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Denote by % the smallest integer for which ml < ldnk™® and
suppose that b;, has been defined for all » < %j. We have 8/ (x) =k,
at all points of (0, 2=) except at points of the set ! of meagure < ’I/ka”“.
Thus by the above definition of b for & =1, 2, ..., &1 we have achieved
that the series (17) is >, except at a set of measure < ldwk; 8 W dofine
now 4, so that &, = [)/4(f,)| be greater than &} and &{. There will bo
fyrther a fixed value of & > k. We define, for & < n < by, bf— af, = IL
and b, will be defined by an induction gimilar to the first one. Wirst fojxf
k' < n <Ry the intervaly (@, by) are subject only to the condition not
to overlap with the intervaly already defined. For these values of » W<;
denote by B, the set of those values of # for which Su(w) < K, no thmz
E]’n = (0, 2=) foxf all & <n < ky. After by, has been defined, for an » 2= k
b,H.l.ca.n be defined so that the interval (@y1, bye) doos not overlap wi't;gl,x
the intervals that have already been defined and that

2
Y WLy —6nh;, (..
E"fs,z(m bhy1) d > an-;mfﬁj 3y(%) dw
. 0
As before we shall arrive at the value %, o ‘
. i , 2 of n such that mBy, < 1dnk; s,
Having defined by, for all n < kj we shall have the value of tl::s gorioy EIL7)

>k, except at a set of points of measure <14%:"". Continuing in this
way we arrive at a proof of the theorem.
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Orderable spaces

by
B. Banaschewski (Hamilton, Ontario)

Introduction. A topological space I will be called orderable if
there exists a total order relation B on J such that the interval topology
of the totally ordered set (F,R) coincides with the topology of the
space J. Any total order relation J2 on an orderable space B which has
this property will be called an order of the space B. For any relation R
on a set B, the dual relation will be denoted by oR. Tt is clear that if B
is one of the orders of an orderable space B then oR is also an order of
the space B. The pair (R, oR) will then be called an order class of the
space. The basic theorem concerning connected orderable spaces is due
to Rilenberg ([2]): A connected space B is orderable exactly if it is
locally connected and the subset ExE—D of the product space
(D = {(#, ®) | # « B}, the diagonal in E x E) is not connected; in this
cage there is exactly one order clags of I given by the closures of the
components of B xE—D.

This note will mainly be concerned with densely orderable spaces,
i.e. with orderable spaces possessing orders R such that the ordered set
(B, R) is dense in itself. It will be shown that there is a one-to-one cor-
respondence between the order classes (R, oR) with dense order F of
such a space B and its: conngcted orderable compact extension spaces
which is, in one direction, given by the passage to the Dedekind com-
pletion 8(#, R) by cuts of the ordered set (B, R). Also, it R is a dense
order of a space B, then 6(E,R) will be described as the completion
of F with respect to a certain uniform structure which is defined by
means of R. Then, the uniform structures of a densely orderable spaco
arising in this way out of a dense ordering of B will be characterized
by a number of properties; this constitutes a eriterion for the existenco
of denso orders on a space in terms of uniform structures. The applieation.
of these ideas to topological groups ix shown to lead to a characterization
of the dense subgroups of the additive group of reals. Finally, the existence
of dense orders of a locally connected space is considered.

All coneepts of general topology are taken in the sense of N. Bourbaki.
The same goes for notions and notations related to totally ordered sets.
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1. Extension of densely orderable spaces. Il I g an order
of a given orderable space B and W a (merely topological) extension
space of F, then one can ask whether W ig also orderable and, in partic-
ular, whether it possesses an order which extends the order R of 17,
In the cage of a dense order B and a connected, locally connocted W
there is a simple answer to this question.

ProrosITION 1. If R is a dense order of the orderable space 1 and W
a connected, locally connected extension space of B, then I can be ewtended
t.o an order of the space W if and only if the closure of B and of its dual o
in WXW have only the diagonal of W x W as their interseclion.

Proof. Suppose that K has an extension to W. Then by [2], ©
set P =W xW-—D, D the diagonal, has exacily two m‘nn]»(n)lr(nlif;j’ :I;;:
8 and o8, which determine the only two orders of W, and (m(: hay
S~ (BExE)=RE—D if 8§ is appropriately chosen. Turther, sinee & iy
open and ExE dense in WxW, it follows that § =&~ (JfJA 1)
= E~D = R, the latter by the fact that R is a dense order of K Ap
plying o, the symmetry transformation («, y)->(y, ), also gives O‘S‘ «
=0oR =oR, and for §=80D, 8~o8 =0, one obtainy £~ ok = D
_Oonvers.ely, let B n~ol =D be given and call now 8 the ini;el‘ﬂrr
of B. R—Dis open in E x B and therefore there exists an open V CW x W
such that E—D =V ~(ExE). This leads to VCV =VA (BXH)
I—tR—l; =B from which RB—DCVCS and hence EC 8 iy obtained.
It now follows that WxW =ExE=RuoRCSu b, ie. that 8o ol

is fiense in W xW. Any boundary point of § is therefore also a boundar
point of o8. Now by the hypothesis &~ oF = D and by §C & one smlﬁy
hasSSn GSQD, hence S~D =@, and then S~ oSCSAD éives Sr(:
1:];1;1; ;? Finally, P=W x WWD.-—- (8w 08)—D =8 u al, which shows
that . Ssazlot W;}onpected. 1'3y [2] it follows that 8 = 8§ u D is an order
o e pace W, s1nc§ W is qonnected and locally connected, and from
FA(E ;nd the fact that R is closed in Bx H one sees that B = R~
i~ p>r<00%'— S~ (HxH), hence § is an extension of R. This comploetes
Eoflli% le; sv;e?( %a;lltsgyeﬁgzs%nc ;]f ‘f’ if it 10X;'Ds1;s, ig merely tho closure

