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Generalized cohomotopy groups as limit groups*

by
J. W. Jaworowski (Warszawa)

1. Introduction. K. Borsuk introduced in [2] the notion of
a generalized (m, k)-cohomotopy group a(X) of a A-ANR space X.
These groups are defined for each k < 2n—1 and are based on the concept
of homotopie k-skeleton of a space. Some elementary properties of the
(n, k)-cohomotopy groups were studied in [3]. In this paper we show
that the Borsuk (n, k)-cohomotopy groups of a 4-ANR space are direct:
Limits of the corresponding groups of polyhedra. This will allow us to
define the groups =(X) for any compact space X.

2. Preliminaries. We recall here the definition of the Borsuk
(n, k)-cohomotopy groups and their fundamental properties.

A closed subspace A of a space X with dim4 < k is called a homo-
topic k-skeleton of X if every closed subspace of X of dimension <% can
be continuously deformed into A. If X is a simplicial complex then its
polyhedral %-skeleton X* is a homotopic k-skeleton of X in the sense
of Borsuk. Borsuk also showed that any corapact ANR space with prop-
erty (4) (called here a A-ANR space, see [1]) contains a homotopic
k-skeleton for each k=0,1,..

Throughout this paper, let § be the n-sphere S*. If A is a closed
subspace of a space X, then (4 C X —8) will denote the set of all map-
pings a: A—8 which are extendable over X and [4 C X 8] will denote
the set of homotopy classes [a] of mappings « e(ACX-8) It A=X
then we shall write (4—8) instead of (4 C 4A—8) and [4 8] instead
of [AC A—>8].

It dimAd < 2n—1, then [A->8] under a suitable group operation
becomes a group called the n-th cohomotopy group a(A) of A. If B is
a space and f: B—>A is a mapping, then the assignment a—of, for a:
A8, defines a transformation f*: [A—>8]—[B—8). If dimA4, dimB
< 2n—1, then j#: a(A)—>a*(B) is & homomorphism.

* This work was done when the author was supported by the National Science
Foundation under NSF-G 14779.
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Let (X, A) be a closed pair (i.e., 4 is a closed subspace of a space X)
with dim4 < 2n—1. In general, the set [4 C X->8]C an(4) does not
form a subgroup of #7(4). For example, if §=8% X =8x g, 5, isa point
of 8, A=8xsgvsx8 and a,f: A—F§ are the mappings defined by
a(w,y) =z B(z,y) =y, for each (@, y) e 4, then either of a and g can
be extended over X. The sum [a]+[f], however, is represented by the
mapping y: A8 defined by y(», 8) = @, ¥(8, ¥) = y and this ma‘pping
cannot be extended over X because the 2-sphere 8 does not admit a con-
tinnous multiplication.

Following Borsuk, we denote by (4 C X) the subgroup of 7 4)
generated by [A C X~ 8]. The following properties of the groups (4 C X)
have been proved in [3] (the notation here will slightly differ from that
used in [3]):

(2.1) Let (X, A),(Y, B) be closed pairs with dimA,dimB < 2n~1,
f: (¥, B)—(X, A) be a mapping, and f: B—~A be the partial mapping
defined by f. Then the homomorphism jﬁ*: ™ A)—>a"(B) induced by f, maps
[ACX~8] into [BCY~8] and a(AC X) into an{(B C Y) and Tence
defines « homomorphism

Fo a4 C X)-»>a(BCY)
with the following properties:
@) If f: (X, A)—~(X, A) ds the identity, then F is the identity.

(i) If (Z, 0) is a closed pair with AimC < 2n—1 and g: (Z, 0)—>
(Y, B) is a mapping, then fg = gJ.

(i) If f,9: (Y, B)—(X, A) are two mappings and f =g as mappings
of Y into X, then = §. f=g rr
(See [3], Theorems 1 and 3.)

