that it is in general position with respect to ¥;.
If ¥, ¥, intersect, consider a disk D in ¥, such that IntD-Y, =0 and
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BdDC Y,. Replace the disk in ¥, bounded by Bd.D by D and then shove
the adjusted Y, to one side of ¥, near D. This reduces the number of
intersections of ¥, and Y,. A repetition of this procedure permits us
to adjust ¥, so that the adjustment misses ¥;. In a similar fashion we
fix each of ¥,, ¥s,.., ¥s» so that the resulting disks miss ¥,. Then
Y., Y4, ..., Yy are adjusted further so that the resulting disks will inter-
sect neither ¥; nor the new Y,. In a finite number of such steps we can
untangle the X’s from each other so we suppose with no loss of generality
that they do not intersect. Note that F7*(¥;) need not be a disk. Since Y;
is polyhedral in Y and f iy piecewise linear except on 0, f7(¥;) is locally
polyhedral except on C.

Let j be an integer so large that the clogure of no component of (7))
intersects two of the ¥’s. We suppose that f(Bd U;) is in general position
with respect to each Y.

It follows from Theorem 8 that there are tame disks F; (i = 1, 2, ..., n)
such that BA(F;) =f"(BAY,) =J;, and F; les in f~(¥,)+ U;. The
closure of no component of U; intersects two of the F’s. It follows from
Theorem 8 of [6] that a slight adjustment in the F’s takes them into
polyhedral disks that satisfy the conditions of Theorem 9.

We recall that an isotopy of H® onto itself is a one parameter family h,

(0<t<1) of homeomorphisms of B® onto B*. (If we permit h, to be
& map rather than a homeomorphism we call the family a pseudoisotopy
as mentioned in the beginning of Section 5.)

TrEEOREM 10. If Y dis topologically EP, then for each integer i and
each positive number & there is an integer § and an isotopy by (0 <t < 1)
of B onfo itself such that

by = I (the identity),
hy =1 outside U;, and
(diameter of each image of & component of U; under hy) < e.

Proof. Let N be a polyhedral tubular neighborhood of Giyy so thin
that N C U,y and there is a finite number of mutually exclusive horizontal
disks By, B, ..., By such that BAdE; CBAN, Int H;C N , and the closure
of each component of N-— ) B, is a tame 3-cell of diameter less
than &/2.

Let g (0 <t< 1) be an isotopy of B® onto itself such that go=I,
9t = I outside Uy, g, is piecewise linear and takes U;., onto N.

It follows from Theorem 9 that there is an integer j and a finite col-
lection of mutually exclusive polyhedral disks D,, Dy, ..., Dy such that
for e =1,2,...,n, BiD, = ¢7(BdH,), Int D, C U;.;, and no component
of U; intersects two D,’s.

We now show that there is an isotopy k; (0 < ¢ < 1) of E® onto itself
such that ky=I,% =TI outside Uiy, and %, takes .D, onto g (H,). The
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first part of our isotopy is to free D; from gi'(B,). Suppose D, and g7 Y(E,)
are in general position and that 7' is a 2-sphere in their sum which is
the sum of a disk in D, and a disk in g; (B,). It follows from Alexander’s
Sphere Theorem ([1], [15]) that we can suppose with no loss of generality
that T' is the boundary of a tetrahedron abed whose base abc is the disk
in T g7 *(B,). Since the three lateral faces of a tetrahedron can be pushed
down onto the base of a tetrahedron by an isotopy that does not move
any point that is far from the solid tetrahedron, we find that there is
an isotopy of E* onto itself that is fixed oufside U;;; and which pushes
D, onto (D1~(abd+acd+bcd)]+abc. More details of such an isotopy
are found in the proof of Theorem 7.1 of [10]. The isotopy may be con-
tinued to push D, to one side of abc and thereby reduce the number of
components of the intersection of the adjusted D, and gi*(H,). A finite
number of such reductions changes D, so that its image does not intersect
g7 (By). Another sequence of dsotopies alters D, until it does not intersect
any g:'(B;) (4 #1). In constructing this sequence of isotopies, care is
taken not to alter any simplification accomplished at a preceding stage.
We suppose that %;»(D;) is a polyhedral disk which lies except for its
boundary in the 3-cell ¢ which is the closure of a component of
N— (g7 (By) + 97 (Hs) + ... + g7 (Bn)). Tt follows from Alexander’s Sphere
Theorem that there is a homeomorphism of C onto itself that is fixed
on BdC which takes &y.(D;) onto gi'(E,). It follows from Alexander’s
Deformation of an n-Cell Theorem [2] that %, (0 <t < }) can be extended
to an isotopy % (0 <f<1) such that %k, = ks (3 <s<1) outside C
and T(Dy) = g7 (B