‘ . . y 6 geen to be reflexive and trangiti

3]1112 1% antisymmetric if and only if B~ oRf = D, I‘ﬁ;}:?eﬂ'::ﬂetl?g;‘:l['Bl;’“
ai s an order of the space W emactly if it is a partial order mlbﬂviowz

”{)RKH LARY. 1’ '”1,6 wmiterior O’ la 18 OOW/IT,GOtﬁd a’}’bd/ w W O’Idﬁ'lable, th@ﬂ;

For suppose there exists a point u e § A of, u¢ D, Then Su of L

w {u} is connected, and since this ig dense in P, P must be connected.

which contradicts the fact that W is orderable. Hence 8§ A of = D, thus
= y )

RAoR=D and R can be extended to w.
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Remark. The fact that the interior of F is connected does not imply
that W is orderable. Take, for example, J as the set of all rational points
except the origin on the T'-shaped set given. on the coordinate axes in
the plane by the points (—1,0), (1, 0) and (0, —1) and W as its closure
in the plane. J can be ordered by taking the natural order on its horizontal
part, the natural order (“going down”) on the vertieal part and defining
each point of the latter to be less than any point of the former. This
gives an orvder R of the space H. The closure of R in W xW is homeo-
morphic to a set consisting of the produet of a I' with a cloged line
segment and & closed civeular dise which has the vertical stroke of the T
as o diameter. The interior of this in WxW is obtained by omitting
the boundary points that this set has as part of the gpace consisting of
three intersecting planes; obviously, this is a connected set. However,
the pair ((0,0), (—1,0)), being the limit of ((0, =1/n), (1n—1,0))¢R,
as well ag of ((1/n, 0), (1/n—1, 0)) € ok, belongs to R~ oR and hence W
is mot orderable.

Tf R is any order of an orderable space B, then a particular extension
gpace of B defined by means of R is the Dedekind completion é(H, R)
of the ordered set (H, R) by cubs, taken in ity order topology. 6(F, B)
is always compact. ‘A property whose occurrence in 6(®, R) might be
of interest is connectedness. With respect to this one has the following
result.

PROPOSITION 2. If R is an order of the orderable space 1, then 6(H, R)
is comnected exactly if R is dense.

Proof. The usual notations <, < ete. will be used with respect
to R and its extension to 6(Z, B). Now, suppose R is not denge, i.e. there
are a, b « I such that ¢ < b and the open interval la, b[ in (B, R) is void.
Then, if for u ¢ 6(E, ) one has o <u< b, uw=a follows from the hasic
property of the Dedekind completion that y = suPsw,r) {# leeB, o <Y}
for all y e 6(E, R). Hence, the ordered set 8(H, R) is not dense in itself,
which contradicts the fact that 6(F, R) is connected.

Conversely, let B be dense and u < v in 6(B, RB). If » and v belong
to M, there exist elements 2 ¢ B between them sinee (X, R) is demse in -
itself. Further, if w or v does not belong to I it follows from the relation
y = Supymmi® | @ e B, w <y} = infopn @ | e, ® >y} which hold in
any Dedekind completion that there must be xe ¥ botween w and o.
Tt is thus seen that 6(H, R) is also dense in itself. Now, supposo o, R)
— A u B is a decomposition into disjoint non-void closed wets and. tako
acd,beB with @ < b, say. Since A is open, there must bo a ¢ such that
the closed interval [a,e] in 6(H, R) belongs to A, and one has e < D.
Tet ¢, be the supremum of all these ¢; this lies in A sinee 4 i closed.
By definition of ¢, there exists, for any & with ¢, <2< b, some &' ¢ B
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with ¢, < &' < #. Thus ¢, is the infimum of a subset of B and must also
belong to B, which is a contradiction.

Proposition 2 raises the question whether there exist, for a denso
order R of an orderable space B, connected orderable extension spaces W
of B whose order extends R but which are different from §(H, R). A com-
plete deseription of all such W is given by

ProrosITION 3. If R is a dense order of an orderable space I and W
a connected orderable emtension space of B such that B can be extended 1o
an order of W, then W is equal to 6(I, R) or to a space obtained from this
by deleting emtremal points which do not belong to B, and conversely.