(2.2) Let X be a compact A- ANR space, k< 2n—1, A be a homotopic
% - skeleton ‘_’f X, (¥, B) be a compact pair with dimB<%, and f: Y>X
be o mapping. Then § defines unique homomorphism

fap: a4 C X)—>an(BC Y)
with the following properties:
(1) If f: XX is the identity, then fa,4 i the identity.
(i) If ¥ 4s a compact 4-ANR space, B is a homotopic k- skeleton

" of ~Y, (Z, C) is a compact pair with im0 <k and g: Z—Y, then a0
= gzr,cfA,B- ’

(i) If f,9: Y-+X and ferg, then fap = 4,5
(iv) If f(B)C 4, then F4p=]. '
(See [3], Theorems 2 and 4).
. In particular, we obtain the following corollaries:
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(2.3) If A and B are two homotopic k-skeletons of a compact 4-ANR
space X with k < 2n—1, then the identity mapping e: X —X induces an
isomorphism e4p: w{A C X)~ar(BC XY).

Theorem (2.3) proved orginally by Borsuk in a slightly different
way (see [2], Nr. 4) enables us to define, for & < 2n—1, the (n, k)-coho-
motopy group wx(X) of a 4-ANR space X as the abstract group isomorphic
to @(A C X), for a-homotopic k-skeleton A of X. If ¥ = dimX, then
Ay X) = a"(X). We also have

(2.4) If X, Y are compact 4-ANR spaces, k < 2n—1, and f: ¥—=X
is a mapping, then f induces a wnique homomorphism

. w X) - T)

with the following properties:
() If f: XX is the identity, then f* is the identity.
(i) If Z is a compact 4-ANR space and g: Z— Y, then (fgy* = i
(i) If f,9: Y—-X and f~g, then F = g%
(iv) If dimX,dimY <k then fﬁ: coinecides with the homomorphism
of the cohomotopy groups induced by f.

3. Limit groups. We shall consider the direct systein of finite
open coverings of a compact space X. If ¢ and = are two coverings and =
is a refinement of o, then we write ¢ <.

Let o be a covering of X and N (o) be the nerve of ¢. If Veo, then v
will denote the vertex of N (o) corresponding to V. A set 9, 9y, ..., O of
vertices forms a simplex in N(o) if and only if VonVin o n Vi 0.
T A4 is a closed subspace of X, then N(o|4) will denote the subcomplex
of N(c) consisting of the simplexes (v, ¥y, ..., %) of N(¢) such that
VornVinanVirnAd#0.

If ¢ is a covering of X, then x,;: X->N(o) will denote a canonieal
mapping corresponding to ¢. It has the property that if Veo and w e v,
then x.(w) € St». This property defines the canonical mapping uniquelly
up to a homotopy. If A is a closed subspace of X, then », maps A into
N(c|4); the canonical mapping #, restricted to A will be denoted by 4.

If o and 7 are two coverings of X and ¢ < 7, then there exists a sim-
plicial mapping P, of N(z) into N (o) called a projection. It is defined
uniquelly up to a homotopy by the condition that if v is a vertex of N (z)
and p(v) = u, then V C U. If 4 is a closed subspace of X, then the
projection p,, maps N(r|A) into N(c|4). The projection P restricted
to the polyhedral k-skeleton N*(z) of N(r) will be denoted by pi. If P
is a projection and x, is a canonical mapping corresponding to T, then
0% I8 2 canonical mapping corresponding to o. :
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If X and Y are compact spaces, ¢ i3 a covering of ¥, and f: XY
is a mapping, then let /"o denote the covering of X made up of the inverse-
images of the elements of o. The mapping f induces then a simplicial
mapping fs: N (f"'¢)—>N (o) such that if v is a refinement of o then f ™
is a refinement of f ‘¢ and the diagram

N '0) 55 N (o)
Py-lyy-1g T Tp'm
N5 N

is commutative up to a homotopy.

If ¢ and 7 are two coverings of X, k < 2n—1 and o < 7, then a pro-
jection of N(7) into N(e¢) induces, by (2.4), a unique homomorphism
ot 7k(N (0)) — k(N (v)) such that if 6 < g <7 then ¢, = ¢ Hence
{7(N (0)), ¢o} forms a direct system of groups over the directed system
of all open finite coverings of X. We define

TYX) = lima(N (o)) -

If k > dim X, then the family of all open finite coverings of X contains
a cofinal subfamily whose nerves are of dimension < %. Therefore in this
case the group 7(X) is isomorphic to the n-th ecohomology group of X.