By repeating the procedure suggested in the preceding paragraph
for each D;, we find that there is an isotopy K, (0 <t < 1) of E? onto
itself such that Ky = I, K;= I outgide U;.;, and K, takes each D, onto
the corresponding g7 '(H,). The required isotopy & is g,K;.

Let V be a component of U;. To see that diameter %, (V) < &, note
that V les in the sum of a D, and two adjacent components of
Uppr— 2 D,. However, each component of U;.;— Z D, goes under , into
a component of N — 3 H, and hence goes into a set of diameter less than
/2. Hence V would go into a set of diameter less than e.

THEOREM 11. If Y is topologically EP, then for each integer © there
is a pseudo isotopy hy (0 <t < 1) of E® onto itself such that

ho = 1,

hy =TI outside U;,

he is & homeomorphism for 0 <t <1, and

ki'(p) is an element of H for each point p of EP.

Proof. This result follows from repeated applications of Theo-
rem 10.

30*
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It follows from Theorem 10 that there is an integer 4, and an
isotopy M (0 <t < &) such that h, = I, k= I outside U, and diameter
hyp(V) < § for each component V of U;,.

Let ¢ De a positive number so small that diameter Py X) < 1/3
if X is a subset of U, of diameter less than &.

It follows from Theorem 10 that there is an integer i, und an isotopy
(3 <t < §) of EB onto itself such that

751/2 =1I ’
Ly =TI outside Uy, and
diameter ky, (V) <& if V is a componens of Us,.

Then 7 ($ <t <$§) is %hy,. Note that diameter ha(VY< % if V
is a component of U,,.

Oontinuing in this fashion we define %, (2 <t<§) so that h; = gy
outside U;, and there is an integer 4y, such that diameter (V)< J itV
is a component of Us,. Also kb (§ <t < +4) is such that &y = hyys outside U,
and there is an ¢, such that diameter higo(V) < L if V is a component
of U;,. In similar fashion we define %, (F<T<H), W (31 <t<$), ..
The limit of & as ¢ approaches 1 is By

8. Why four Qs? Let 4 » B be two planes between 6, and o,
a8 shown in Figure 10. We suppose that U, is so thin that TU,-4 (as is
U,-B) is the sum of eight mutnally exclusive disks such that each disk
containg a point of G. ‘

One of the things that leads one to believe that Y may be topologically
different from E° is the suspicion that if % is any homeomorphism of B®
onto itself that is fixed outside U,, then for each integer » there is a com-
ponent V of @, such that h(V) intersects both 4 and B. If this is shown,
it follows from either Theorem 9, 10, or 11 that Y is topologically dif-
ferent from B

‘We mention why we use four @’ in describing each component
of Gy instead of two or three.

Why not two @’s? If we used only two @’s in describing Gy, there
would be a homeomorphism % of B® onto itself which iy fixed except near G,
as shown in Figure 11 such that RLP(1), Q)] (1=1,2; j =1,2) does
not intersect both 4 and B. Hence there is a homeomorphism % of E?
onto itself fixed except near @ fuch that for each component V of G,
k(V) does not intersect both 4 and B.

Why not three Q’s? If there were three @’s in @, instead of two,
it could be shown that if 4 is a homeomorphism of B onto itself fixed
except near G4, then for some component V of @,, h(V) intersects both A
and B. However, h(V) might fail, to intersect 4 and B in as essential
a fashion as does @,. For example, if V is a component of @, replacing
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[P(1),Q(1)] of G and h(V) intersects 4 and B as shown in Figure 12,
then % can be such for that for no component V' of G4 near V does RV
intersect both 4 and B.