Proof. It is clear that §(¥, R) and its subspaces which are obtained
in the manner indicated are all extension spaces of K of the kind in
question. Also, it is obvious that any connectoed subspace X of 8(H, R)
containing B must be of this kind. Hence, it has only 1o be shown that
any W as described is a subspace of §(E, R). Now, take any u ¢ W 1,
Then, for any v,weW with v <u <w (where the symbol - vefors
to the order of W which extends R) there exist @,y ¢ Il with o < %~ u
and u <y < w, the reason being that W is densely ordered because
it is comnected and F is a dense subspace of W. One thus has
U= supy v | 2<u,veB} =infy{y | y>u,yeB}). Tt follows, again from
the fundamental property of Dedekind completions, that W can be mapped
order isomorphically into 6(H, R) such that ¥ CW iy carried iden'bi(h‘mllv
onto B C é(H, R). Therefors, W as an ordered set can be regardod a
@ subset of the ordered set §(B, R); but since CW, Wis 'l‘.n]io]ngimlly
dense in 8(B, R), and it follows from this that W is also a subspace of
the ordered space 8(F, R). By what has already been said this proves
the proposition. )

COROLLARY 1. If R is a dense order of an orderable space B, then
there ewists evactly one connecied compact orderable extension of B to which R
oan be extended, namely 6(E, R).

COROLLARY 2. If R and § are two dense order
such that 8(B, R) and 6(B, 8)
R =08

s of an orderable space B

Hel.re, two extensions of the same space B arc called homeomorphio
over X if they are homeomorphic such that J is carried identically onto
%tself by some homeomorphism between them. If f: 8(W, R)- ->f§(‘,10, &)
Is such & homeomorphism, then by [2] f either preserves order or inverts
1t and the same holds for the restriction of fto B. Mence B == § or R = (rS’

These two corollaries taken together immediately lead to '

CorOLLARY 3. For any densely orderable space 1 there s o one-to-one
correspondence between the classes of dense orders R of B and the connected
compact orderable emtension spaces W of B, given by R->W = (H, R)

y I = (1, I

icm
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Here, of course, two extension spaces of B which are homeomorphic
over B are regarded as identical.

2. Order and uniform structure. The fact that 4(E,R) for
a dense order R of an orderable space E is a certain compact extension
of B means that there exists a precompact uniform structure on K such
that 6(H, R) is the corresponding completion of E. In the following,
a simple description of this uniform structure will be given directly in
terms of R. The usual notations will be employed with respect to the
order relation R.

Tor any ascending sequence & of an even number of points
@ el lot UCE denote the finite open covering {[-, ml, I, 50'4[,
1%, @ Ly -y Van—gy @on [y Vanwr, =]} and U, C B X B the binf»]ry mlam.on
UU x U(U €2 (&)). Further, call a similar sequence 7 a refinement of &
(in symbols: n < &) if for ay, y; belonging to ¢ and # regpectively one
has Bogen) = Yagerr) N Loprr = Yart1 for all %> 0 for which these terms
are defined. Tt will first be shown that % < & implies U, U, C U..

Let 2n be the length of the sequence & Then, the refinement # of &
hag the length 4n. Now, take any U,V e U(y) with non-void intersection;
guppose that U lies farther down than V and let ., be the upper end
point of U. The set UvV is either (i) [« Yoo oOr (.ii) _]y%_,,, -] or
(iii) J¥a—s; Yau+e[ depending on how far up or down ¥y lies in #. Case (i)
implies that % = 1, and then one has 2% +2 = 4, hence Yupe =2, and
UuVC <, ] Case (ii) only occurs if 2k = 4n, and it follows that
2%—3 = dn—3 = 4(n—1)-1; hence Yoy = an— and UuVC 12—, >l
In case (ili) one has to consider even and odd % separately. If & = 2m,
then 2k—3 =4 (m—1)+1 and Yop—s = Tom—1. AlSO, 2k +2 = 4m+2 and
Yorss = Yam+e cannot be the last point of # since this hag the index 4n.
Therefore, Yym-1) = a(m-+1) eXists and U v V C |@am—1, Bapmn]- IE k= 2m +1,
one only has to deal with m > 1, the case m = 0, i.e. k=1, already being
settled. Then, 2k—3 =4m—1 and Yum—s = Tom—1 eXists, whilst 2%+ 2
= 4(m+1) and thus Yerre = Bam+n), hence UV C 1%sm—15 Bagmny[- In all,
it is shown that any two sets in U(n) which meet have their union con-

tained in a set of M (&). This, however, implies that U, .U, C Ué.l
it

Now, let Qf be the collection of all finite intersections Uy,,..,g = ﬂ Uy,

9 is closed under finite interseetions and if n; < &y vy i < &k, Ghow
Uiy © Ungpeoy = (@, 9) | (2, 2), (2, 9) € U,“,,_,,,,,; for somul 2} C {(w, v) |
L o ,“ oy o
(, %), (2, y) €Uy, for some ;5 i=1,..,k} = QU,,,LoU,,i,g_ﬂl(fﬂw: Ugyyootr
T
Hence, 9 is the basis of some uniform strueture. Also, for. any @ e 1,
Ugw) is an open interval containing @, hence the th"gk('.’l/‘) are 0Pen
neighhourhoods of ®. Furthermore, for any neighbourhood V of @ there
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obviously exists a & such that Ug@)CV since B is a dense order of K.
Hence, U is the basis of a uniform structure of the space B, i.e. compuat-
ible with the topology of Z. This uniform structure will be denoted by
Q(R). From the way 9 is defined one sces immediately that “2(R)
is precompact, and hence the completion of B with respeet o U (I2) in
a compact space.