(8.1) If X and X are compact spaces, k< 2n—1 and f: Y—+X is
a mapping, then f induces a homomorphism

71 WYX > Y)
with the following properties:

() If f: X—>X dis the identity, then f# is the identity.
() If X,Y,Z are compact spaces, f: ¥ —+X and g: Z—Y, then
Jo7* = g 7

(i) If f,9: Y —X and f~g, then f*#:‘ﬁ#;

(iv) If & > dim X, dim ¥, then F* coincides with the homomorphism i
of the cohomotopy groups induced by f.

Proof. If X is a cofinal subfamily of finite open coverings of X,
then the coverings /™o, o ¢ X form a cofinal subfamily of the family of
finite open coverings of Y. The simplicial mappings fo: N (f 'e)—>N(0)
induce, by (2.4), homomorphisms f5: a}(N (o)) —>af(¥(f "0)) which form
a map of the direct system {#%(N(f7'0))} into {a%(N(0))}. We define
7 (X)) =7 ) to be the limit of the homomorphisms ff:.

The properties (i), (ii) and (iv) are obvious. To prove property (iii),
we first show that, if ¢y, @2 ¥—>Y xI are the inclusion mappings of ¥
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into the lower and upper base of ¥ X I, respectively, then &?: @?:
U ¥ x I) -7 X).

Let {a} be an element of 7Y < I) represented by a eay(¥ (o)),
where ¢ is a covering of ¥ xI. We can assume that the covering ¢ is
“gtacked, i.e. hag the form ;

c={VxI}, d=1,.,7;§=0,..,8,

where 7 = {V'} is a covering of ¥, I°=[0,t), I = (tj_1, tj41), for 14 -
<s—1, and I° = (fs—1, 1], Where 0 =1, <# < ... <te=1. The stacked
coverings form a cofinal sabfamily of the family of all finite open coverings
of YxI. We observe that

-1 )
Po C=T =@ 0.

Consider now the geometrical realizations | N (z)| of N(r) and |N(o)]
of N (o). We easily see that there exists an inclusion mapping &: | N (z)| x
xI-s| N(o)| such that, if ¢y, |N(z)]~>|N(v)|xI are the inclusion
mappings of | ¥ ()| onto the lower and upper base of | N (z)| x I, respectively,
then gor = Mo, P10 = Py, . BEvidently, yo~ y, and, therefore, by (2.4), we have

oo = (Byo)a = yifoFa = ¥ a = (0p)Fa = gila.

Tt follows that @ =g

Now let 7, g: ¥ —X be two mappings and let iz ¥ XI—X bea gltomo-
topy connecting f to g. Then f = hgy, g = hg, and, since qa? =@, we
have = g#.

Remark. We observe that the limit group w=i(X) iks isomorphic
to the limit %YX) of the direct system of groups {«"(N*(c)C N(0))},
where ¢ is a covering of X and the homomorphisms

loe = Pugt 7" (N¥(0) C N (0)) —>="(N¥(z) C N (v))

induced by the projections

Pt (N (1), N¥(x)) (N (o), N¥o)), where o<1,

according to (2.1). Bach group a"(¥N*(s) C N (o)) is generated by the set
[N¥0) C N(0)—8] and the projection p, maps [N*z)C N(r)—8] into
[N%0)C N(a)—8], so that the system of sets {[N*(o)C N(o)—> 8]}
forms a direct subsystem of sets of the direct system =" ¥o) C N (o))}
of groups. Evidently, its limit

WX] =lim[N*(0) C ¥ (0)~8]
generates the limit group Fx(X). N - .
The definition of the homomorphism f: 'h"‘k(X)—ank(_Y) mduee@ by
a mapping by aid of the direct system {a"(V ¥(0) C N (o))} is also obvious.

2
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4. The groups = of 4-ANR spaces.
(4.1) MAmN TemorEM. If X is a compact inetric 4-ANR space, then
there ewists an isomorphism i: 7y X)~ my X).

This section will be devoted to a proof of the Main Theorem.

Since X is compact and metric, we can assume that it lies in the
Hilbert cube I“ We shall consider finite s-coverings of X by means of
open spherical regions in I* whose radii are less than & > 0.f o is a covering
of X, then by picking a point o in each spherical region V of ¢ so that
the finite set {v} is in a general position in I we can realize the nerve
N(o) as a finite simplicial polyhedron in I”. We observe that

(4.1) If o is an e-covering of X, then the simplexes of N (o) have dia-
meters less tham 4e. :

(4.2) If o is an e-covering of X, then |u,(2)—m| < 10e.