With three @’s there is a very effective entwining of the G(i,j)’s
near the @’s because, as shown in Figures 7 and 9, if any Q(4, §, m) is
moved upward to shorten [P(1,4,1), Q(1,j, m)]+[P(1,], 2), @1, , m)]
then each [P(2,4,n),Q(2,7,n)]+[P(2,7,2),0(2,7,n)] is stretched.
P(2)

4

P(1y

I\

/I\\

P(1) P(2)

Ay 357
PR o)
/
/ / f(em)] G~
/
JEE L LS/ [y
Q(I)/Q(ZV am\)\/ QN Q(V N
Fig. 10 Fig. 11

However, the entwining is not so effective near the P’s because, as shown
in Figure 6, P(1,1,1) may be pulled down to shorten [P(1,1,1),
Q1,1,)]1+[P(1,1,1),Q(1,1,2)] without altering any of [P(1, 2, J:),
Q(1,2,2)], [P(1,2,9),0Q(1,2,3)], [P(1,8,9,Q(1,2,2)], or [P(1,2, '5.))
@(1,2,3)]. This is a reason that we use more than three @’s. There is
& homeomorphism % such that » pulls P(1, 1,4), P(1, 2, ), and P(2, 3, %)
(¢=1,2) below 4 to shorten the upper half of [P(1,1,4), Q@1,1,1)],
[(P(1,1,4),Q(,1,2)], [P1,2,9),Q(1,2,2)], [PQ,2,i3),Q(,2,3)]
[P(2,3,14),Q(2,3,2)], [P2,3,%),Q(2,3,3)] and pulls each @(i,],k)
above Bto shorten the lower half of each [P(2,1,7),Q(2,1,s)],[P(2,2,7),
Q(2,2,9)], and [P{1,3,7),Q(1,3,s)]. Although for each component.V
of @, h(V) intersects each of 4 and B, each intersects in an innessential
fashion as depicted in Figure 12. '
Suppose that U is a component of U; and & is a homeomorphism of E®
onto itself. We would like to find a definition of an essential intersection
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of h(U) with A and B such that if (U) intersects A and B in this effective
way, then for some component U’ of Uzy,y in U, h(U’) intersects 4 and B
in this essential fashion. We could then use induction, along with Theo-
rem 10, to show that Y is topologically different from F3. In the next
three paragraphs we make a guess as to what an essential intersection
might be.

An arc is said to have oscillation & with respect to A and B if it con-
tains % points of 4 +B such that no two of these points which are adjacent

on the arc belong to the same one

/\ /\ of 4 and B. Note that if an are has

\ . oscillation %, it has oscillation j for

any positive integer j less than #%.

nfP112)) A simple closed curve has oscillation

k if it contains an arc of oscillation %
with respect to 4 and B.

Property X. Animage @ of G,
has Property X if either some gimple
P00113) closed curve in G has oscillation 6

g or G contains a 0 curve such that
\\ each simple closed curve in the 0

curve has oscillation 4.
Essential intersection. Sup-
pose that U is a component of U;
and h is a homeomorphism of E® onto itself. #(U) has an essential inter-
section with 4 and B if for each homeomorphism &’ of B8 onto itself that
agrees with » on E*— U, »'(U-@;) has Property X.

Suppose that the G’s are defined with four @’s as suggested in Sec-
tion 6 and % is a homeomorphism of E? onto itself that is fixed outside U;.
Then h(U,) intersects 4 and B is an essential fashion. It follows from
Theorem 10 that Y is topologically different from E® if the following
conjecture is true.

CoNTECTURE. For each component U of U; such that h(U) intersects A
and B in an essential fashion there is a component U’ of U-Uy;., such that
h(U’) intersects A and B in an essential fashion.

"While we do mot prove the conjecture, we can prove the following
theorem.