PrOPOSITION 4. The completion of an orderable space II with respect
to the uniform structure U(R) associated with a dense order R of B is
5(E, R).

Proof. Let K = 6(F, R). Any sequence £ in 2 of the type considerad
above determines a finite open covering U*XE) of K by the intervals in K
which are obtained from & in the same way the sets of W (&) wore oblained,
in B. If U} is the binary relation on K given Dby WM&), ono again has
UysoUs CUE if <& and ag above it follows that the finite intersections
of the Uf form the basix U* for a uniform structure. Again, for any
y e K and & U*(y) is an open interval containing y and hence a neigh-
bourhood of y in K. Algo, since F is dense in K, those open intervals
containing y whose end points belong to H form a neighbourhood basis
for y in K. Thus 9* is a basis of the unique uniform gtructure of K. In
other words: The uniform structure U (R) of B is the restriction of the
uniform structure of K to E. From this it follows immediately that
K =6(B, R) is the completion of I with rospect to W (R).

Since it is seen that total order relations determine uniform. stroctures
in the manner described above, one can introduce the notion of an
orderable uniform space. A uniform space (B, W) will be called orderable
it B is orderable with orders R such that O = Q/(R). These orders R
will correspondingly be referred to as the orders of the uniform space
{E,U). Similarly, a uniform structure U of a space H will bo eallod
orderable if the uniform space (, ) is orderable. With these notions,
one has the following results as consequences of proposition. 4.

CoroLLARY 1. A densely orderable wniform space possesses only one
order class.

‘ Proof. If (B, U) is the orderable uniform space and R and S two
of its dense orders, then it follows from WU(R) == U = W (8) thub (1, 1)
= 6(#, 8) and by the second corollary of proposition 3, & and § belong
to the same order clags.

CoROLLARY 2. There is o one-to-one correspondence between the dense
order clc.asses of an orderable space and its densely orderable unsform struc
tures, given by R—U(R).

Remark. It can easily be seen, by means of examples on the real

lim.a, that corollgry 1 is no longer true if one considers meorely orderable
uniform spaces instead of densely orderable ones.
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Given the definition of orderable uniform spaces oue ig led 13‘0 the
question as to bow these can be characterized. This will be conpidered

in the following for the case of dense orders.

PROPOSITION 5. A precompact uniform space (H, ‘-?Z)_o}s densely .order-
able if and only if U contains a basis )9 with the following properiies:

() For each V eV, \J V" = B x B, where V' =V and Vr=V V"
nz>l

Y TF == 0y Dyy vy =Y G0 Yo=Y, Y1y ooy Yn =2 @76 two  se-
qu@nées) ’&’}Z/ If}o and’ V107’ V:, weey Vi & SEQUeENCE M0 Qﬁ suah‘that all V(@) ~
~ Vipalttern) and Viye) o Via(Ysrn) are non-void for i=0,1,..,n—1,
then Vi) ~ Vi(yy) # @ for some f.

Proof. Let the uniform structure 9 satisty the stated 11yquheses
and W denoto the compact completion of the uniform gpaco (17 ,Qti_).
Then, by [1], chapt. IT § 8 the closures Vol VeUk m W x'W form & bzu‘sns
for the uniform structure of the space W. Now, given a,nyny; eW, 1{he
got 7*w) = | 7(w) contains points @ ¢H and thus nL;JlV (w), which
is equal to En;q;r (i); it follows that W =V(B) C V*w) and by [1], chapt. 1T,
§ 4 this shows that W i8 connected. . .

For the next part of the proof the following .obvious statement will
be used: Let X be a space and B a basis for its open sets. For any open
PCX and aeP, lot Cpla) denote the set of all © ¢ P such that therg
exists a soquence BiC P, t=1,..,% in B with a €B,, @By and
By~ Biy %@ for all i =1, ..., n—1. Then P=J Cip((l) (a € P); any two
distinet COp(a), Op(a’) ave disjoint and each Cp(a) is open. .

Now, take X =W, P = W x W—D and B as the collection of sets
V() xV(y) CW x W where #,9 el and V° denoi.;e-s .for each V e‘fv
the interior of its closure in W x W. From the definition of W as the
completion of (H,U) it follows that the V=), © ¢ B and V ¢, form
2 basis for W; hence B is a basis for W x W. Now sug)pose (v, .'-c) e Op(y, @)
for any (¥, #) € P ~ (H xH). Then, if B; = Vi) xVi(y‘i)_C_P, fm=1, ey My