(4.3) If o is an e-covering of X, then N (o) lies in the 6 e-neighbourhood
of X. :

If X is an ANR space, there exists a compact neighbourhood M
of X in I” (containing X in its interior) and a retraction #: M — X. Given
an e > 0, there exists an 5 > 0 such that, for each x,y e M, |z—y| < 69
implies that |r(z)—r(y)| < {e. By (4.3), there exists a 6> 0 such that,
if_ o i a d-covering of X then N(o)C M. Define 7, = ¢|N(o) and
75 = 7| N%(0). Assume that 7 < 6 and 7 < +4y & and let ¢ be an #%-covering
of X. By (4.3), if y is a point of the polyhedron N (o), then there exists
a point @eX such that |z—y| <6y < fe It follows that |y—7(y)]
< |y—a|+|lz—ry)| = |y—o|+|r@) —7(y)| < e+ Le = &. Hence we have
- (44) If X is an ANR space and s > 0, then there exists an n > 0 such
that if o 4s an 1n-covering of X, then |y—r{y)| < & for every y e N(o).

(4.8) If X is an ANR space and o is a covering of X, then there ewists
@ refinement v of o such that the mapping ».7.: N(z)— N (o) is homotopic
to the projection P.: N (7)—N (o).

Proof. Let 12 be the Lebesgue number of the covering o. By (4.4),
there exists an #-covering v such that o < and, for each y e N(1),
[y—7-(y)] < s We can assume that, in addition, ) <& Let yelN(z),
let » be a vertex of N(r) guch that y € Stv and let V be the elen‘mnt of ¢
corresponding to. v. Hence V is a spherical region V (p,, ) with the center
Po ¢ I” and radius 9 < & By (4.1), the simplexes of N () have diameters
less than 4%. It follows that

rdy) = Po| < |7y) —y[+ |y —0[4- [o—po| < 6+ 5 .
Therefore »(y) lies in the spherical region V(p,, &+ 54) whose diameter

is less’ t}.lan 12¢. It follows that there exists an element U of the covering o
-containing V(p,, 64) and hence x, maps r,(y) into the star Stu in N (o)
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of the vertex w corresponding to U. Sinee ¥V = V(py, n) C V(py, 65) C U,
we can assume that the projection p,, maps v into #. Therefore

25T (Stv) C St p(u)
which means that 7. ~p..

If 4 is a subset of X with dim4d <%, then there exists a cofinal
subfamily X of the family of all spherical coverings of X in I” such that,
for each oce X, N(s|d)C N¥o). Throughout the following part of this
section we shall consider only coverings of the family Z.

(4.6) Let A be a closed subspace of X with dimA <k < 2n—1 and
let ae[AdCX—8]. Then there exists a covering o of X and a mapping
B: (N¥(0) C N(0)—8] such that a = %[f] (see 2.1).

Proof. Let a: A—>8 ba a mapping representing a and let «': X8
be an extension of a. By lemma 3.4 of [4], there exists a covering ¢ of X
and a mapping f: N{(o)—8 such that fx, = a'. Let gt = ﬂ|N"'(u). Since
;:,,(A)CN”(U), it follows that fxm4~a. Then, by (2.1), z[f] = a.

(4.7) If is a A-ANR space, A is a homotopic k-skeleton of X and o
is @ covering of X, then there exists a vefinement © of o such that the mapping
r: N(t)—~X is homotopic to a mapping +': N(v)—~X with 7"(N"(r)) CA.

Proof. By (4.5), there exists a refinement = of ¢ such that .7~ P:-
By Lemma 1 of [3], 7. is homotopic to a mapping 7': N(z)—+X with
7 (N¥x)) C A.

As a consequence of (4.3) and (4.7) we have

(4.8) If X is a 4-ANR space, A is a homotopic k-skeleton of X and o
is a covering of X, then there ewists a refinement v of o such that the projection.
Pt N(1)—>N (o) is homotopic to a mapping h: N(r)—>N (o) with h{N¥(z))
C N(c|A)C N¥o).

(4.9) Let X be a A-ANR space, A be a homotopic k- skeleton of X,
and o be a covering of X. Let a: N (0)— 8 be a mapping such that the mapping
axgyy: A8 can be extended over X. Then there exists a refinement v of o
such that the mapping ap®: N¥(z) =8 can be ewtended over N ().