TeEOREM 12. If R(@,) has Property X, then there are am 1,9, and %
such that h([P(z QUHI+[P (1), k)]) has oscillation 3.

The above theorem is proved by considering where the various points
of 4-h(G) and B-h(G,) might be.

Here is how one might use Theorem 12 to try to establish the con-
jecture. Suppose U = U,. Consider the two intermediate open sets in U

A ((,7(1‘/1,1))
7 \hlgti2)

Tig. 12

icm

Point-like decompositions of E 451

as depicted in Figure 9, and let W be the one of these containing [P (i %),
Q(j)1+[P(3), @(k)] of Theorem 12. Try to show from Theorem 12 that
we bave a situation something like that depicted in Figure 13 where
A-h(W) contains two disks separating the loops of 2 (W) associated with
h(Q(i)) and h(Q(j)) while B-k(W) contains a disk between these two
disks as shown. If we were to get a situation exactly like that depicted

h(Pn))

@/ﬁ@m} 0 Q

Pig. 18

in Figure 13, it could probably be shown that if A’ is a homeomorphism
of E® onto itself that agrees with % on IE*— W, then one of W (G4, )
(G (i, k)) has Property X. It would be desirable to recognize a situation
that is enough like that shown in Figure 13 so that it could be shown
that one of A'(G(4, )), 4'(G(4, k)) has Property X but is general enough
8o that it can be shown that the situation occurs.

The more @’s we use in defining the G’s, the more complicated the
decomposition space Y appears. The reason we stop at four is that we
feel that the conjecture may be true.

9. Questions. Is the decomposition space Y disussed in the pre-
ceding three sections topologically different from X3 Is the conjecture
of Section 8 true?
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Suppose that 7' is a double torus as shown in Figure 14; Jy, J, are
two simple closed curves in Int 7' as shown; A-T containg two digks;
and B-T contains a disk between these two disks as shown. Tt h jg
& homeomorphism of BB onto itself that is fixed on J°— T, need one of
h(J1), h(J5) have oscillation 4 with respect to 4 and B? An affirmative
answer might be obtained by considering a wuniversal covering space
of T (see proof of Theorem B5). An affirmative answer might help in

showing that if @ (4, j), G(¢, k) are as shown in Figure 13 and A’ is a homeo-
morphism of FP onto itself that agrees with » on BE*—W, then one of
WG (3, 1), b'(@(i, k)) has Property X.

In each of the following questions we suppose that H' is a decomposi-
tion of Z® whose nondegenerate elements are straight line segments and Y”
denotes the resulting decomposition space.

Suppose that the sum of the nondegenerate elements of H' i the
sum of two closed sets X,, X, each of which is the sum of elements of H’
and H; is used to denote the decomposition whose nondegenerate elements
are the elements of H’ in X;. Iy Y topologically 3 if each of Y, T, ig?
An answer even in the case where X,-X, =0 would bhe interesting.
McAuley’s result [14] is one phase of considering the case where there
are infinitely many X’s.

If Y is topologically different from B3, does H' contain a Cantor
set of segments such that if Hy is the decomposition of B* whose nonde-
:_generate elements are elements of this Oantor set of segments, then Y,
is topologically different from s

For each planar circular disk D and each pair of positive numbers e,
8 let H(D,e,8) denote the elements of H' with diameters greater than
or equal to ¢ which intersect D within ¢ of its center and whose directions
differ f-rom the normal to D by no moere than § degrees, If H' is topologi-
cgl]y different from B8, does there exist o planer civeular disk D and a posi-
tlnvf number & such that for each § > 0, the decomposition space whose
ziﬁzreing;gznelﬁze elements arve those of H (D, e,8) is topologically

Does a point-like decomposition of I* yield I it it yields a 3-manifold?
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Does each point of the decomposition space I' discussed in Sec-
tions 3-5 have an arbitrarily small simply connected neighborhood?

Does one obtain Euclidean 4-space if one takes the cartesian product
of a Buclidean line with either the decomposition space I"of Sections 3-5
or the decomposition space Y of Sections 6-8? This question is motivated
by [5].
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