i the corresponding sequence in B, one obtaing from this @, = @, L1, -y Tn,
Dy =Y and Yo =1, Y, o) Un, Ynia =‘%;, suc}(l)‘tllatofor V{,’? Vi, = T_fﬂ,
Vs = Vs, with ¥, chosen such that V(@) xV(y), Va(y) x V(@) C P, the
relations V@) A Virr(@ip) # @ and Vi(y) trt( Vi) %Qﬁ 'E‘ollow :Eo;.' all
i=0,1,..,n Therefore by (ii) there oxists a .j such that V,(_agg) n Vi)
% @. This, however, implies V@) ~ Vilyy) D +# O, mnm‘hr;ml‘nf&1n]1;; the
fact that V(@) xVily;) CP for ¢=10,1,..,% 1. Th ful}ows fihat (y,. @)
¢ Op(z,y) and therefore Op(®,y) # Oply, ). The remark in tho ].)1*fag(3g1111g
paragraph now leads to the conclusion that P is not connoectoed. ‘.By [27,
this means that there exists a total order relation S on the set W such
that the open intervals in (W, §) are open gets in W. Then, the topology
given by S on W is a Hausdortf topology which has no more open sots
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thar; w ‘has: in its own ’(7()]?<)](>g*y, and sinee W is compaet, the two topologies
§1}s coineide. Thus, W is seen o he orderable, and, sinee it is connected
1(51; denge. Furthermore, the restriction R of 810 7 is a dense order of I:’
— g g arv 1 1 i1 e H ) ’
fcl,l:; W = 6(E, R) by corollary 1 of proposition 3. Finally, by proposition 4
= Y(R), and this completes the first part of the prm;f ’
i ((fonversely, let (B, “U) be densely orderable. Then, its completion W
Osnzr eral:u)le and connef‘/ted; furthermore it i Jocally connectod. Therefore
Whic;an . al({ieffns a ba.mﬁ 1".01' the uniform strueture those entourages of l;
mmictaigfl q; :nefl’ })yui‘m]tu coverings of W by connected open sels. Tty
g o B is then a basis of U, consisting of i Lo
: : iy consisting of symmetrie relati
Vto B is then K ) rie relations
vsvi}l?:;ltchlea‘ﬂy sfmtlsf:le,: (i). N(f)w, congider Viay), Viy,) as deseribod in (ii)’
e intexiors Vi(@;), Vi(ys) of the closares of the Vy(wy), Vi) i .
are connected in W, since L == WxXW--D in di t';’[ 71 1c(”’[l) e
! e L s digeonnocted and sinee
(#,y) and (y,2) belong to different components of £, Viw,) » V"
cannot completely lie in P for otherwi ! i g Vit
pams o0 »in P for otherwise the two components of 72 wonld
‘ ed by a counected set. Hence D~ |JVay) x V? i
gives Vi(@;) ~nViy,) # @ for s ; 1 1] i) XVilg) /-4 which
gives, i,t i,S see, 1 ':h L2 0;) some j and thus also Vyay) ~ Vily,) 0
. , n that the basis 9 of W satisties t itions statod
in propostion 5 U satistios the conditions stated

3. A
the prece‘;lmzp&ti?g;lzzxnt& t(?rﬁo]logtlct:l groups. The techniques of
e c employed to obtain the followi sharne
terization of the dense subgroups of the realy in { { proention o

the neighbourhoods of the unit element: s of propertics of

ProrosITION 6 j )
of the aitios oo . 0.;1 toplologwal gw)'up G 18 somorphic to & dense subgroup
B acine g1 ogf) a req .numbaars if and only if there emists in & o a"z(’
¢ unit ¢ e @, consisti ] ! b

hoo , L ) g of symmetric open nedghbowr-
ds ?f e, which satisfies the following conditions: pon netglo

((1; .ﬁach VeDB is a set of generators of @,

ii) For any U i8¢ i
i1 yz yVeB, U is covered by finitely many sets Vi, we@
A = 1y eee =zl 3 , y '
o 1Ly ey B == 87048 6 sequence of elements of (F and Voy

Vi V. @ se i ]
. quence wn B such that V. Vi@
=0,1,..,n=1, then 2, ¢V for some i, @V in VipzoaVi £ O for all

Remark. If Vi OV ] i
relations Sy, defi];eg bls;b Itl‘g(;;h II())WI;' t-l.l‘G ;m'lgmm.m.h“m]H B, then the
and form the Dast, cg‘ iy q}{{I ; LlV if and only if @ VoV are symmetrie
incides with that of @. Tlmli}mulﬂ-?mn stracture on G whose topology co-
of points, going from O.I ; .we .m(mnm'g of (iif) is that if in & sequence
16 element of ¢ to ity nverse, succossive olemonts

are close to each other i
her in the K0 f Vi
) ! nse of having of-nei 1 i
’ hen t ‘ must contais VINg of nmghl)m,u]mmln which

. ; : 1 & term : 0 1 i
its assigned - neighbourhood contain o 80 close to the unit ¢ that

i h-
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Proof. It is obvious that for any dense subgroup of the reals the
collection of all open intervals, symmetric around zero, satisfies all the
stated conditions. Conversely, let G be a group as deseribed, denote
by Q¢ the uniform structure of @ defined by the relations {(z, y) | @y~ € U},
U ranging over all neighbourhoods of ¢, and call Y the basis of U con-
gisting of those of these relations which are given by the V e 8. The first
thing to be shown is that Y satisfies condition (ii) of proposition 6.
Consider, then, two points @,y € @ and sequences @, = &, Ly, -y In =Y,
Yo == Yy Yy ey Y = @ such that Viw; A Viga@orr # Dy Vilin VigaYira # %]
for suitable Vie®B, i==0,1,..,n—1 It follows that v;®; = Vir1%i+1 and
Y7 = YTy v With suitable factors from V,; and V., respectively. Hence
VYTV = Vg B YirVirn O Viliys WA Vi@ Yita Vier # @ for all 4,
and gince waynt=yr = (wy™) " = (wys") ", one can use condition (iii)
for B to obtain @yy;* e Vi or ViwinViy; # @ for some §. By the proof of
proposition 6, this implies that the completion W of G with respect to
the uniform structure A has the property that W x W—D, D the diagonal,
is disconnected.