Proof. Choosing a covering 7 as in (4.7), we can replace 2% by
a mapping sgar': N¥z)—>N¥0o). I p: X8 is an extension of s,
then pr': N(z)—8 is an extension of sy’ It follows that apfg can be
extended over N (7).

(4.10) If X is a A-ANR space, is a homotopic k-skeleton of X, o is
a covering of X and «: N¥o)->8 is a mapping such that axs . A8 is
homotopic to a constant sye S, then there exists a refinement T of o such that
the mapping op: N¥z)—8 is homotopic to & mapping y: N¥z)—8 with
7(N(z]4)) Cs.

Proof. Let § Dbe the boundary of the (m+1)-simplex with the
vertices Sg, 81, -.v) Snt1- The mapping axg s being homotopic to a constant

27%
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mapping can be extended over X to a mapping f: X -=8. It follows by (4.9)
that there exists a refinement ¢ of ¢ such that the mapping ap,: N o) -8
can be extended over N(g) to a mapping f: N(p)—S. Evidently we can
assume that x, = Pe#,. Next, there exists a homotopy I: X X I-§
such that F(z, 0) = f(x), for each @ e X, F (@, 0) = axy.4(®) = aphuy(a),
for each 2 e A, and F(x, 1) = &, for each x ¢ A.

Consider the covering of X xI with the open sets F'(Sts,),
PSS,y ooy B (St8541) and choose a refinement 7 = {V'} of o and a sub-
division 0 =t, <t < ... <tlp=1 of I such that, for cach Vier and
0 < § <m, there exists a »y such that Vi [y i) CF'I(Sts,,H). Define
mappings y;: N(z)—-8 as follows. Let y, = fp, and let s, = y(of),
where o' is the vertex of N (z) corresponding to V" ‘; define y; on the vertices
by putting (o) =s,,. We easily see that p; is a simplical mapping
and that the mappings p;—y and yyave “adjacent” for 0 < j < m. It follows
that ye = ym.

Moreover, since F maps 4 x {I} into s, then the only element of
the covering {F(Stss), F I (St8), ey I (St8441)} that intersects (and
contains) A x I is P~ (St s,). It follows that p,(v°) = s, for every 4. Thus ym
maps N(z|4) into 8 and we can pubt p = yp.

Remark. The proof of (4.10) is a modification of the proof of Theo-
rem 13.4 in [4].

(4.11) Let 2 be a directed set and {H,, hy}, o, T € X, be a direct system
of Abelian groups indexed by X with the limit H. Let, for each o € X, B, be
o subset of H, such that he(98,) C By, for every o <v (i.e. {Boy hoe| B}
i8 a direct subsystem of sets of the direct system {Hy, ha} of groups).
Let%=1i_r,n%a. Let G be an abelian group generated by a subset s1C @
and, for each o, let iy: H,—@ be a homomorphism such that the = iy,
for every o < 7. If the homomorphism 4: H—G defined by {i,} maps B
onto oi, then ¢ i8 an epimorphism.

Proof. Let g be an element of G with ¢ = 9m,a, -+ ... + M5, Where m;
ave integers and a; ¢ A. Let b; ¢ B be such that a; = i(by). Let, for each
j=1, ., s, b}, be an element of 9, representing b; and let v be such

8
that o; <7, for each j=1,...,s. Then b, = ) m;h,,(b}) is an clement
. A

of H, and 4.(b,;) = g showing that ¢ is an epimorphism,

Proof of the Main Theorem. Let {a} be an element of 7wi(X)
repregented by an element ae ax(N (o)), where o is a covering of X. The
. canonical mapping x,; XN (o) induces, by (2.4), a homomorphism
i3 k(N (0)) — 7k X) .