Now, condition (ii) means that @ is locally precompact, and this
is known to imply that the group operations can be extended from G
to W; hence W, besides being a space, is a locally compact group. Since
the clogures V of the V ¢ B in W form a fundamental system of neigh-
bourhoods for the unit in W it follows from (i) by vacC L>)1T7” that each

=

neighbourhood of W generates W. This in turn is known to imply that
W is connected, and the fact that W x W — D is not connected then means
that there exists a dense total order relation S on W such that all open
intervals of (W, 8) are open sets of W.

The next thing to be shown is thab this order relation § is in fact
an order of the space W. However, since W need not (indeed, never
will be) compact one has to use an argument different from the one
employed in the preceding section to obtain this.

First, it is easily seen that any closed interval [a,b] in (W, 8) is
a connected set in W: It is clear that it is closed, and if [a,b] = A v B
with non-void closed disjoint 4 and B, where either ae.d, beB ox
a,bed, then either W= (4u [«<,al) v (Bwlb, »] or W= (4 v
ul<,a]ulb, >)vB is a decomposition of W into non-void closed
disjoint sets, which is a contradiction since W is connected. Now, it X
ig any compact neighbourhood of a point w in W and ¥ C X an open
neighbourhood of w which does not contain any closed neighbourhood
of w of the form [a,b], then [a,b] ~(X—TX) # @ for all these [a, b]
gince they are connected. By the compactness of X—Y this implies
that ) [a, b] A (X—X), a<w< b, is non-void, but this contradicts
wy =N lo,b] (a<w<b). It follows that the neighbourhoods [a, b] of w
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form a fundamental system, and this means that W is orderable, § Hoi
one of its orders. e
The group QWill now be considered as a transformation group of W
‘Ehe trgnsformatwn given by a ¢ (¢ boing the right translation 7 » . ’m7
Tq being a homeomorphism of W onto itself must either proserve 1]1,
orde}’ 8 or invert it ([2]). Clearly, those a e @ for which 7', is order )],‘0(
serving form a subgroup H of @, and if @, b ¢ H then ab e I such >1 lm]‘i II
is of index 2 in @ unless H == ¢/, Morcover, I iy closod: Lt .(' el[l ‘1 I
a ggneml sequence of elements (¢ ranging over some directed ::(‘s'l) ‘ .
verging to ¢ e G and take any fixed puir @,y ¢ W with @ - y; 1.11;\1 <<‘;11~
“Fhe continuity of the mapping a-»wae of ¢ i‘n'l»n W for :ﬁly ’i'i;ml 1'417’ 3 ;I\;
it follows that we, and ye, converge to me und ye respectd \;uly u‘ml’ (_e )
we, < Yo, for all a one has @ < ye, i.o. ¢ e H. fl“lnm it 1 /V ‘G” }[ 'Hm(’f?
only closed but heing of finite index algy open, and 1»7110]'01‘0:‘0 i ;mi fhl: ]me
hood of e. ?3]1is, however, is impossible by (i) sinco it ifmm,v.m 1;7111 ;nuh
V e B contained in H can generate G. In particular, it iy nﬁw 1 )':1 TN{
T}hat the translations #—ax on @ progerve the ord,u;' Lot @ 1.?\’0}
ndnced by 8, | di ol which is
ko ]i)};egfxf:lihiheo fgéx;e gl*%l}n};ntnﬂ;l iilsoex; that the left translations
] , and therefor af turned ;
be an ord.eafed group, with its topology given ;B)yqi'lar‘L:’)x‘:i:ti;jl("(l o
the condition (i) implies that & is archimedoan ag o
group, and by Holder’s theorem it tinally T()]],(iwg. that ,
as an ordered and hence also as a topological ‘frou; 1 ;
of the additive group of real numbers, the % ‘1-’ e ogroLD
the reals since @ is densely orderved‘ ’EhAi\s’ 0/‘ Mm(ﬂ e o
Praposition. red, T scompletes the proof of the

As an immediate conge
also has:

1o
Moreover,
an - ordared
G 15 isomorphie,

quence of the above considerations ono

. CoroLLARY. A locall
u.z.hwh the connected s
(ifl) of proposition 7

4. Dense
A disconnected g:di:;‘l?lah; )Alocall'y connected orderable spaces.
class. Moreover, it is eag fj‘w‘“ Wl.ll F"lWﬂlyﬂ bave more than one order
of whose order s’ aré den;g W(l) A;s(:a Lhad; thare are orderable KDACON Koo
dense orders which lead to a c1 - Ot.h(-m aro ot Sinco it iy oxactly the
o the possibility of appt ;n ormecﬁed Ded..u.km(l completion and therely
out above, the dense ofdzr'ég o .resultt;; in [2] in the manner cayriod
topological conditions for th e Of. particular interost. In this soction,
for a particular type of spagesxfxz(;ﬁzf 01f Cetae orders will be obtained

The following observation will be yofoxfgiblr&&?rgf’.wd R

o Y tco.mpac:t, ooameate@ and locally connested group in.
st M;,e 7ic ‘n%:qhbourhoodfs‘ of the wnit satisfy condition
somorphic to the additive group of real numbers.
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LmwvA. If B is an orderable space and B one of s orders, then any
connected set A CE is a convex set in (I, R). Further, if A and B are
disjoimt connected sets im H, then cither a<b or b<a for all e A and
beB.

Proof. Tt is understood that the usual notations relating to order
are used with respect to B. If ay, ape 4, < &, and c¢ A for some ¢
with a; < ¢ < @y, then 4 = (4 <, ¢ v (4 ~[c, —=]) is a decomposi-
fion of 4 into two non-void disjoint closed sets which contradicts the
connectedness of A. Next, if 4 and B are disjoint connected sets and
ay < by for some age A, byeB, say, then b<a for b eB would imply
& ¢ B against the agsumption; thus a, < b for all b e B. Similarly, no
a>a, in A can satisfy & >b with any beB since g, < b <a would
imply beA.

COROLLARY 1. If B is an orderable space, then any connected set
A CE is again an orderable space and any order R of B induces on 4 an
order R4 of the subspace A of .

Proof. By the lemma, the intersections of open intervals of (#, R)
with A are all of one the types la, b, [<+, al or la, -] in (4, Ry), and
hence the subspace topology of A coincides with the order topology
given on A by Ra.

To be able to formulate easily another consequence of the lemma,
the following notions will be employed: The topological sum ZI B, of
a family of spaces H., a €I, is the space whose points are the glements
(¢, @) with @ ¢ E,, a I, and whose open sets are defined by taking as
a basis the sets {(x, a) | @ € V,} where V, ranges over all open sets of
B, and a over I ([1], chapt. I, § 8). Further, if each E, and I are totally
ordered by relations B, and 8= < respectively, then the set Z',IEG is
totally ordered by the relation K = UI(R“ UﬁU By x B whiehaswill be

a€ <a
called the ordered sum O, B, of the order relations R, a eI, with respect

[
to 8. If the spaces H, are orderable and R, is an order of B, for each o,
then it may happen that for suitable S on I D R, is an order of the
S

space > H,.
ael
‘With these concepts one now has:
COROLLARY 2. If T s a locally connected orderable space, H,, ael,

the family of its connected components, B ono of the orders of B and R, for
each ael the restriction of R to B, then E = > R, with a suitable total
s

order relation S on I.
Proot. It is clear that B = > H, since it is locally connected. Also,

a€l
each J, is orderable by corollary 1€f«md R, an order of the subspace H, of H.
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Further, the lemma implies that I can be ordered by 8 defined by “u - g
if and only if &<y for all @B, yeHp”. Tinally, for any @,y el
one has @ <y, ie. (#,y)eR il and only i (w,y) ¢ R, for some a or
(,9) e Bgx B, with § < a.

According to corollary 2, the question whether a locally counected
gpace is orderable and in particular densely orderable ix oquivalent to
the question whether in a given family By, ae I, of connected orderable
spaces an order R, can be chogen from the two orders of each M, and

a total order relation § on I such that D, R, is an order or, in particular,
8
\1
a dense order of the space > B,.
wel

In the following, a point ¢ of a connected orderable space A7 will
be called an extremal point of X if it is maximal or minimal in one of
the orders of X. Xt is clear that if X bas two different extremal points
or containg only one point it is compact and conversely. Also, of course,
the extremal points e of X are topologically characterized by the ¢on-
dition that X — {e} is connected.

ProrosItioN 7. T'he topological sum of o family of (at least two)
connected orderable spaces Ty, ael, is densely orderable if and only §f
no B, is compact and at most two B, have one ewtremal point. In this case,

the dense orders of > E, arve emacily the relations 2 R, for amy choice of
a€l s

orders R, of T, such that the possible extremal points are of different Tind
and amy total order relation 8 on I such that o<l is mawimal (minimal)
if (B, R,) has o mamimum (minimum).

Proof. Suppose that B = ) B, is orderable, R one of its orders,
ael

and asgume that F, has a maximum ¢ with regpect to R. Then, since
E, is open, there exist b, ¢ e F such that a<]b, ¢[ C B, unless « is maximal
in (H, R). If the former case holds it follows that any « ¢ ¥ with & < o
< ¢ is equal to @, i.e., that no elements lie between a and ¢. It R is dense
this cannot oceur and then it follows that only one F, can have a maxi-
mum and this will be the maximum of (7, R). Similarly, with dense R,
only one E, can have a minimum which will be the minimum in (#, R).
Now, since there are at least two elements in I, the H, for which these
two properties hold must be distinet. Finally, since the extremal points
of any B, must be either the maximum or the minimum of J, in (H, R),
it follows that the I, satisfy the given condition. Further, by the second,
corollary of the lemma one has R = g R, where each R, is one of the
orders of H,, and by the above definition of §-and the remarks just mado

about the occurrence of B, with maximum or minimum in (B, R) it
follows that R, and 8 are of the described kind.
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Conversely, lot By, a e, bo a family of spaces as stated im(l‘Iﬁa and
§ order relations satisfying the above requirements. Then E == % R, ob-

viously induces I, on each f,, and any sufficiently H{)\&l} open interval
in (B, R) containing an o e [} is also an open interval in (E,f, R,). There-
fore, I is orderable with order I. ]1‘1111;11@1'11101'93 9&(:11 R, i3 de‘nse and
only at the ends of (##, R) can o maximum or minimum of an B, oceur;
thig implies that R i8 also dense.