We define i{a} to be x?(a). Then 4 is a homomorphism.
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By the remark of section 3, the limit group my(X) is isomorphic
with the limit ¥(X) of the direct system of groups {z"(¥*(c)C N(0))},
o ¢ 2 and the homomorphisms

ot " (N¥(0) C N () =" (¥ () C N (x))

indnced by the projections pe: (¥ (@), ¥4@) (¥ (), ¥%0)), where o
is a covering of X and v is a refinement of ¢. Then the homomorphism
7 WY X)->ak(X) corresponding to ¢ can be defined as follows. Let a be
the element of ¥4X) corresponding to {a} e @y(X) and represented by
an element a e n“(N He)C N (a)). Let A be a homotopic k-skeleton of X.
The canonical mapping x,:: X—2N(o) maps A into N*%o) and induces
by (2.1) & homomorphism

%ot 7"(N¥0) C N (o)) »a"(4 C X)
such that, if ¢ <7, then the diagram

NV (o) C N (0)) > a*(N'(z) C N(r))
EAN W ¥
a4 C X) ,
is commutative. Then 2(a) is the element of 7(X) represented by %o @)-
We also recall that, if a: N %(¢)—8 represents a, then % (a) is represented
by the mapping axe.a: 4 ->8.

1. ¢ is a monomorphism:

Let a be an element of #*(N*(c) C N (o)) represented by the mapping
a: N¥(o)—8 and suppose that 7{a} represents zero in ay(X). Then the
mapping argq: 4->8 is homotopic to a constant and therefore it can
be extended over X. By (4.9), there exists a refinement z, of ¢ such that
a = ap.’f,,,: N¥,)+8 can be extended over N (z;); but a; also represents a.

By (4.10), there exists a refinement 7, of 7, such that the mapping
a,pE.: N¥(z)—# is homotopic to a mapping ay: N *(zg) 8 With oy (ra|4))
C 8,. The mapping o, also represents a.

By (4.8), there exists a refinement 7 of 7, such that the projection
Prrt N (1) =N (v,) is homotopic to a mapping h:N N(m)—>N(ry) with
h(N "(13)) C N(z)d). It follows that the element a= {a} € Wy(X) cor-
responding to a can be represented by a mapping ag: N¥(zg)—+8 which
is homotopie to a constant. This shows that % is a monomorphism.

2. 7 48 an epimorphism: '

To prove this we apply (4.11) to the case when H, = n"(N (o) C N (0)),
B, = [F¥(0) C N(0)—>H8], ¢ = 2"(4 C X) and of =[4C X~>8]. By (4.6),
¢ maps the limit 9B = lim93, onto A and 7 is an epimorphism.
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This completes the proof of the Main Theorem.
; Re]mark. With our definition of the (n,k)-cohomotopy groups as
divect limits, theorems 3 and 6 of [3] remain true £ o
§ 3] remys rue for an
space X (1). YT compact
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On automorphisms of relatively free groups

v

- by

A. Wlodzimierz Mostowski (Warszawa)

1. This paper deals with gutomorphisms of relatively free groups,
i.e. groups which can be represented as F(V) = F/V where F is a free
group and V its fully invariant subgroup. A study of the theory of such
groups was initiated by B. H. Neumann [7], who obtained many inter-
esting results, especially for finite relatively free groups. It was continued
by P. Hall [2] with special interest in the splitting properties of relatively
free groups. Malcev [4] has solved the question what subgroups of nil-
potent free groups are nilpotent free groups; see also my paper [6]. The
main problem of this paper, i.e. the description of the groups of auto-
morphisms, as far as I know, has not been investigated hitherto. There
were known only some theorems, e.g. in Malcev’s paper [3] (theorems da,
6a, Ta, p. 27), which are marked in this paper as theorems 3 and 4.

In this paper there are investigated {theorems 1 and 2) connections
between antomorphisms of a relatively free group @ and automorphisms
of its (abelian free) factor group GG (those automorphisms can be
described by some matrices), under the assumption that G is either finitely
generated or residually nilpotent. The aim of these investigations is a de-
seription of the strueture of the group of automorphisms for these rela-
tively free groups which are nilpotent. This is given by theorems 5 and 6.

“At the end of this brief introduction I wish to express my gratitude
to A. L. Szmielkin from Moscow for many helpful siggestions, and to
E. Sasiada from Torun for his considerations concerning formulation
questions.

2, Now we shall give some of the terminology and basie facts. By
a Dbase of F(V) we mean a free generating system, ie. such a set X of
generators that every mapping u(X) <F (V) can be extended to an
endomorphism ¢ of F(V) such that ¢(2)= w(x) for @ eX. From this
definition it follows at once that an endomorphism is wiquely determined
by its values on the base of the relatively free group.

Tor a relatively free group there exists a base, and all bases of a group
have the same number of elements, which is called the rank of the
group. :
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