CoROLLARY. If 1, a e I, 4% a family of non-compact oonﬁpnted orderable
spaces suoch that at most one L, has an calremal poim, thtj’n all orders of .the
space 2{’ B, are dense. If, howener, there are two B, with catremal point,

o€

then >, M, also has ovders which are nol dense.
ael

Proot. It all B, are without extremal points then there is no re-
striction on the total order relation S on I and the eho&ces of the R, on
H, and hence all possible > R, are denso orders of ZI E,, and by the

) g ae
. ) - ul % N
second corollary of the lemma these will be all orders of » H,. Otherwise,

ael
let @y e I the index such that F, has an extremal point e. Then I?y_ the
firgt part of the proof of proposition 8 ¢ must be maximal or minimal
with respect to any order R of > B, and then the R, and the order S
. ael

on I such that R = Y R, automatically satisfy the conditions given in
5

proposition 8. Ienco R is dense, .
TFinally, i two of the H,, B, and M, sy, %mvu e.xtremzm.l points &
and ¢, one can choose Jg, and R, such 1‘.11@1‘. ey 18 nlu?clnla]. with 1'espect.
10 Ry, and ¢, minimal with respect to R, and ()1'(10}' I in such a w?n_y that
o < @, and no a lies between these two. It is easﬂy_ seen that with any
total order relation § on I of this kind and any choice of R, for a # oy,
%‘ R, is an order of ( ‘%; H,, but not a dense one. This proves the corollary.
Considerations similar to the preceding ones easily lead to a de-
seription of all ovders of a sum , M); I, of connected orderable spaces,
although this will Do loss clear intuitively than the one obmiped for (1@1?391
orders. 11 o point « in an ordered sot which hay an Jmmudmt(‘» Hu.(?cesam
a* (prodocessor ay) i called right (loft) iso'JMa(_sd, then one has 1;11f7| follow-
ing goneral statement whoso proof follows the above zwgu%n(mth:
ProvosiioN 8, Let B, wel, be o family of (:()»;boae(;tgtl m'(m'ablo spaces,
Ra am order for each T, and 8 any total order o‘omt'{km on I such th.at wlwmweg
(B, R,) has a greatest (least) element, thewn‘ o 98 right (lcff) )w‘)lated ?(‘;L,
(B, Re) has a least ((Ba,, Ra,) o greatest) clement. Then % R, is an order

of 3 B,, and any order of D B, is of this type.
ael ael

3
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On isomorphic free algebras
by

8. Swierczkowski* (Wroclaw)

1. Prellminaries and sammary. Given a clags A of abstract
algebras which have the same operations, lot ey, denote the free A -algebra
with e generntors (el L, p. viil), Tn Uhis paper wo eonsider the class
of all froe algebras oy, with finile . Assuming that Lwo of these algebras
are isomorphie, Le. wlgmedy, B /L we rvostigate the distribution of
pairs of isomorphic algebras in the sequenco Ayy Agy oo

Mrggoriem 1. If T s the smallest dnteger sueh that o= m holds for
some m /T, and 1 - d 48 the swmallest integer satisfying Ay o, T# Ty
then e sln holds for mfon if and only if m==n (modd), and m,n >k

Theorem 1 implies that, for any fixed free A-algebra A, The indices
f for which «f; is isommphie o ol form an arithmetic progression. Let
in particular {«(} bo the cluss connisling of a single abstract algebra A
and suppose that «( has a finite basis (sel of independent () generators).
Then the above consequence of Theorem 1 yields @ theorem of K. Mar-
czowski (of, also [2], Theorem 5) which says that the finite ranks (cardi-
nals of bases) of «f form an arithmetic progression, The transition from
our rosults to this theorem follows by observing that » is & rank of o
it and ouly if o ix isomorphic to tho froe { A} -algebra .

TruoreM 2. Given any integers 0 <To <1, there ewists @ class of
algebras Wgyy satisfying the assumptions of Theorem 1, i.e. with the property
that Tt and 1 are the smallest integors such that «lp= T

Tor proving Theorem 2 we use thoe class Ay of all algebras having
the following % |- oporations

(1) Pty ey )y O @y ey 1), Ty b Jely oy by
which satisfy the wxioms (¥)

(2) V"t(‘“l("”,t; oy )y ey Op{tlyy oy wl)) caigy Cel gl
() @g(a(dyy ey @)y oovy PUlLy wovs ) = ey el e k.

* During the proparation of this paper the author wag o Rosearch Fellow at the
University of Glasgow.

() In the senge of 15, Murczewski's definition (see [6]; cf. also Def. & helow).
(®) Axioms of this kind were considered in [4].
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